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ABSTRACT 

In this paper, an FIR filter design based on total least 
squares error criterion is investigated. The filter coefficients 
are obtained from the elements of the eigenvector corre- 
sponding to minimum eigenvalue of a real, symmetric and 
positive definite matrix. This design is not only optimal in 
total least squares error sense, it is also easy to incorporate 
linear constraints in time and frequency domain. Several 
design examples are used to  illustrate the effectiveness of 
this new design approach. 

1. INTRODUCTION 

Conventionally, we often use the well-known McClellan- 
Parks-Rabiner (MPR) computer program and standard lin- 
ear programming technique to design linear phase FIR fil- 
ters according to the Chebyshev criterion which minimizes 
the maximum error in frequency response 111. The minimax 
designs usually give the designers a smallest length filter for 
a given specification. However, MPR algorithm is difficult 
to incorporate both time and frequency domain constraint. 
And, linear programming technique needs a large memory 
space and considerable computation time. Thus, a number 
of researchers have considered linear phase FIR filter design 
using least-squares optimality criterion. 

From literature survey, two well-documented least 
squares approaches for FIR filter designs are matrix inverse 
(IM) method and eigen-approach. The IM methods are 
based on solving a set of linear simultaneous equations by 
matrix inversion [2][3], and the eigen-approaches are based 
on the computation of an eigenvector of an appropriate real, 
symmetric, and positive-definite matrix [4][5]. Compared 
with minimax design, the advantage of least squares design 
is easy to add constraint and requires simple computation. 

The purpose of this paper is to design linear phase FIR 
filters using total least squares (TLS) error criterion which 
has been successfully used to solve many engineering prob- 
lems such as acoustic radiation problem, beamformer and 
harmonic retrieval etc [6]-[8]. The filter coefficients based on 
TLS criterion are obtained from the elements of the eigen- 
vector corresponding to minimum eigenvalue of a real, sym- 
metric and positive definite matrix. Due to this sake, the to- 
tal least squares filter design is referred to as the new eigen- 
filter approach. The main difference between conventional 
and new eigenfilters is that conventional method needs to 
specify the reference point, but new approach does not re- 
quire this choice. Moreover, the solution of new eigenfilter 
is closer to the solution of the IM method than the one of 
the conventional eigenfilter. 

2. FIR FILTER DESIGN BASED ON TOTAL 
LEAST SQUARES ERROR CRITERION 

2.1 Prob lem Statement: 
A causal N th  order FIR filter can be represented as 

N 

H ( t )  = h(n)z-" (1) 
n=O 

The magnitude responses of FIR filters is given by 

M 

A ( w )  = antr ig(w,  T I )  (2) 
11=1 

where trig(w, n) is an approprite trigonometrical function 
[l]. The coefficient an is related to the impulse response 
of the filter, whereas M is a function of the filter order N .  
Defining the column vector 

a = [a1 a2 . . . a M I t  (3) 

and 

C(W) = [trig(w, 1) t ~ i g ( w ,  2) . . . t r ig(w,  M ) ] ~  (4) 

then we rewrite eq(2) as 

A(w)  = a'c(w) = c ' (w)a ( 5 )  

The notation t denote the vector or matrix transpose. Now, 
the problem is that how we can find a such that the mag- 
nitude response A ( w )  in eq(5) fit the desired magnitude 
response D ( w )  as well as possible. Total least squares error 
mesures  will be studied in this paper. 

2.2 TLS Design Method: 
The well-known linear phase filter design problem is to 

find a filter weight a such that the desired magnitude re- 
sponse D(w)  is equal to the actual magnitude response 
atc(w) of the filter, i.e. 

D ( w )  = a'c(w) (6) 

for each w E [ O , T ) .  In the space R generated by C(W) and 
D(w) ,  it is clear that the expression D(w)  = a'c(w) denotes 
a hyperplane. For a given frequency 4, the (c($),D(4)) 
denotes a point in 8. Now, the filter design problem can be 
restated as "we want the point (c($),D($)) to fall on the 
hyperplane D ( w )  = a'c(w) for all 6 E [ O , T ) " .  When the 
point (c(4), D($))  does not fall on the plane D ( w )  = a'c(w). 
the error between them can be measured in several ways. 
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Two typical ones with geometric interpretation are shown 
in Fig.1. One error (type 1) is given by 

4 4 )  = P ( 4 )  - a'c(4)l (7) 

the other (type 2) is given by 

The least squares filter design problem means that the op- 
timal filter weight a is obtained by minimizing the squared 
errors 

J(a) = JJ,, le(w)12dw (9) 

where R is the region 0 5 w 5 R, but excuding the transient 
band. Now, two types of least squares errors will be inves- 
tigated in detail. Substitute eq(7) into eq(9), we obtain 

