
Variable ordering for ordered binary decision
diagrams by a divide-and-conquer approach

F. - M . Ye h
S.-Y. KUO

Indexing terms: Ovdered binary decision diagram, Variable ordering, Boolean junction

Abstract: An efficient variable ordering strategy
for ordered binary decision diagrams (OBDD)
based on interleaving the compacted clusters is
proposed in this paper. The novelty of this
method is to apply the divide-and-conquer
approach to find a good variable ordering
efficiently for circuits with a large number of I/
Os. First, a given circuit is partitioned into a
number of clusters according to the correlations
among the fan-in cones. A good ordering for each
cluster is obtained and then a good global
ordering is derived by interleaving the orderings
of individual clusters. In this way, the time-
consuming process of searching good orderings is
restricted within individual clusters each with a
manageable number of input variables. This
divide-and-conquer approach is able to obtain a
good variable ordering more efficiently than
existent methods for circuits with a large number
of I/Os. One notable result from the method is
that we are able to build the OBDD for the
cs38417 circuit within 1000 seconds on a SPARC
20 with 128M byte memory.

1 Introduction

The ordered binary decision diagram (OBDD) [l] is
one of the most efficient and versatile representation of
Boolean functions. Its applications on formal verifica-
tion, test generation, and logic synthesis [2-61 are being
extensively investigated and bearing fruitful results. To
facilitate these applications, efforts have been invested
on the OBDD to explore its full potential.

In the manipulations as well as the applications of
OBDDs, the efficiency is dominated by the size of
OBDD for representing a given function. It has been
observed that the OBDD size strongly depends on the
ordering of input variables. As a dramatic example, a
multiplexer of n variables in its best ordering has an
OBDD with a size smaller than 2n while in the worst
case a size larger than 2(n+')/n [7]. Theoretically, the
optimal ordering to yield the most compact OBDD for
a given function can be obtained by exhausting all var-

~

0 IEE, 1997
IEE Pyocrzdinp online no. 19971370

Paper first received 22nd October 1996 and in revised form 4th April 1997
The authors are with the Department of Electrical Engineering, National
Taiwan University, Taipei, Taiwan

iable permutations. However, the best algorithm for
finding the optimal ordering has a complexity 0(n23")
[SI. It is clear that this complexity is not realistic. Con-
sequently, there have been intensive studies on the
ordering of variables for OBDDs. Heuristic methods
[9-151 for good variable ordering have been proposed.
A common feature of these heuristics is that they are
employed in a static way, i.e. the ordering remains
intact during the OBDD building process. These heu-
ristics, although effective for medium-scale circuits, are
unable to deal with larger circuits due to their inflexi-
bility to adjust.

Recent studies have allowed the ordering to change
dynamically during the building process and have
extended the method significantly to accommodate
larger circuits. In [16-1 81 algorithms dynamically mod-
ify an initial ordering according to the encountered
adverse situation to reorder the variables for maintain-
ing the intermediate OBDD within a reasonable size as
well as obtaining a compact final OBDD. In particular,
the dynamic sifting algorithm proposed in [16] per-
forms better for variable ordering of OBDD than pre-
vious works. By using efficient level exchange
algorithm, it is able to explore a large search space and
obtain very compact OBDD. However, in the worst
case, the sifting algorithm requires O(n2) swaps of adja-
cent levels in the dynamic reordering process where n is
the number of variables. For circuits with a large
number of I/Os, it may need excessive time if reorder-
ing occurs frequently. Another algorithm for large cir-
cuits has also been proposed [19] based on interleaving
individual ordering of primary outputs. By keeping
separate orderings as intact as possible during the inter-
leaving process, it successfully extended the DFS algo-
rithm [121 from single-output circuits to multiple-
output circuits. Although the resultant OBDDs are not
as compact as those in [16, 181, the ordering can be
determined quickly.

