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Abstract--This paper presents a new method in solving long 
horizon optimal control problems. The original problem is 
decomposed along the time axis to form many smaller 
subproblems, and a high level problem is created that uses 
initial and terminal states of subproblems as coordination 
parameters. In such a scheme, the high level problem is a 
parameter optimization problem. Subproblems are optimal 
control problems having shorter time horizon, and are 
completely decoupled so that they can be solved in parallel. 
It is shown that the two-level problem has the same global 
optimum as the original one. Moreover, the high level 
problem is a convex programming problem if the original 
problem has a convex cost function and linear system 
dynamics. A parallel, two-level optimization algorithm is 
then presented, where the the high level problem is solved by 
Newton's method, and low level subproblems are solved by 
the Differential Dynamic Programming technique. Numerical 
testings on two examples are given to illustrate the idea, and 
to demonstrate the potential of the new method in solving 
long horizon problems under a parallel processing 
environment. 

1. INTRODUCTION 
THERE ARE MANY computat ional  methods for 
solving optimal control problems.  According to 
the nature of results, these methods can be 
categorized into three classes: open-loop,  feed- 
back, and closed-loop (Polak, 1973). For 
example,  methods based on dynamic program- 
ming yield closed-loop solutions while the use of  
maximum principle results in open-loop solu- 
tions. As closed-loop solutions are generally 

* Received 22 October 1986; revised 29 June 1987; revised 
24 May 1988; received in final form 1 June 1988. The original 
version of this paper was not presented at any IFAC 
meeting. This paper was recommended for publication in 
revised form by Associate Editor M. Jamshidi under the 
direction of Editor A. P. Sage. 

t Department of Electrical and Systems Engineering, 
University of Connecticut, Storrs, CT 06268, U.S.A., now at 
Department of Electrical Engineering, National Taiwan 
University, Taipei, Taiwan, Republic of China. 

Department of Electrical and Computer Engineering, 
University of California, Davis, CA 95616, U.S.A. 

§Department of Electrical and Systems Engineering, 
University of Connecticut, Storrs, CT 06268, U.S.A. 

77 

difficult to obtain and pure open- loop solutions 
are not satisfactory for practical applications, 
methods for obtaining solutions with certain 
feedback propert ies are typically adopted (Fin- 
deisen et al., 1980). Though there are many 
existing techniques for solutions of  different 
nature, there have not been many efficient 
methodologies for solving large-scale problems.  
As the computat ional  power  increases, such as 
the availability of faster hardwares and cost- 
effective parallel processors,  etc., the size and 
scope of problems we want to tackle also 
grow. Enormous  amount  of  research interests 
have lately been invoked to seek for efficient 
solution methodologies for large-scale problems 
by exploiting both problem structure and 
advanced computing techniques, especially the 
parallelization of algorithms for the application 
of parallel processing systems. 

One popular  scheme in handling large-scale 
optimization problems,  either static or dynamic, 
is decomposition and coordination: a large 
problem is decomposed,  based on problem 
structure, into small subproblems which can be 
solved efficiently, and a proper  coordination 
scheme is created to glue subproblems together  
and to insure the optimality of  the solution. 
Parallelism is usually achieved as a result of 
decomposition. Methods such as decomposit ion 
by pricing mechanism, decomposit ion by right- 
hand-side allocation, the generalized Benders '  
decomposit ion,  etc. (Lasdon, 1970; Geoffrion,  
1972; Silverman, 1972; Shapiro, 1979) have been 
developed in the mathematical  programming 
literature for static problems.  Some of them 
have been applied to dynamic problems by 
treating systems dynamics as structured 
constraints and then adopting a static viewpoint 
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(Lasdon, 1970). The emphasis is on compu- 
tational efficiency, and the nature of solutions is 
usually open-loop. On the other hand, for 
decentralized control applications, methods such 
as goal coordination, price coordination, inter- 
action prediction, etc. (Findeisen et al., 1980; 
Jamshidi, 1983; Shimizu and Ishizuka, 1985) 
have been developed to solve large-scale 
dynamic optimization problems along the line of 
decomposition and coordination. Their em- 
phases are on the dynamic and information 
feedback aspects. In most of these approaches, 
decompositions are on state and/or control 
variables. A parallel dynamic programming 
algorithm based on state variable decomposition 
was presented in Scheel (1981~. 

For many large-scale optimal control prob- 
lems, the long time horizon adds another 
dimension of difficulty. In this paper, we present 
a scheme that decomposes a long horizon 
problem into smaller subproblems along the time 
axis. The initial and terminal states of sub- 
problems are chosen as coordination parameters. 
A high level parameter optimization problem is 
created to determine the optimal coordination. 
In such a decomposition, subproblems are 
completely decoupled once coordination para- 
meters are given, thus they can be solved in 
parallel. 

The basic idea of the new method can be 
elaborated as follows. Consider a discrete-time, 
deterministic optimal control problem. If the 
optimal solution is known, its corresponding 
optimal state trajectory {x*(k)} can be ob- 
tained. Let the optimal state trajectory be 
decomposed into M segments along the time 
axis, say, segment i starts from stage iT to stage 
(i + 1)T, where T is a positive integer. The 
terminal state of segment i, x*((i + 1)T), is also 
the initial state of segment i +  1. Define 
subproblem i as the optimization problem over 
the period [iT, (i + 1)T], having the correspond- 
ing part of system dynamics and cost function as 
the original problem, and x*(iT) and x*((i  + 
1)T) as its initial and terminal states. From the 
optimality requirement, an optimal control and 
its corresponding state trajectory of the original 
problem in the period [iT, (i + 1)T] must be an 
optimal solution for subproblem i. Therefore, if 
the optimal states (x*( iT)}~ l  are given, then 
subproblems can be solved in parallel since they 
are decoupled. 