J(a) = J J E R ( D ( W )  - atc(w)Ydw 

which is same as the least sauares error measure of the 
conventional one [2]. 
have 

J(a) = 

Next, substitute eq(8) into eq(9), we 

where a and Q,, are given by 

a =  [at - lIt 

S(w) = [C(wy D ( W ) ] t  

Qn = S,,, S(~)e(~)~dw (11) 

Based on Rayleigh's principle, the minimum of J(a) oc- 
curs at  the eigenvector of the matrix Q,, corresponding to 
the minimum eigenvalue. Note that the Q,, is also a real, 
symmetric and positive definite matrix. Since the solution 
vector a is simply the minimum eigenvector of matrix Q,,, 
we call this least squares design as new eigenfilter design. 
In the [6), the least squares error of type 2 is named as total 
least squares error, so we claim that the new eigenfilter is 
optimal in total least squares error sense. Now, we summa- 
rize the design procedure of new eigenfilter as follows: 
Step 1:  Compute the matrix Q,,. 
Step 2: Calculate the minimum eigenvector io of the ma- 
trix &,,. 
Step 3: Normalize the solution vector &, to the form 
[ad 
It is clear that this new eigenfilter does not need to spec- 
ify the reference point which is a basic requirement of the 
conventional eigenfilter. 

- 11'. The final desired solution an is equal to h. 

2.3 Design Example: 
In the example, we will compare the performance of three 

least squares methods. This example is performed with the 
MATLAB Language in an IBM PC compatible computer 
by using the above design procedures. 

Example 1:  Lowpass filter design: 

Consider the problem of designing a lowpass filter with 
the following desired amplitude response 

0 I W < W p  

D(w)  = 0, W s L w < R  (12) { don't l' care, wp < w < ws 

There are four cases of FIR filters with exactly linear phase, 
but only two of these could be applied to design lowpass 
filters, that is, case 1 and case 2 [l]. Here, we only consider 
case 1 filter whose elements of matrix Qt and p are given 
by 

q t ( i , j )  = cos((2 - l)w)cos((j - 1)w)dw s, 
p ( i )  = l c o s ( ( i  - l)w)D(w)dw 1 5 i, j 5 M 

where the region R = [O,wp] U [ w . , ~ ] .  Fig2 shows the 
magnitude responses of three least squares approaches with 
order N = 32, wp = 0.27r, and ws = 0 . 3 ~ .  The reference 
point WO chosen in the conventional eigenfilter is y. From 
this result, it is clear that the specification are well satisfied 
for three least squares methods. However: the stopband at- 
tenuation of conventional eigenfilter is slightly worse. than 
the proposed method, because the amplitude response a t  
the reference frequency WO must be satisfied exactly for the 
conventional eigenfilter design. Moreover, the distances be- 
tween optimal solutions are listed below: 

la,f - at1 = 0.005109 
la,, - at1 = 0.000267 

where at is the solution of IM method and a,f is the one 
of conventional eigenfilter. Thus, the solution of the new 
eigenfdter is closer to the solution of the conventional least 
squares solution than the one of the conventional eigenfilter. 

3. FIR FILTER DESIGN WITH LINEAR 
CONSTRAINT 

The main advantage of the least squares approach is 
that various time and frequency constraints can be incorpo- 
rated. In the linear case, the general form of the constraints 
can be stated as 

where E is a L x M matrix and k is a L x 1 vector. Note 
that L is the number of the linear constraints which is usu- 
ally smaller than the number of coefficients M .  Moreover. 
we assume E is a full rank matrix in order to avoid redun- 
dant constraints. For the conventional least squares filter 
design, the closed-form solution can be obtained by using 
the well-known Lagrange multiplier method [2]. Moreover! 
the procedure to find the solution of the conventional con- 
strained eigenfilter design is slightly complicated, the detail 
can be found in [4]. As to the new eigenfilter design which 
is our main focus, the design problem becomes 

Ea= k (13) 

kfQ,k 
Minimize kt k 

Subject to E a = k  

where kt = [at - 11. The basic idea of solving this problem 
is to rewrite the constraint Ea = k as the following form: 

Ek.0 (14) 
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where E = [E k]. Then, the problem is reduced to 