In many application of OBDDs, the output Boolean
functions have to be manipulated after completely built
such as recursively constructing reachable states and
removing redundant states in a finite state machine,
logic circuit resynthesis, or design error diagnosis. A
good global ordering will be a dominating factor in
improving the efficiency of these algorithms. The popu-
lar benchmarks for variable ordering heuristics in tack-
ling circuits of various sizes are the circuits of ISCAS85
benchmark [20] and combinationalised ISCAS89
benchmark [Zl]. In these circuits, there is a 16-bit niul-
tiplier, c6288, which is already shown to have exponen-
tial OBDD size regardless of any variable ordering.
Among the remaining ISCAS85 circuits, the static heu-

261 IEE Proc.-Comput. Digit. Tech., Vol. 144, No. 5, Septemher 1997

ristics can successfully handle most of them except the
c2670 and the c7552 circuits. The dynamic heuristics
[16-18] extend the appliation to these two circuits and
all but one ISCAS89 circuits. The remaining hard cir-
cuit is the cs38417. The technique of accessing second-
ary memory such as hard disks to manipulate very
large OBDDs [22] fails to build complete OBDD for
this circuit. With more than 100 million nodes allo-
cated on two-gigabyte virtual memories, only the first
60% gates of the cs38417 circuit have been manipulated
by [22] on a SPARC 10141 using 26 hours. There had
been no reports presenting techniques to efficiently
construct OBDDs for the cs38417 circuit before the
preliminary results in [23]. We will make significant
enhancement in this paper and present more experi-
mental results to show the effectiveness of our
approach.

An efficient strategy for variable ordering of OBDDs
based on interleaving the compacted clusters is pro-
posed. The novelty of this method is to apply the
divide-and-conquer approach to find a good variable
ordering efficiently for circuits with a large number of
UOs. First, a given circuit is partitioned into a number
of clusters according to the correlations among the fan-
in cones. A good ordering for each cluster is obtained
and then a good global ordering is derived by interleav-
ing the ordering of individual clusters. In this way, the
time-consuming process of searching good orderings is
restricted within individual clusters each with a man-
ageable number of input variables. This divide-and-
conquer approach is able to obtain a good variable
ordering more efficiently than existent methods for cir-
cuits with a large number of I/Os. One notable result
from our method is that we are able to build the
OBDD for the cs38417 circuit within 1000 seconds on a
SPARC 20 with 128M byte memory.

2 Variable ordering by divide-and-conquer

In this Section, the divide-and-conquer approach of
our variable ordering method for circuits with a large
number of IiOs will be described. Our method of varia-
ble ordering is based on a divide-and-conquer
approach. The method consists of three main steps.
1. In the dividing phase: the large circuit is partitioned

into a number of small circuits, or clusters, such that
the correlation among the clusters is sufficiently low.

2. In the conquering phase: each cluster is then exten-
sively searched for a good variable ordering. A vari-
able ordering is good in the sense that it yields a
compact OBDD.

3. In the merging phase: based on those good orderings
of clusters, a global ordering is then obtained by pre-
serving the original orderings of clusters as much as
possible.

The most time-consuming part is in the second step to
search a good ordering for each cluster. However, such
a cluster is in general much smaller than the original
circuit and therefore, significant improvement in effi-
ciency can be expected when the original circuit has a
large number of 110s. We will describe the first two
steps in this section and the last step in the next Sec-
tion.

In the first main step, we are to partition a given cir-
cuit into clusters so that a good ordering can be effi-
ciently searched for each cluster. We will describe the

262

cluster partitioning first. A cluster is a subcircuit con-
sisting of some primary outputs and all the gates and
primary inputs within the fan-in cone of these primary
outputs. In cluster partitioning, the primary outputs of
a cluster do not overlap with those of other clusters.
However, a primary input may appear in several clus-
ters depending on the circuit topology. The correlation
of primary inputs among clusters has a major impact
on the last step when the orderings of clusters are to be
combined. The cluster partitioning procedure is shown
in Fig. 1, which is regulated by a clusterfactor to
reduce such correlation.

ClusterPartition()

{

Given a clustmfa&n', dusternumber = 0;

for each primary output 0

according to the decreasing number of gates in the fan-in cone

{ for each Cluster(i1

Compute the input correlation with 0 by

Co"a[i] . ra t io = # PI for 0 included in cluster[i]

where # PI is the number of primary inputs.

if (Cmma[i] . r a t io is greater than clusterfador)

P I f o r O

Select Cfuster[i] with the highest ratio to merge;

Cluster[i] = Cluster[i] U 0;

else

Increment cluster-number by 1;

Create a new C~uster[c~usternumberj = 0;

}

}
Fig. 1 Cluster partitioning procedure

The clusterfbctor may have a value between 0 and 1.
The value of cluster f a c t o r is determined empirically. A
high cluster f actor implies a high threshold for cluster-
ing, i.e., only highly correlated primary outputs are
merged into one cluster. In general, high clusterjactor
yields more clusters of small sizes.

