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Abstract: An efficient variable ordering strategy 
for ordered binary decision diagrams (OBDD) 
based on interleaving the compacted clusters is 
proposed in this paper. The novelty of this 
method is to apply the divide-and-conquer 
approach to find a good variable ordering 
efficiently for circuits with a large number of I/ 
Os. First, a given circuit is partitioned into a 
number of clusters according to the correlations 
among the fan-in cones. A good ordering for each 
cluster is obtained and then a good global 
ordering is derived by interleaving the orderings 
of individual clusters. In this way, the time- 
consuming process of searching good orderings is 
restricted within individual clusters each with a 
manageable number of input variables. This 
divide-and-conquer approach is able to obtain a 
good variable ordering more efficiently than 
existent methods for circuits with a large number 
of I/Os. One notable result from the method is 
that we are able to build the OBDD for the 
cs38417 circuit within 1000 seconds on a SPARC 
20 with 128M byte memory. 

1 Introduction 

The ordered binary decision diagram (OBDD) [l] is 
one of the most efficient and versatile representation of 
Boolean functions. Its applications on formal verifica- 
tion, test generation, and logic synthesis [2-61 are being 
extensively investigated and bearing fruitful results. To 
facilitate these applications, efforts have been invested 
on the OBDD to explore its full potential. 

In the manipulations as well as the applications of 
OBDDs, the efficiency is dominated by the size of 
OBDD for representing a given function. It has been 
observed that the OBDD size strongly depends on the 
ordering of input variables. As a dramatic example, a 
multiplexer of n variables in its best ordering has an 
OBDD with a size smaller than 2n while in the worst 
case a size larger than 2(n+')/n [7]. Theoretically, the 
optimal ordering to yield the most compact OBDD for 
a given function can be obtained by exhausting all var- 
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iable permutations. However, the best algorithm for 
finding the optimal ordering has a complexity 0(n23") 
[SI. It is clear that this complexity is not realistic. Con- 
sequently, there have been intensive studies on the 
ordering of variables for OBDDs. Heuristic methods 
[9-151 for good variable ordering have been proposed. 
A common feature of these heuristics is that they are 
employed in a static way, i.e. the ordering remains 
intact during the OBDD building process. These heu- 
ristics, although effective for medium-scale circuits, are 
unable to deal with larger circuits due to their inflexi- 
bility to adjust. 

Recent studies have allowed the ordering to change 
dynamically during the building process and have 
extended the method significantly to accommodate 
larger circuits. In [ 16-1 81 algorithms dynamically mod- 
ify an initial ordering according to the encountered 
adverse situation to reorder the variables for maintain- 
ing the intermediate OBDD within a reasonable size as 
well as obtaining a compact final OBDD. In particular, 
the dynamic sifting algorithm proposed in [16] per- 
forms better for variable ordering of OBDD than pre- 
vious works. By using efficient level exchange 
algorithm, it is able to explore a large search space and 
obtain very compact OBDD. However, in the worst 
case, the sifting algorithm requires O(n2) swaps of adja- 
cent levels in the dynamic reordering process where n is 
the number of variables. For circuits with a large 
number of I/Os, it may need excessive time if reorder- 
ing occurs frequently. Another algorithm for large cir- 
cuits has also been proposed [19] based on interleaving 
individual ordering of primary outputs. By keeping 
separate orderings as intact as possible during the inter- 
leaving process, it successfully extended the DFS algo- 
rithm [ 121 from single-output circuits to multiple- 
output circuits. Although the resultant OBDDs are not 
as compact as those in [16, 181, the ordering can be 
determined quickly. 

