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ABSTRACT

In this paper, we propose a novel allpass (AP) fractional de-
lay (FD) filter whose denominator polynomial is obtained
by truncating the power series of a certain function. This
function is derived from the frequency response of the de-
nominator whose magnitude response is related to the de-
sired,phase response through the Hilbert transform since the
denominator of a stable AP filter is of minimum phase. The
target function and corresponding power series are calcu-
lated-analytically and expressed in closed form. The closed-
form expressions facilitate the analysis of stability. Accord-
ing to the properties for the coefficients of the denominator
polynomial, we show that the proposed AP filter is stable for
positive delay. Numerical examples indicate that the phase
delays of the proposed filters are flat around w = 0.

1. INTRODUCTION

Digital implementation of fractional delay (FD) occurs in
many applications such as sound synthesis and timing ad-
justment in digital receivers. Therefore, design of digital
FD filters is important and has been widely studied and
reported in the literature[1]. Several closed-form FD fil-
ters are investigated because there exist efficient and tunable
structures for implementation. FIR FD filters with closed-
form coefficients can be derived by windowing their ideal
impulse responses [1, 2], by solving the Vandermonde sys-
tem [3], or by expanding a certain function to power series
[4]. The Vandermonde FIR FD filters which are identical
to the series expansion have maximally flat (MF) frequency
responses [4]. The MF FIR FD filters can be implemented
in module [4] or in tunable structures such as the Farrow
structure [1].

Allpass filters are a natural choice to design the FD fil-
ters since the AP filters have unity magnitude responses
within the whole frequency band structurally. However, it is
necessary for AP filters to check its stability which is guar-
anteed for the FIR filters. The methods of AP filters design
can be surely applied to the FD filters [5]. Like the FIR
MF FD filters, closed-form AP FD filters whose coefficients
are obtained by solving the Vandermonde system have MF
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phase delay [6]. There exist tunable structures for the MF
AP FD filters [7].

In this paper, we proposed a new AP FD filter with
closed-form coefficients by series expansion. The phase de-
lay of the denominator is calculated from the desired overall
delay and accordingly the magnitude response can be de-
rived through the Hilbert transform based on the fact that the
denominator is of minimum phase. The ideal transfer func-
tion of the denominator can be derived by the magnitude
and the phase responses. The denominator polynomials of
the AP filters are obtained by truncating the power series of
the ideal transfer function. Stability checked by a theorem
about the bound of the zeros of a polynomial is guaranteed
for positive delay.

2. FREQUENCY RESPONSE OF DENOMINATOR

The transfer function of an Nth-order real-coefficient AP
filter is represented by

an +an_127 4+ ... +aezN _ 27NA(z7Y)
ap+aiz-l+...+anz=N  A(2)

o)
where the numerator is the mirror-image polynomial of the
denominator. Although we usually let a9 = 1 for AP fil-
ters to prevent from the null solution, in this paper we do
not make such an assumption to facilitate our derivation and
discussion. The phase response of the AP filter can be ex-
pressed by

H(z) =

arg[H ()] = —Nw — 2arg[A(e’)] @

where arg[A(ef“)] is the phase response of the denomina-
tor. Given the desired frequency response P(w), we want to
find a set of coefficients a,’s so that arg[H (e*)] ~ P(w),
or equivalently,

. 1
arg[A(e’?)] = —§[Nw + P(w)]. 3)
Suppose the desired phase response for the Nth-order AP

FD filter is
P(w) = —(N + d)w (G
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where d, restricted by —1 < d < 1 in this paper, is the
fractional part of the delay. Then, Eq.(3) gives the desired
phase response of the denominator

arg[A(e?V)] ~ -;—dw )

Because the denominator A(z) is of minimum phase,
we assume that its magnitude response |A(e“)| approxi-
mates a minimum phase system with phase response ex-
pressed by Eq.(5). Therefore, the magnitude |A(e“)] is
related to the phase response arg[A(e?“)] by the discrete
Hilbert transformation [2]. Specifically speaking,

In|A(e?)| =C + %’P/7r arg[A(e’?)) cot({f;—e) de
N ©)

where the symbol P denotes the Cauchy principal value of
the integral. The constant C in Eq.(6) is calculated by

1 i i
c= ﬂ/_ﬂ In |A(e7)|duw. )

Since C represents a scaling factor to |A(e?“)|, it will be
canceled out in case of AP filter. Hence we let C = 0 with-
out loss of generality.