Given a predetermined clusterfactor, in Cluster-Par-
tition procedure, the correlation of a primary output,
0, with existent cluster [i] is computed. If one of the
computed correlation, Common-ratio, is greater than
the given clusterfactor, then the primary output is
merged into the cluster with the highest Common-ratio.
Otherwise, it becomes a new cluster. The sequence of
primary outputs for merging is determined by sorting
them according to the decreasing number of gates in
the fan-in cone. An additional step for the procedure is
to merge those primary outputs with less than 16 pri-
mary inputs into a single cluster to avoid an ineffective
compaction due to numerous clusters. The ordering of
this cluster is assigned the lowest priority.

In obtaining variable ordering of compact OBDD
size for a cluster, the dynamic sifting algorithm in the
CMU package is modified for this purpose. The trigger
condition of reordering is modified to be adaptive to
the reordering effectiveness. When reordering is less
effective, we allow more increase of the number of
nodes before next reordering takes place. The purpose
is to reduce ineffective and time-consuming reordering
when there are many intermediate gates in the same
level. The termination condition of sifting is when the

IEE Proc.-Comput Digii Tech, Vol. 144, No 5. September 1997

number of nodes increases by 20% than the original
size due to moving a variable up and down for an opti-
mal position.

3 Cluster merging

Given good ordering for individual clusters, the last
step is to obtain a good global ordering for the entire
function or circuit. In the following, we will justify the
interleaving method with a theorem and describe our
method of interleaving variable orderings from individ-
ual clusters.

A variable ordering of an OBDD is a sequence of
primary input variables for a given function. When two
OBDDs for two clusters are to be combined into a
compact one, it is desirable to retain as much as possi-
ble of the good ordering of each cluster. The interleav-
ing of two ordering serves such purpose. There may be
common variables between two sequences and in real-
ity it is possible to have common variables with differ-
ent orders in two sequences. In this case, some
compromise on the original ordering must be made as
will be discussed later. Here we will justify the inter-
leaving method for cases without such conflict. In other
words, the interleaving of two variable orderings is
complete in the sense that the variables in the resultant
sequence preserve the orders of the two original
sequences. For example, let the two original ordering
be Ordering (A) = {xo, xl, x2, x3, x4, xs} and Ordering
(4 = {Yo, Y1, x2, Y3, x3, Y 4) . Then the Ordering (c) =
{X", XI, yo, Y l , x2, Y3, x3, x4, x5, Y41 is a complete inter-
leaving of Ordering (A) and Ordering (B).
Theorem 1: Let two OBDDs have Ordering (A) and
Ordering (B) , respectively, without any conflict. Then
the resultant OBDD with the interleaved variable
ordering has a size no greater than the sum of the two
original OBDDs.
[Proof] Since the OBDD is unique for a given function,
it will not change when a new variable ordering is
inserted into the ordering regardless of the position.
Therefore, when two OBDDs without any conflict in
the original orderings are combined, the resultant size
can only be equal to the sum of the two original sizes
before the merging and deletion rules are applied. After
applying these two rules, the resultant size of OBDD
can be no greater than the sum of the two original
sizes.

The above theorem justifies the interleaving method
to preserve the original order of variables as much as
possible when combining two OBDDs. Another impli-
cation is that we may estimate the upper bound of the
resultant OBDD size given individual sizes of all clus-
ters when the variable orderings of all clusters have no
conflicts. If complete interleaving of variable ordering
is possible, then from Theorem 1, the resultant size can
be no greater than the sum of individual sizes. Even
when complete interleaving is not possible, the result-
ant OBDD size is generally strongly correlated to the
sum of the individual sizes as will be shown in the
experimental results.

Fig. 2 shows an example of resultant OBDD by
interleaving orderings. In Fig. 2, OBDD A and OBDD
B have 6 nodes each in their individual ordering. Obvi-
ously, the final size, 11 nodes, is less than the sum of
the two OBDD sizes. This profile results from the
merging rule of OBDDs so that the two x4 nodes are
shared as one node.