In many application of OBDDs, the output Boolean 
functions have to be manipulated after completely built 
such as recursively constructing reachable states and 
removing redundant states in a finite state machine, 
logic circuit resynthesis, or design error diagnosis. A 
good global ordering will be a dominating factor in 
improving the efficiency of these algorithms. The popu- 
lar benchmarks for variable ordering heuristics in tack- 
ling circuits of various sizes are the circuits of ISCAS85 
benchmark [20] and combinationalised ISCAS89 
benchmark [Zl]. In these circuits, there is a 16-bit niul- 
tiplier, c6288, which is already shown to have exponen- 
tial OBDD size regardless of any variable ordering. 
Among the remaining ISCAS85 circuits, the static heu- 
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ristics can successfully handle most of them except the 
c2670 and the c7552 circuits. The dynamic heuristics 
[16-18] extend the appliation to these two circuits and 
all but one ISCAS89 circuits. The remaining hard cir- 
cuit is the cs38417. The technique of accessing second- 
ary memory such as hard disks to manipulate very 
large OBDDs [22] fails to build complete OBDD for 
this circuit. With more than 100 million nodes allo- 
cated on two-gigabyte virtual memories, only the first 
60% gates of the cs38417 circuit have been manipulated 
by [22] on a SPARC 10141 using 26 hours. There had 
been no reports presenting techniques to efficiently 
construct OBDDs for the cs38417 circuit before the 
preliminary results in [23]. We will make significant 
enhancement in this paper and present more experi- 
mental results to show the effectiveness of our 
approach. 

An efficient strategy for variable ordering of OBDDs 
based on interleaving the compacted clusters is pro- 
posed. The novelty of this method is to apply the 
divide-and-conquer approach to find a good variable 
ordering efficiently for circuits with a large number of 
UOs. First, a given circuit is partitioned into a number 
of clusters according to the correlations among the fan- 
in cones. A good ordering for each cluster is obtained 
and then a good global ordering is derived by interleav- 
ing the ordering of individual clusters. In this way, the 
time-consuming process of searching good orderings is 
restricted within individual clusters each with a man- 
ageable number of input variables. This divide-and- 
conquer approach is able to obtain a good variable 
ordering more efficiently than existent methods for cir- 
cuits with a large number of I/Os. One notable result 
from our method is that we are able to build the 
OBDD for the cs38417 circuit within 1000 seconds on a 
SPARC 20 with 128M byte memory. 

2 Variable ordering by divide-and-conquer 

In this Section, the divide-and-conquer approach of 
our variable ordering method for circuits with a large 
number of IiOs will be described. Our method of varia- 
ble ordering is based on a divide-and-conquer 
approach. The method consists of three main steps. 
1. In the dividing phase: the large circuit is partitioned 

into a number of small circuits, or clusters, such that 
the correlation among the clusters is sufficiently low. 

2. In the conquering phase: each cluster is then exten- 
sively searched for a good variable ordering. A vari- 
able ordering is good in the sense that it yields a 
compact OBDD. 

3. In the merging phase: based on those good orderings 
of clusters, a global ordering is then obtained by pre- 
serving the original orderings of clusters as much as 
possible. 

The most time-consuming part is in the second step to 
search a good ordering for each cluster. However, such 
a cluster is in general much smaller than the original 
circuit and therefore, significant improvement in effi- 
ciency can be expected when the original circuit has a 
large number of 110s. We will describe the first two 
steps in this section and the last step in the next Sec- 
tion. 

In the first main step, we are to partition a given cir- 
cuit into clusters so that a good ordering can be effi- 
ciently searched for each cluster. We will describe the 

262 

cluster partitioning first. A cluster is a subcircuit con- 
sisting of some primary outputs and all the gates and 
primary inputs within the fan-in cone of these primary 
outputs. In cluster partitioning, the primary outputs of 
a cluster do not overlap with those of other clusters. 
However, a primary input may appear in several clus- 
ters depending on the circuit topology. The correlation 
of primary inputs among clusters has a major impact 
on the last step when the orderings of clusters are to be 
combined. The cluster partitioning procedure is shown 
in Fig. 1, which is regulated by a clusterfactor to 
reduce such correlation. 

ClusterPartition() 

{ 

Given a clustmfa&n', dusternumber = 0; 

for each primary output 0 

according to the decreasing number of gates in the fan-in cone 

{ for each Cluster(i1 

Compute the input correlation with 0 by 

Co"a[i] . ra t io  = # PI for  0 included in cluster[i] 

where # PI is the number of primary inputs. 

if ( Cmma[ i ] . r a t io  is greater than clusterfador ) 

# P I f o r O  

Select Cfuster[i] with the highest ratio to merge; 

Cluster[i] = Cluster[i] U 0; 

else 

Increment cluster-number by 1; 

Create a new C~uster[c~usternumberj  = 0; 

} 

} 
Fig. 1 Cluster partitioning procedure 

The clusterfbctor may have a value between 0 and 1. 
The value of cluster f a c t o r  is determined empirically. A 
high cluster f actor implies a high threshold for cluster- 
ing, i.e., only highly correlated primary outputs are 
merged into one cluster. In general, high clusterjactor 
yields more clusters of small sizes. 