Substituting Eq.(5) into Eq.(6), we may express | A(e*)]
in closed form. By means of the Leibniz’s theorem for dif-
ferentiation of an integral [8, p.11], it is easy to calculate the
integral of Eq.(6).

Property 1 The magnitude response of a minimum phase
system with phase response %dw is

[A(e?)| = (2 + 2 cosw) %2, (8)
Proof: Let

Flw) = %/"0cot<w;0)d9. ©)

-

We obtain that In |A(e?“)| = 3d x f(w) after substituting
Eq.(5) into Eq.(6). By the Leibniz’s theorem, we have

d 1 [T 0 w—140

1 T 1 ,({w-—8 _ 1
6 {~—csc (T)]dg =tan -

“or ) |2

Therefore,

flw =K+ /tan %wdw = K - Incos? %w 10)

where K is a constant. To determine X, we letw = 0, equate
Eq.(9) with (10), and obtain that

K=f0)= -2%/_ 6cot<—%9)d0 = —In4.

Therefore, In | A(e?“)| = —$dIn[4 cos? (w)] and the mag-
nitude response can be obtained and expressed as Eq.(8).
Since the magnitude and the phase responses of the de-
nominator are obtained, we may express its transfer func-
tion in closed form. This transfer function could be regarded
as the ideal transfer function of the AP FD filter. Substitut-
ing z + 2! for 2 cosw in Eq.(8) and expressing the phase
response as 2%/2, we obtain the following property.

Property 2 The ideal transfer function of the denominator
for an Nth-order AP FD filter with total delay of N + d is

Au(z) =01+ z'l)‘d. an

Remark. In fact, the denbminators of Thiran’s MF AP
FD filters converge to A;4(2) as N approaches infinity. By
expressing the coefficients of Thiran’s MF AP FD filters as

_(=1)™(N +d) (N
Gm = (2N +1+4+d)m (m)’ (12)

Jim o= (1) 03

where (7¢) is the coefficients of the Taylor’s series of A;4(2)
expanded at z~! = 0, and (z),, is the Pochhammer’s sym-
bol defined by (z)g = land (z), =z X (T + 1) X --- X
(z+n-1).

Based on the magnitude response expressed by Eq.(8) or
the ideal transfer function of Eq.(11), we may find the coef-
ficients of the denominator A(z) by well-developed meth-
ods for FIR filter design. In this paper, we will expand
Eq.(11) into its power series to obtain the closed-form coef-
ficients directly.

we have

Property 3 The transfer function of the denominator of an
Nth-order AP FD filter can be expressed by

N n
(@) (1—271
n=0

Proof: This result can be obtained by expanding the
ideal transfer function around z = 1. Expressing A;4(z)
in Eq.(11)as 2~¢[1 + (2~ — 1)/2] %, expanding it as the
binomial series, and truncating the resulting series up to the
first IV +1 terms, we obtain Eq.(14) except the scaling factor
of 2—¢. The factor can be dropped since it will be cancelled
out in the AP transfer function.

According to Property 3, it is easy to obtain the filter co-
efficients a,,’s in closed form by expanding the right side of
Eq.(14) and then collecting terms of the same power. After
some algebraic manipulations, the coefficients in Eq.(1)can
be expressed as

(1) = ()kn
n = " Tom kzo K10k s
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forn=0,1,...,N.

The coefficients of the Nth-order AP FD filter is now
obtained in closed form. Although we derive the coeffi-
cients of the filter according to the assumption of minimum
phase system for the denominator, this assumption does not
guarantee stability of A(z) in Eq.(14) because of truncation
of series. In next section, we will discuss the stability of the
proposed AP filter.