&:“&,a 
Minimize 

i t a  

Subject to E i . 0  (15) 
The key step of our method is that “all the vector I sat- 
isfying constraint Ea = 0 can be expressed as a = Bw, 
where the columns of B form an orthonormal basis of the 
null space of matrx E”. Based on full rank assumption of 
E, we have that B is a ( M  + 1) x ( M +  1 - L )  matrix and w 
is a ( M  + 1 - L )  x 1 vector. Due to orthonormal condition, 
we obtain BtB = I, where I is a ( M  + 1 - L)  x ( M  + 1 - L )  
identity matrix. Thus, the problem described in eq(15) can 
be simplified as: 

w t ~ t ~ n  BW 
Minimize 

Wt W 

which is an unconstrained optimization problem. Hence, 
the optimal solution w, of this simplified problem is only 
the minimum eigenvector of matrix BtQ,B. Finally, the 
desired optimal solution a, is equal to Bw,. Now, the 
remaining problem is how to find the orthonormal basis 
of null space of matrix E. The well-known singular value 
decomposition (SVD) and QR decomposition can help us 
to solve this problem. 

Finally, we summarize the entire procedure of the pro- 
posed method as follows: 
Step 1: Use SVD or QR decomposition to find the orthonor- 
mal basis of null space of matrix E and construct the matrix 
B. 
Step 2: Find the minimum eigenvector w, of matrix 
B ~ Q , B .  
Step 3: Calculate the optimal solution a, = Bw,. 
Step 4:  Normalize the solution vector a, to the form 
[a: - lit. The final desired solution is given by a,. 

Note that the unconstrained eigenfilter design needs to  
find the minimum eigenvector of matrix Qn with size 
(A4 + 1) x ( M  + 1). However, new constrained eigenfil- 
ter design only requires to  find the minimum eigenvector 
of matrix BtQnB with size ( M  + 1 - L )  x ( M  + 1 - L ) .  
Thus, constrained eigenfilter has less computation load in 
searching minimum eigenvector. 

Example 2: Notch filter design: 
In this example, we will use notch filter design to demon- 

strate the effectiveness of proposed design algorithm de- 
scribed in the above. The frequency response of an ideal 
notch- filter has unit gain for all frequency except notch fre- 
quency in which gain is zero (21. Here, the case 1 FIR filter 
of even order N is used to design notch filter. Thus, the re- 
lation of the parameter in eq(2) is M = $ + 1, trzg(w, n) = 
cos((n - l ) w ) , a l  = h($ ) ,  and 

N N 
(16) 2 2 

Now, the optimal filter coefficient a, can be chosen such that 
the amplitude response A ( w )  is as close as desired response 
D ( w )  defined by 

a ,  = 2h( - - n + 1) for n = 2,3, . . . , - + 1 

D ( w )  = 1 for all w E [O,.rr) (17) 

Moreover, to obtain zero gain at notch frequency W n  and 
control the null width, the following constraints are intro- 
duced: 

A ( w n )  = 0 

: L -  I 

After some maniputation, it can be shown that the lin- 
ear constraints can be written as standard form Ea = 0. 
Now, let us see some numerical examples. Fig.J(a) shows 
the magnitude response of a notch filter using proposed 
method for w, = 0.5.rr,N = 32, and various L.  It is 
clear that the frequency response is well satisfactory. When 
constraint number L increases, the notch width increases 
accordingly. For comparison, Fig.3(b) and (c) show the 
magnitude responses of a notch filter using the well-known 
Lagrange multiplier and linear programming methods for 
N = 32,wn = 0.57r, and L = 1. Basically, the linear pro- 
gramming method is a minimax design and Lagrange mul- 
tiplier approach is a conventional least squares error de- 
sign. From this result, it is obvious that proposed method 
almost has the same frequency response as Lagrange multi- 
plier method. This is due to both are belong to least squares 
error approaches. Compared with equal-ripple design using 
linear programming method, the new eigenfilter method has 
better frequency response fitting for all frequency band es- 
cept at the range around the notch frequency w,,. 

4. CONCLUSION 
In this paper, linear-phase FIR filter designs using to- 

tal least squares error criterion have been investigated. This 
design method is easy to incorporate linear constraints in 
time and frequency domain. Several design examples have 
been used to illustrate the effectiveness of this new design 
approach. However, only linear phase FIR filters are consid- 
ered here. Thus, it is interesting to study IIR filter designs 
based on total least squares error criterion. This topic will 
be investigated in the future. 
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Fig.1 Geometric interpretation of two error measures at fre- 
quency w = 4 (a) type 1 error (b) type 2 error. 
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Fig.2 The magnitude response of a lowpass filter. The 
dashed line and dotted line almost overlap, conventional 
least squares design (dashed line), conventional eigenfilter 
design(so1id line), total least squares design (dotted line). 

Fig.3(a) The magnitude response of a notch filter using TL- 
S method. L=l(solid line), L=3(dashed line), L=S(dotted 
line). 
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Fig.3(b) The magnitude response of a notch filter using La- 
grange multiplier method for L=l .  
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