Given a predetermined clusterfactor, in Cluster-Par- 
tition procedure, the correlation of a primary output, 
0, with existent cluster [i] is computed. If one of the 
computed correlation, Common-ratio, is greater than 
the given clusterfactor, then the primary output is 
merged into the cluster with the highest Common-ratio. 
Otherwise, it becomes a new cluster. The sequence of 
primary outputs for merging is determined by sorting 
them according to the decreasing number of gates in 
the fan-in cone. An additional step for the procedure is 
to merge those primary outputs with less than 16 pri- 
mary inputs into a single cluster to avoid an ineffective 
compaction due to numerous clusters. The ordering of 
this cluster is assigned the lowest priority. 

In obtaining variable ordering of compact OBDD 
size for a cluster, the dynamic sifting algorithm in the 
CMU package is modified for this purpose. The trigger 
condition of reordering is modified to be adaptive to 
the reordering effectiveness. When reordering is less 
effective, we allow more increase of the number of 
nodes before next reordering takes place. The purpose 
is to reduce ineffective and time-consuming reordering 
when there are many intermediate gates in the same 
level. The termination condition of sifting is when the 
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number of nodes increases by 20% than the original 
size due to moving a variable up and down for an opti- 
mal position. 

3 Cluster merging 

Given good ordering for individual clusters, the last 
step is to obtain a good global ordering for the entire 
function or circuit. In the following, we will justify the 
interleaving method with a theorem and describe our 
method of interleaving variable orderings from individ- 
ual clusters. 

A variable ordering of an OBDD is a sequence of 
primary input variables for a given function. When two 
OBDDs for two clusters are to be combined into a 
compact one, it is desirable to retain as much as possi- 
ble of the good ordering of each cluster. The interleav- 
ing of two ordering serves such purpose. There may be 
common variables between two sequences and in real- 
ity it is possible to have common variables with differ- 
ent orders in two sequences. In this case, some 
compromise on the original ordering must be made as 
will be discussed later. Here we will justify the inter- 
leaving method for cases without such conflict. In other 
words, the interleaving of two variable orderings is 
complete in the sense that the variables in the resultant 
sequence preserve the orders of the two original 
sequences. For example, let the two original ordering 
be Ordering ( A )  = {xo, xl,  x2, x3, x4, xs} and Ordering 
(4 = {Yo, Y1, x2, Y3, x3, Y 4 ) .  Then the Ordering (c) = 
{X", XI, yo, Y l ,  x2, Y3, x3, x4, x5, Y41 is a complete inter- 
leaving of Ordering ( A )  and Ordering (B). 
Theorem 1: Let two OBDDs have Ordering ( A )  and 
Ordering (B) ,  respectively, without any conflict. Then 
the resultant OBDD with the interleaved variable 
ordering has a size no greater than the sum of  the two 
original OBDDs. 
[Proof] Since the OBDD is unique for a given function, 
it will not change when a new variable ordering is 
inserted into the ordering regardless of the position. 
Therefore, when two OBDDs without any conflict in 
the original orderings are combined, the resultant size 
can only be equal to the sum of the two original sizes 
before the merging and deletion rules are applied. After 
applying these two rules, the resultant size of OBDD 
can be no greater than the sum of the two original 
sizes. 

The above theorem justifies the interleaving method 
to preserve the original order of variables as much as 
possible when combining two OBDDs. Another impli- 
cation is that we may estimate the upper bound of the 
resultant OBDD size given individual sizes of all clus- 
ters when the variable orderings of all clusters have no 
conflicts. If complete interleaving of variable ordering 
is possible, then from Theorem 1, the resultant size can 
be no greater than the sum of individual sizes. Even 
when complete interleaving is not possible, the result- 
ant OBDD size is generally strongly correlated to the 
sum of the individual sizes as will be shown in the 
experimental results. 