3. STABILITY PROBLEM

To test the stability of the proposed AP filter, we may apply
the Schur-Cohn criterion or the more efficient Jury-Marden
criterion [9]. Nevertheless, it is difficult to evaluate the
Schur determinants because the summation in Eq.(14) can
not be simplified furthermore. It is also complicated to es-
tablish the Jury-Marden arrays for the same reason. There-
fore, we have to find another way to test the stability. In this
paper, we will apply the Enestrom-Kakeya theorem [10, 11]
stated as the following:

Theorem 1 Letp(z) = Y anz™™" N > 1, bea poly-
nomial with a, > 0for 0 <n < N. Letr, = any1/an for
0 < n < N. Then all the zeros of p(z) are contained in the
annulus
min 7, < |z| < max rp,.
n n

By the closed-form expression of coefficients in Eq.(14),
we can show that the coefficients are decreasing in modulus.
In fact, we have the following property.

Property 4 The denominator A(z) can be represented as

A(Z) = hO - hlz—l +h22_2 — (_I)Nth——N (16)

for0 < d< 1wherehg > hy > ho>--->hy > 0. On
the other hand, for -1 < d < 0, we have

A(z) = go+ g1z —goz 2+ +(-1)Ngn2™N (17)
where go > g1 > g2 > - > gn > 0.

Proof: We show the property only for 0 < d < 1. The
proof for the case of —1 < d < 0 is similar. It is obvious
that h, = (-1)"a, > 0forn = 0,1,..., N. Besides, we
have

N-n
(k —n —1)(d)k+n
2 (n + D)kl 2k+n

d
hnt1 —hp = - (|)22

n
1

k=
(d)n | > (E=n-1)(d)isn
~aTan 2 Ty TR R

A

n+d _
— 2 (d 1)n+1 < 0.
(n+1)!

By Property 4, we can show that the proposed AP filter
is stable for 0 < d < 1. Let A(2) = A(—z2). Because
the coefficients of A(z) are positive and strictly monotone
decreasing, the zeros of A(z) lie in |z| < 1 by Theorem 1.
Therefore the zeros A(z) also lie in |z| < 1. We conclude
that the AP FD filter with denominator A(z) is stable.

We can not conclude that the AP filter is stable for —1 <
d < 1 by Property 4 and Theorem 1. However, by numer-
ically computing the zeros of A(z), the largest moduli of
zeros are less than unity within the range of interest. Fig. 1
shows the plot of largest moduli for N = 5,15, 25, 35,45
and 55 and —1 < d < 0. The pole of largest modulus
for N = 55 and d = —0.99 is the negative real pole of
—0.99963284345625 whose modulus is near but less than
unity.

4. DESIGN RESULTS

As an illustration of the proposed filters, Fig. 2 and 3 show
the design results of the 10th-order AP FD filters. Fig. 2
is the plot of the phase delays versus normalized frequency
ford = —0.8,-0.6,...,0.6,0.8. The phase delays are flat
around w = 0 within a wide bandwidth. Fig. 3 shows the
poles for d = —0.9 and 0.9. It is obvious that the poles of
both cases are inside the unit circle. However, ford = —0.9,
there is a real negative pole near the unit circle.

5. CONCLUSIONS

A new AP FD filter expressed in closed form is proposed
in this paper. The denominator polynomial of the AP filter
is obtained by truncating the power series of the function of
(1 4 z71)~4. We derive the function by the frequency re-
sponse of the denominator where its magnitude response is
related to the phase response through the Hilbert transform
since the denominator of a stable AP filter is of minimum
phase. To analyze the stability, we apply a theorem about
the bound for the zeros of a polynomial to the denominator.
The closed-form expressions facilitate analysis of stability.
Without taking the Schur-Cohn criterion, we show that the
proposed filter is stable for 0 < d < 1. The stability of
filters with negative d is demonstrated by numerical com-
puting the poles. Within the range of interest, we show that
all the poles are inside unit circle. Design examples indicate
that the phase delays are flat around DC.
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Fig. 1. The plot of the largest poles in modulus for delay in
-1<d<0.
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Fig. 2. The plot of the phase delays for N = 10.
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Fig. 3. The plot of the pole locations for N = 10. “uc”
stands for the unit circle.
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