IEE Pw.-Comput . Digit. Tech.. Vol. 144, No. 5. September 1997

. . : .: . .

OBDD A with
ordering (A)

OBDD B with
ordering (B)

Fig.2 Resultunt OBDD by ititerkeuving

,A

Resultant OBDD by
interleaving ordering
(A) and ordering (B)

As discussed before, the interleaving of two given
orderings is often incomplete, i.e. there are common
variables with conflicting orders. In this case, some
compromise must be made. The ordering of the cluster
with higher priority determines the global ordering.
The priority of each clusters is defined by the CPU
time for OBDD compaction because large compaction
time is a good indicator of a hard cluster. The inter-
leaving procedure is therefore shown in Fig. 3.

Interleaving(G_ordering, Lordwing)

{ for each variable v in L-ordering from top

{ if (U does not belong t o G.urdering)

{

add U to queue();

if (next.variable(v) belongs t o G-ordering)

while (queue() != EMPTY)

w = dequeue();

insert w to G-ordering just before next-vvariable(v);

}

}

if (queue() != EMPTY)

append all variables of queue() to G-~rderings;

1
Fig. 3 Interleuving procedure

The overall algorithm of our method as shown in
Fig. 4 can then be described as follows. Given a net list
description, first the whole circuit is partitioned into a
number of clusters according to the Cluster-Partition
procedure. The initial ordering, Locul~ovde~ing, of each
cluster is determined by traditional DFS-appending
[lo] method which traverses the fan-in cone of each pri-
mary output of the cluster to obtain a sequence of var-
iable order with depth-firbt-search. Then build compact
OBDD for each cluster and thereby obtain a good
ordering for each cluster by dynamic reordering. Since
a cluster generally has far less input variables than the

263

entire circuit, the compaction process can be accom-
plished much more efficiently. After that, the orderings
of clusters are merged into an effective global ordering
according to the Interleaving procedure. Finally, we
rebuild OBDD for the entire circuit with the global
ordering.

Main()

{ Globalardering = NULL;

ClusterPartitia();

for each clusteI

{

Local-ordering = DFS-append of clusters;

Modify Local-ordming by dynamic reordering;

}

Globalmdering = interleaving all Local-ordering3

according to decreasing compaction process time;

Rebuild OBDD using Gfobul-ordering;

1
Algorithm for interleaving compacted clusters Fig. 4

A possible alternative to the last step is to adopt a
greedy approach by iteratively combining a new cluster
with the partially constructed resultant OBDD. The
variable ordering of the new cluster is interleaved with
the current global ordering by keeping the global varia-
ble order intact. After that the OBDD is optimised
only for the newly inserted variables of the new cluster.
Intuitively, this greedy approach may avoid the dupli-
cated construction of OBDD while keeping a compact
size. It is strongly dependent on the first chosen cluster,
but there is no sufficient information to determine the
cluster priority of merging sequence. One cluster with a
large number of gates, inputs, or outputs cannot be
exactly recognized as a hard cluster. In general, it gives
inferior results in both the size and the CPU time.

Although the principle of order interleaving is similar
to that in [19], we apply it in a unique way with the
divide-and-conquer approach. The correlation among
clusters is reduced sufficiently low in cluster partition-
ing to maximise the probability of interleaving.
Thereby, we are able to take a better advantage of the
good orderings of clusters to obtain a more compact
resultant OBDD.

Table 1: Comparison results

4 Experimental results

Our variable ordering method for OBDD has been
implemented and evaluated on a SPARC 20 worksta-
tion with 128 M byte memory. In the evaluation, our
method for OBDD has been employed to build
OBDDs for the larger ISCASSS and ISCAS89 bench-
mark circuits. The maximum number of nodes is lim-
ited to 1500 K in terms of sharing OBDDs with
inverted edges [9]. The result is compared with previous
works [18, 191 and the dependency on the clusterfactor
is presented. The remaining smaller circuits in the
benchmark can be easily built with previous published
heuristics.