Fig. 2 shows an example of  resultant OBDD by 
interleaving orderings. In Fig. 2, OBDD A and OBDD 
B have 6 nodes each in their individual ordering. Obvi- 
ously, the final size, 11 nodes, is less than the sum of 
the two OBDD sizes. This profile results from the 
merging rule of OBDDs so that the two x4 nodes are 
shared as one node. 
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OBDD A with 
ordering (A) 

OBDD B with 
ordering (B) 

Fig.2 Resultunt OBDD by ititerkeuving 

,A 

Resultant OBDD by 
interleaving ordering 
(A) and ordering (B) 

As discussed before, the interleaving of two given 
orderings is often incomplete, i.e. there are common 
variables with conflicting orders. In this case, some 
compromise must be made. The ordering of the cluster 
with higher priority determines the global ordering. 
The priority of each clusters is defined by the CPU 
time for OBDD compaction because large compaction 
time is a good indicator of a hard cluster. The inter- 
leaving procedure is therefore shown in Fig. 3. 

Interleaving(G_ordering, Lordwing) 

{ for each variable v in L-ordering from top 

{ if ( U does not belong t o  G.urdering ) 

{ 

add U to queue(); 

if ( next.variable(v) belongs t o  G-ordering ) 

while ( queue() != EMPTY ) 

w = dequeue(); 

insert w to G-ordering just before next-vvariable(v); 

} 

} 

if ( queue() != EMPTY ) 

append all variables of queue() to G-~rderings; 

1 
Fig. 3 Interleuving procedure 

The overall algorithm of our method as shown in 
Fig. 4 can then be described as follows. Given a net list 
description, first the whole circuit is partitioned into a 
number of clusters according to the Cluster-Partition 
procedure. The initial ordering, Locul~ovde~ing, of each 
cluster is determined by traditional DFS-appending 
[lo] method which traverses the fan-in cone of each pri- 
mary output of the cluster to obtain a sequence of var- 
iable order with depth-firbt-search. Then build compact 
OBDD for each cluster and thereby obtain a good 
ordering for each cluster by dynamic reordering. Since 
a cluster generally has far less input variables than the 
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entire circuit, the compaction process can be accom- 
plished much more efficiently. After that, the orderings 
of clusters are merged into an effective global ordering 
according to the Interleaving procedure. Finally, we 
rebuild OBDD for the entire circuit with the global 
ordering. 

Main() 

{ Globalardering = NULL; 

ClusterPartitia(); 

for each clusteI 

{ 

Local-ordering = DFS-append of clusters; 

Modify Local-ordming by dynamic reordering; 

} 

Globalmdering = interleaving all Local-ordering3 

according to decreasing compaction process time; 

Rebuild OBDD using Gfobul-ordering; 

1 
Algorithm for interleaving compacted clusters Fig. 4 

A possible alternative to the last step is to adopt a 
greedy approach by iteratively combining a new cluster 
with the partially constructed resultant OBDD. The 
variable ordering of the new cluster is interleaved with 
the current global ordering by keeping the global varia- 
ble order intact. After that the OBDD is optimised 
only for the newly inserted variables of the new cluster. 
Intuitively, this greedy approach may avoid the dupli- 
cated construction of OBDD while keeping a compact 
size. It is strongly dependent on the first chosen cluster, 
but there is no sufficient information to determine the 
cluster priority of merging sequence. One cluster with a 
large number of gates, inputs, or outputs cannot be 
exactly recognized as a hard cluster. In general, it gives 
inferior results in both the size and the CPU time. 

Although the principle of order interleaving is similar 
to that in [19], we apply it in a unique way with the 
divide-and-conquer approach. The correlation among 
clusters is reduced sufficiently low in cluster partition- 
ing to maximise the probability of interleaving. 
Thereby, we are able to take a better advantage of the 
good orderings of clusters to obtain a more compact 
resultant OBDD. 

Table 1: Comparison results 

4 Experimental results 

Our variable ordering method for OBDD has been 
implemented and evaluated on a SPARC 20 worksta- 
tion with 128 M byte memory. In the evaluation, our 
method for OBDD has been employed to build 
OBDDs for the larger ISCASSS and ISCAS89 bench- 
mark circuits. The maximum number of nodes is lim- 
ited to 1500 K in terms of sharing OBDDs with 
inverted edges [9]. The result is compared with previous 
works [18, 191 and the dependency on the clusterfactor 
is presented. The remaining smaller circuits in the 
benchmark can be easily built with previous published 
heuristics. 

In Table 1, we compare our results with the reported 
data [18, 19, 221. The approach in [18] is an extension 
of the dynamic sifting method in [16] by incorporating 
symmetry check for contiguous variables. The symme- 
try check for contiguous variables is not implemented 
in our implementation. Their results are in general 
more compact than those in [16] with negligible over- 
head due to the sifting algorithm [18]. The results of 
[16] are not shown here because no CPU time has been 
provided, which is essential in the discussion. The 
results of the CMU package is obtained by applying 
the dynamic sifting-sifting algorithm on our machine. 
The result of [19] is based on interleaving the order- 
ing for each primary output obtained from a DFS heu- 
ristic. In this comparison result, the value of 
cluster f a c t o r  is 0.6 which is determined empirically to 
deliver better overall results. In this table, nodes indi- 
cates the number of OBDD nodes and time is the CPU 
time. 

From this Table we can see that performance of our 
method generally falls between the fully dynamic sifting 
algorithm and the fully interleaving-based algorithm. 
The approach in [19], although faster, produces 
OBDDs significantly less compact than the other three. 
The reason is that too many clusters of less compact 
size lead to more conflicts and even larger resultant 
size. On the other hand, the fully dynamic sifting algo- 
rithm generally has the most compact result. The main 
disadvantage of fully dynamic sifting algorithm is the 
dramatic growth of processing time for circuits with a 
large number of I/Os such as cs15850 [IS] and cs38417. 
In comparison our method generates OBDDs of the 
same order as those in [18]. However, for difficult cir- 

[I91 Sift-sift [I81 Sift-sift (unpublished) Ours 

nodes t ime nodes t ime nodes time nodes time 
Circuit 

c7552 33k 12 6k 242 8k 139 9k 122 

cs5378 5k 4 2k 170 3k 8 6k 3 

39 6k 28 cs9234 66k 14 4k 336 5k 

cs13207 15k 11 3k 27 6k 10 - - 

C515850 62k 22 37k 5503 18k 174 18k 75 
- cs30532 6k 28 - 5k 46 5k 46 

cs38584 35k 41 - - 27k 697 32k 123 

~ ~ 3 8 4 1 7  >> 2M - - - 511k 26354 696k 1023 
1191: On SPARC 470 with 96 M byte 
[181: On Dec 5000/200 
[221: On SPARC 20 with 128 M byte 
Ours: On SPARC 20 with 128 M byte 
- : no data 
nodes: number of nodes 
time: in seconds 
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Table 2: Results with various cluster-factors 

1 .o 0.8 0.6 
Circuit 

C R  nodes t ime C R nodes time C R nodes time 

c7552 4 0.25 94k 68 2 1.0 9k 119 2 1.0 9k 122 

1x5378 48 0.9 6k 8 17 0.9 6k 4 10 0.9 6k 3 

1x9234 55 2.7 15k 37 7 1.1 6k 29 5 1.0 6k 28 

cs13207 14 1.3 6k 12 9 1.3 6k 10 8 1.2 6k 10 
cs15850 87 2.1 27k 79 11 0.5 37k 76 11 1.0 18k 75 

cs30532 1 1  5k 46 1 1 5k 46 1 1 5k 46 

cs38584 129 0.7 41k 502 54 1.0 30k 165 28 0.9 32k 123 

cs38417 129 0.9 857k 2360 41 0.9 607k 996 24 1.0 696k 1023 

C: number of clusters 
R (ratio): number of all cluster nodes over number of nodes in final OBDD 
nodes: number of nodes 
time: in seconds 

cuits with a large number of I/Os, our method is signif- 
icantly faster as in cs15850 [lS]. Moreover, for this 
circuit, our divide-and-conquer approach actually 
yields a more compact OBDD than the fully dynamic 
sifting algorithm [lS]. More significantly, we are able to 
construct the OBDD of cs38417 more efficiently than 
existent methods. Its resultant OBDD has a size of 
about 696k nodes and is completed in 1023 seconds. 
The combination of huge size and a large number of 
I/Os of cs38417 is the major difficulty for OBDD con- 
struction. Our divide-and-conquer approach is espe- 
cially effective for such circuits. With the problem for 
cs38417 been resolved, all the circuits in ISCASS5 and 
ISCAS89 benchmarks, except the multiplier ~6288, 
have now been shown to have an OBDD of managea- 
ble size. There seems no reason that the building of 
cs38417 can not be accomplished with dynamic sifting 
algorithm alone. We directly employed the CMU pack- 
age to the circuit cs38417 on a machine with a larger 
swapped area. After about 7 hours, the OBDD is com- 
pletely built with 51 1 k nodes. Although the OBDD size 
is about 20% smaller than the result of our approach, 
the processing time is 20 times longer. In this case, our 
divide-and-conquer strategy is able to efficiently obtain 
a sufficiently good ordering for circuits with a large 
number of I/Os. 