In Table 1, we compare our results with the reported
data [18, 19, 221. The approach in [18] is an extension
of the dynamic sifting method in [16] by incorporating
symmetry check for contiguous variables. The symme-
try check for contiguous variables is not implemented
in our implementation. Their results are in general
more compact than those in [16] with negligible over-
head due to the sifting algorithm [18]. The results of
[16] are not shown here because no CPU time has been
provided, which is essential in the discussion. The
results of the CMU package is obtained by applying
the dynamic sifting-sifting algorithm on our machine.
The result of [19] is based on interleaving the order-
ing for each primary output obtained from a DFS heu-
ristic. In this comparison result, the value of
cluster f a c t o r is 0.6 which is determined empirically to
deliver better overall results. In this table, nodes indi-
cates the number of OBDD nodes and time is the CPU
time.

From this Table we can see that performance of our
method generally falls between the fully dynamic sifting
algorithm and the fully interleaving-based algorithm.
The approach in [19], although faster, produces
OBDDs significantly less compact than the other three.
The reason is that too many clusters of less compact
size lead to more conflicts and even larger resultant
size. On the other hand, the fully dynamic sifting algo-
rithm generally has the most compact result. The main
disadvantage of fully dynamic sifting algorithm is the
dramatic growth of processing time for circuits with a
large number of I/Os such as cs15850 [IS] and cs38417.
In comparison our method generates OBDDs of the
same order as those in [18]. However, for difficult cir-

[I91 Sift-sift [I81 Sift-sift (unpublished) Ours

nodes t ime nodes t ime nodes time nodes time
Circuit

c7552 33k 12 6k 242 8k 139 9k 122

cs5378 5k 4 2k 170 3k 8 6k 3

39 6k 28 cs9234 66k 14 4k 336 5k

cs13207 15k 11 3k 27 6k 10 - -

C515850 62k 22 37k 5503 18k 174 18k 75
- cs30532 6k 28 - 5k 46 5k 46

cs38584 35k 41 - - 27k 697 32k 123

~ ~ 3 8 4 1 7 >> 2M - - - 511k 26354 696k 1023
1191: On SPARC 470 with 96 M byte
[181: On Dec 5000/200
[221: On SPARC 20 with 128 M byte
Ours: On SPARC 20 with 128 M byte
- : no data
nodes: number of nodes
time: in seconds

264 IEE Proc.-Comput. Digit. Tech., Vol. 144, No. 5, September 1997

Table 2: Results with various cluster-factors

1 .o 0.8 0.6
Circuit

C R nodes t ime C R nodes time C R nodes time

c7552 4 0.25 94k 68 2 1.0 9k 119 2 1.0 9k 122

1x5378 48 0.9 6k 8 17 0.9 6k 4 10 0.9 6k 3

1x9234 55 2.7 15k 37 7 1.1 6k 29 5 1.0 6k 28

cs13207 14 1.3 6k 12 9 1.3 6k 10 8 1.2 6k 10
cs15850 87 2.1 27k 79 11 0.5 37k 76 11 1.0 18k 75

cs30532 1 1 5k 46 1 1 5k 46 1 1 5k 46

cs38584 129 0.7 41k 502 54 1.0 30k 165 28 0.9 32k 123

cs38417 129 0.9 857k 2360 41 0.9 607k 996 24 1.0 696k 1023

C: number of clusters
R (ratio): number of all cluster nodes over number of nodes in final OBDD
nodes: number of nodes
time: in seconds

cuits with a large number of I/Os, our method is signif-
icantly faster as in cs15850 [lS]. Moreover, for this
circuit, our divide-and-conquer approach actually
yields a more compact OBDD than the fully dynamic
sifting algorithm [lS]. More significantly, we are able to
construct the OBDD of cs38417 more efficiently than
existent methods. Its resultant OBDD has a size of
about 696k nodes and is completed in 1023 seconds.
The combination of huge size and a large number of
I/Os of cs38417 is the major difficulty for OBDD con-
struction. Our divide-and-conquer approach is espe-
cially effective for such circuits. With the problem for
cs38417 been resolved, all the circuits in ISCASS5 and
ISCAS89 benchmarks, except the multiplier ~6288,
have now been shown to have an OBDD of managea-
ble size. There seems no reason that the building of
cs38417 can not be accomplished with dynamic sifting
algorithm alone. We directly employed the CMU pack-
age to the circuit cs38417 on a machine with a larger
swapped area. After about 7 hours, the OBDD is com-
pletely built with 51 1 k nodes. Although the OBDD size
is about 20% smaller than the result of our approach,
the processing time is 20 times longer. In this case, our
divide-and-conquer strategy is able to efficiently obtain
a sufficiently good ordering for circuits with a large
number of I/Os.