The dependency of the result on the cluster f a c t o r  is 
shown in Table 2 for various cluster fac tors  in the 
Cluster-Partition procedure. Three clusterfactors, 1 .O, 
0.8, and 0.6, are evaluated. A higher cluster f a c t o r  
allows only primary outputs with higher correlation to 
be put into a cluster. As a result, more clusters are gen- 
erated with smaller size. With clusterfactor equal to 
one, then only the primary outputs with completely 
overlapped fan-in cones are merged into one cluster. It 
is similar but not identical to have each primary output 
in a separate cluster. The number of clusters for these 
three clusterfactom are shown in column C of Table 2. 
Also shown in this table are the number of OBDD 
nodes, the CPU time, and R which is the ratio of the 
total number of nodes of all clusters over the resultant 
node number. 

The value of R is an indication of success of order 
interleaving. If the interleaving is completed without 
any conflicts, then R should be nu lms than 1 by Theo- 
rem 1. realistically, there will be conflicts during inter- 
leaving and R can be less than or greater than 1. From 
Table 2, a cluster f a c t o r  of either 0.8 or 0.6 yields 
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results better than a clusterfactor of 1.0 both in the 
OBDD size and the CPU time. This is due to that there 
are too many clusters for cluster factor  1.0 and hence 
more conflicts during interleaving. The phenomenon 
can be clearly seen in the c7552 circuit for which the 
OBDD size with clusterfactor 1.0 is ten times larger 
than the other two. When the cluster f a c t o r  is below 
0.5, there will be less clusters with larger size and the 
compaction time for a cluster will be increased signifi- 
cantly. Another interesting observation is that the ratio 
R for both cluster fac tors  of 0.8 and 0.6 are close to 
one which implies that the interleaving process for 
these given clusterfactors does not produce many extra 
nodes due to conflicts. In addition, the total number of 
nodes of all clusters can serve as an estimate of the 
number of nodes in the resultant OBDD. 

5 Conclusions 

An efficient strategy for variable ordering of OBDDs 
based on interleaving the compacted clusters has been 
proposed in this paper. The novelty of this strategy is 
to apply the divide-and-conquer approach to find a 
good variable ordering efficiently for circuits with a 
large number of I/Os. In this way, the time-consuming 
process of searching good orderings is restricted within 
each individual cluster which has a manageable number 
of input variables. This divide-and-conquer approach is 
able to obtain a good variable ordering more efficiently 
than existing methods for circuits with a large number 
of I/Os. One notable result from our method is that we 
are able to build the OBDD for the cs38417 within 
1000 seconds on a SPARC 20 workstation with 128 M 
byte memory. 

Acknowledgment 

This research was supported by the National Science 
Council, Taiwan, R.O.C., under Grant NSC 85-2221- 
E002-0 18. 

7 References 

1 BRYANT, R.E.: ‘Graph-based algorithms for boolean function 
manipulation’, IEEE Trans. Comput., Aug. 1986, C-35, (8), pp. 

2 TOUATI, H.J., SAVOJ, H., LIN, B., BRAYTON, R.K., and 
SANGIOVANNI-VINCENTELLI, A.: ‘Implicit state enumera- 
tion of finite state machines using OBDDs’. Proceedings of inter- 
national conference on Computer-aided design, Nov. 1990, pp. 
130-133 