The dependency of the result on the cluster f a c t o r is
shown in Table 2 for various cluster fac tors in the
Cluster-Partition procedure. Three clusterfactors, 1 .O,
0.8, and 0.6, are evaluated. A higher cluster f a c t o r
allows only primary outputs with higher correlation to
be put into a cluster. As a result, more clusters are gen-
erated with smaller size. With clusterfactor equal to
one, then only the primary outputs with completely
overlapped fan-in cones are merged into one cluster. It
is similar but not identical to have each primary output
in a separate cluster. The number of clusters for these
three clusterfactom are shown in column C of Table 2.
Also shown in this table are the number of OBDD
nodes, the CPU time, and R which is the ratio of the
total number of nodes of all clusters over the resultant
node number.

The value of R is an indication of success of order
interleaving. If the interleaving is completed without
any conflicts, then R should be nu lms than 1 by Theo-
rem 1. realistically, there will be conflicts during inter-
leaving and R can be less than or greater than 1. From
Table 2, a cluster f a c t o r of either 0.8 or 0.6 yields

IEE Prm-Comput. Digit. Tech.. Vol. 144, No 5, September 1997

results better than a clusterfactor of 1.0 both in the
OBDD size and the CPU time. This is due to that there
are too many clusters for cluster factor 1.0 and hence
more conflicts during interleaving. The phenomenon
can be clearly seen in the c7552 circuit for which the
OBDD size with clusterfactor 1.0 is ten times larger
than the other two. When the cluster f a c t o r is below
0.5, there will be less clusters with larger size and the
compaction time for a cluster will be increased signifi-
cantly. Another interesting observation is that the ratio
R for both cluster fac tors of 0.8 and 0.6 are close to
one which implies that the interleaving process for
these given clusterfactors does not produce many extra
nodes due to conflicts. In addition, the total number of
nodes of all clusters can serve as an estimate of the
number of nodes in the resultant OBDD.

5 Conclusions

An efficient strategy for variable ordering of OBDDs
based on interleaving the compacted clusters has been
proposed in this paper. The novelty of this strategy is
to apply the divide-and-conquer approach to find a
good variable ordering efficiently for circuits with a
large number of I/Os. In this way, the time-consuming
process of searching good orderings is restricted within
each individual cluster which has a manageable number
of input variables. This divide-and-conquer approach is
able to obtain a good variable ordering more efficiently
than existing methods for circuits with a large number
of I/Os. One notable result from our method is that we
are able to build the OBDD for the cs38417 within
1000 seconds on a SPARC 20 workstation with 128 M
byte memory.

Acknowledgment

This research was supported by the National Science
Council, Taiwan, R.O.C., under Grant NSC 85-2221-
E002-0 18.

7 References

1 BRYANT, R.E.: ‘Graph-based algorithms for boolean function
manipulation’, IEEE Trans. Comput., Aug. 1986, C-35, (8), pp.

2 TOUATI, H.J., SAVOJ, H., LIN, B., BRAYTON, R.K., and
SANGIOVANNI-VINCENTELLI, A.: ‘Implicit state enumera-
tion of finite state machines using OBDDs’. Proceedings of inter-
national conference on Computer-aided design, Nov. 1990, pp.
130-133

677-69 1

265

CHO, H., HACHTEL, G.D., JEONG, S.W., PLESSIER, B.,
SHWARZ, E., and SOMENZI, E.: ‘ATPG aspect of FSM verifi-
cation’. Proceedings of international conference on Computer-
aided design, Nov. 1990, pp. 134-137
CHO, H., HACHTEL, G.D., and SOMENZI, F.: ‘Fast sequen-
tial ATPG based on implicit state enumeration’. Proceedings of
international Test conference, Sept. 1991, pp. 67-74
COUDERT, O., and MADRE, J.C.: ‘Implicit and incremental
computation of‘ priines and essential primes of Boolean function’.
Proceedings of 29th Design uutomation conference, June 1992, pp.
36-39
CHEN, K.-C., and FUJITA, M.: ‘Efficient sum-to-one subsets
algorithm for logic optimization’. Proceedings of 29th Design
cmiomation conference, June 1992, pp. 443-448
LIAW, H.-T., and LIN, C.-S.: ‘On the OBDD representation of
general Boolean functions’, IEEE Trans. Cowput., July 1992, 41,
(6), pp. 661-664
FRIEDMAN, S.J., and SUPOWIT, K.J.: ‘Finding optimal varia-
ble ordering for binary decision diagrams’, IEEE Trans. Comput..
May 1990, 39, (5), pp. 710-713
MINATO, S.-I., ISHIURA, N., and YAJIMA, S.: ‘Shared binary
decision diagrams with attribute edges for efficient Boolean func-
tion manipulation’. Proceedings of 27th Design automation con-
ference. June 1990. DU. 52--57

13 ISHIURA, N., SAWADA, H., and YAJIMA, S.: ‘Minimization
of binary decision diagrams based on exchanges of variables’.
Proceedings of international conference on Computer-aided
design, Nov. 1991, pp. 472-475

14 MERCER, M.R., KAPUR, R., and ROSS, D.E.: ‘Functional
approaches to generating ordering for efficient symbolic represen-
tations’. Proceedings of 29th Desim automution conference. June
1992, pp 624-627

15 BUTLER, K M , ROSS, D E , KAPUR, R , and MER-
CER, M R ‘Heuiistic to compute variable orderings for efficient
manipulation of ordered bin&y decision diagrams’. Proceedings
of 28th Design automution conference, June 1991, pp. 417420

16 RUDELL, R.: ‘Dynamic variable ordering for ordered binary
decision diagrams’. Proceedings of international conference on
Computer-aided design, Nov. 1993, pp. 41-47

17 YEH, F.-M., and LIN, C.4.: ‘Building OBDDs with ordering-
reshuffle strategy’, Eleciron Lett., Aug. 1993, 29, (17), pp. 1540-
1541

18 PANDA, S., SOMENZI, F., and PLESSIER, B.F.: ‘Symmetry
detection and dynamic variable ordering of decision diagrams’.
Proceedings of international conference on Computer-uided
design, Nov. 1994, pp. 628-631

19 FUJII, H., OOTOMO, G., and HORI, C.: ‘Interleaving based
variable methods for ordered binary decision diagrams’. Proceed-
ings of international conference on Computer-aided design, Nov.
1991 nn 18-41 > rr. - - -

10 MALIK, S., WANG, A.R., BRAYTON, R.K., and SANGIO- 20 BRGLEZ, F., and FUJIIWARA, H.: ‘A neutral netlist of 10
VANNI-VINCENTELLI, A.: ‘Logic verification using binary combinational benchmark circuits and a target translator in For-
decision diagrams in a logic synthesis environment’. Proceedings tran’. International symposium on Circuits and systems, June
of international conference on Computer-uided design, Nov. 1988, 1985,
pp. 6-9 21 BRGLEZ, F., BRYAN, D., and KOZMINSKI, K.: ‘Combina-

tional profiles of sequential benchmark circuits’. International
symposium on Circuits and systems, June 1989, pp. 1924-1934 11 CALAZANS, N., ZHANG, O., YERNAUX, B., and TRULLE-

MANS, A.-M.: ‘Advanced ordering and manipulation techniques 22 ARSHAR, P,, and CHEONG, M,: ‘Efficient breadth-first
ulation of binary decision diagrams’. Proceedings of international for binary decision diagrams’. Proceedings of European Design

automution conference, Sept. 1992, pp. 452-457 conference on Computer-uided design, Nov. 1994, pp. 622-627
12 BRACE, K.S., RUDELL, R.L., and BRYANT, R.E.1 ‘Efficient 23 YEH, F.-M., and LIN, C.-S.: ‘OBDD variable ordering by inter-

implementation of a OBDD package’. Proceedings of 27th Design leaving compacted clusters’, Electron. Lett., Sept. 1995, 31, (20),
uutomution conference, June 1990, pp. 40-45 pp. 1724-1725

266 IEE Proc.-Comput. Digit. Ted . , Vol. 144, No 5, September 1997