677-69 1 

265 



CHO, H., HACHTEL, G.D., JEONG, S.W., PLESSIER, B., 
SHWARZ, E., and SOMENZI, E.: ‘ATPG aspect of FSM verifi- 
cation’. Proceedings of international conference on Computer- 
aided design, Nov. 1990, pp. 134-137 
CHO, H., HACHTEL, G.D., and SOMENZI, F.: ‘Fast sequen- 
tial ATPG based on implicit state enumeration’. Proceedings of 
international Test conference, Sept. 1991, pp. 67-74 
COUDERT, O., and MADRE, J.C.: ‘Implicit and incremental 
computation of‘ priines and essential primes of Boolean function’. 
Proceedings of 29th Design uutomation conference, June 1992, pp. 
36-39 
CHEN, K.-C., and FUJITA, M.: ‘Efficient sum-to-one subsets 
algorithm for logic optimization’. Proceedings of 29th Design 
cmiomation conference, June 1992, pp. 443-448 
LIAW, H.-T., and LIN, C.-S.: ‘On the OBDD representation of 
general Boolean functions’, IEEE Trans. Cowput., July 1992, 41, 
(6), pp. 661-664 
FRIEDMAN, S.J., and SUPOWIT, K.J.: ‘Finding optimal varia- 
ble ordering for binary decision diagrams’, IEEE Trans. Comput.. 
May 1990, 39, (5), pp. 710-713 
MINATO, S.-I., ISHIURA, N., and YAJIMA, S.: ‘Shared binary 
decision diagrams with attribute edges for efficient Boolean func- 
tion manipulation’. Proceedings of 27th Design automation con- 
ference. June 1990. DU. 52--57 

13 ISHIURA, N., SAWADA, H., and YAJIMA, S.: ‘Minimization 
of binary decision diagrams based on exchanges of variables’. 
Proceedings of international conference on Computer-aided 
design, Nov. 1991, pp. 472-475 

14 MERCER, M.R., KAPUR, R., and ROSS, D.E.: ‘Functional 
approaches to generating ordering for efficient symbolic represen- 
tations’. Proceedings of 29th Desim automution conference. June 
1992, pp 624-627 

15 BUTLER, K M , ROSS, D E ,  KAPUR, R , and MER- 
CER, M R ‘Heuiistic to compute variable orderings for efficient 
manipulation of ordered bin&y decision diagrams’. Proceedings 
of 28th Design automution conference, June 1991, pp. 417420 

16 RUDELL, R.: ‘Dynamic variable ordering for ordered binary 
decision diagrams’. Proceedings of international conference on 
Computer-aided design, Nov. 1993, pp. 41-47 

17 YEH, F.-M., and LIN, C.4.: ‘Building OBDDs with ordering- 
reshuffle strategy’, Eleciron Lett., Aug. 1993, 29, (17), pp. 1540- 
1541 

18 PANDA, S., SOMENZI, F., and PLESSIER, B.F.: ‘Symmetry 
detection and dynamic variable ordering of decision diagrams’. 
Proceedings of international conference on Computer-uided 
design, Nov. 1994, pp. 628-631 

19 FUJII, H., OOTOMO, G., and HORI, C.: ‘Interleaving based 
variable methods for ordered binary decision diagrams’. Proceed- 
ings of international conference on Computer-aided design, Nov. 
1991 nn 18-41 > rr. - -  - 

10 MALIK, S., WANG, A.R., BRAYTON, R.K., and SANGIO- 20 BRGLEZ, F., and FUJIIWARA, H.: ‘A neutral netlist of 10 
VANNI-VINCENTELLI, A.: ‘Logic verification using binary combinational benchmark circuits and a target translator in For- 
decision diagrams in a logic synthesis environment’. Proceedings tran’. International symposium on Circuits and systems, June 
of international conference on Computer-uided design, Nov. 1988, 1985, 
pp. 6-9 21 BRGLEZ, F., BRYAN, D., and KOZMINSKI, K.: ‘Combina- 

tional profiles of sequential benchmark circuits’. International 
symposium on Circuits and systems, June 1989, pp. 1924-1934 11 CALAZANS, N., ZHANG, O., YERNAUX, B., and TRULLE- 

MANS, A.-M.: ‘Advanced ordering and manipulation techniques 22 ARSHAR, P,, and CHEONG, M,: ‘Efficient breadth-first 
ulation of binary decision diagrams’. Proceedings of international for binary decision diagrams’. Proceedings of European Design 

automution conference, Sept. 1992, pp. 452-457 conference on Computer-uided design, Nov. 1994, pp. 622-627 
12 BRACE, K.S., RUDELL, R.L., and BRYANT, R.E.1 ‘Efficient 23 YEH, F.-M., and LIN, C.-S.: ‘OBDD variable ordering by inter- 

implementation of a OBDD package’. Proceedings of 27th Design leaving compacted clusters’, Electron. Lett., Sept. 1995, 31, (20), 
uutomution conference, June 1990, pp. 40-45 pp. 1724-1725 

266 IEE Proc.-Comput. Digit. Ted . ,  Vol. 144, No 5, September 1997 