The problem then reduces to how to design 
an efficient algorithm to search for {x*(iT)}~l .  
To do this, a coordination center is formed at 
the high level. Its function is to supply 
subproblems with initial and terminal states. 
Once subproblems reach their individual solu- 

tions, they pass certain information back to the 
center. The center, based upon the information 
received, updates subproblems' initial and 
terminal states for the next iteration. The 
optimal solution can then be obtained iteratively 
under proper convexity conditions. 

In this decomposition, the high level problem 
is a parameter optimization problem, as its goal 
is to find {x( iT)}~l  that minimizes the overall 
cost. Therefore, many computational methods 
for parameter optimization can be used to solve 
it. Similarly, many methods for optimal control 
can be used to solve low level subproblems. The 
selection of both methods should be carefully 
made based on the desired nature of the solution 
and the computational efficiency of the overall 
scheme. Note that as the high level is a 
parameter optimization problem, the solution of 
the two-level scheme cannot be completely 
closed-loop even if closed-loop solutions are 
achieved at the low level. Solutions with a nature 
between open-loop and closed-loop are generally 
expected. Note also that state decomposition can 
be carried out inside each subproblem when 
needed. In this sense, our approach is 
complementary to existing results. 

To illustrate the ideas of our scheme, and to 
demonstrate the benefit of parallel processing for 
long horizon optimal control problems, a 
two-level optimization algorithm is developed 
for the time decomposition of a class of 
problems with convex, stagewise additive objec- 
tive function and linear system dynamics. The 
algorithm consists of two basic components: the 
Differential Dynamic Programming (DDP) for 
low level subproblems and the Newton method 
for the high level (the NM-DDP algorithm). The 
DDP at the low level explicitly exploits system 
dynamics, results in variational feedback solu- 
tions, is efficient for standard optimal control 
problems (Jacobson and Mayne, 1970; Ohno, 
1978; Yakowitz and Rutherford, 1984; Yako- 
witz, 1986), and generates first and second order 
derivative information needed for the high level 
optimization. The Newton method at the high 
level generates good search direction for 
coordination parameters, has quadratic conver- 
gence rate near the optimum, and has a special 
structure suitable for parallel processing as a 
consequence of time decomposition. 

Lacking a parallel processor, our numerical 
testings were performed on an IBM mainframe 
with detailed timing and calculation of perform- 
mance measures (speedup and efficiency, to be 
discussed in Section 5). These performance 
measures are good for tightly coupled parallel 
processing systems where memory is shared 
among processors and interprocessor com- 
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munications take a negligible amount of time. 
For loosely coupled systems where interpro- 
cessor communication times cannot be ignored, 
our measures provide bounds on actual 
performances. 

The paper is organized as follows. The 
two-level optimization problem is formulated in 
Section 2. It is shown in Section 3 that the 
two-level problem has the same global optimum 
as the original problem. A sufficient condition 
for the high level problem to be a convex 
programming problem is also given. In Section 
4, the two-level, parallel NM-DDP algorithm is 
presented. Section 5 provides numerical testing 
results on two examples. Concluding remarks 
are then given in Section 6. 

2. THE TWO-LEVEL FORMULATION 

Consider the following optimal control 
problem: 

N - - 1  

(P) min J, with J = gN(XN) + ~ gj(x~, U~), 
ui i = 0  

(2.1) 

subject to the system dynamics 

xi+l =fii(xi, u/), i = 0 . . . .  , N - 1, with x0 given, 

(2.2) 
and constraints 

x ~ X c R , , ,  and u e U c R " .  (2.3) 

Assume that problem (P) has a finite optimal 
cost and that N = M T  >> 1, where M and T are 
both positive integers. By specifying the values 
of {xff ,]  = 1 . . . . .  M}, we can decompose (P) 
into M independent, T-stage subproblems as 
follows. 

(P-j) Subproblem j, j = 1 , . . .  , M 

iT--1 

minJj, with J j=  ~ g~(xk, uk), (2.4) 
Uk k ~ ( j - - 1 ) T  

subject to the system dynamics 

Xk+l =fk(X,, Uk), (j  -- 1)T <_ k <-jT - 1, 

with x~j_l) T and Xir given, (2.5) 

and the corresponding constraints of (2.3). 
We assume for simplicity that (P-j) has an 

optimal solution if there exists a feasible 
sequence of controls that brings the system from 
x(j_l)r to Xjr. Denote JT(x(j_l)r, Xjr) as its 
optimal cost. If (x(j-1)r, Xjr) is not feasible, i.e. 
there does not exist a feasible sequence of 
controls to bring the system from x(j-1)r to xjr, 
we let J7  = 00. The low level subproblem (P-j) is 
therefore well defined for all (x(j-1)r, xjr) • X 2. 

Since the solution of (P-j) depends upon 
x(~-l)r and xjr, the set of variables { X j r } ~  can 

be chosen as coordination parameters. A high 
level problem, called (P-H), is thus created to 
select the best coordination terms so that the 
total cost is minimized. That is, 

M 

(P-H) min J, with J =- ~, J'~(x(i_l)r, xff) 
(XMT,... , x r ) ~ X  M ] = 1 

N--1 

= g N ( X N )  "~ E g i ( x ~ ,  U ~ ) ,  ( 2 . 6 )  
i = 0  

where x~' and u~" are solutions of (P-j) with 
"Jr __ and x jr =- Xjr, j = 1, M. X ( j _ l )  T = X ( j _ l )  T • . . , 

The above scheme and the one presented in 
Chang and Luh (1985) are both time decompo- 
sition schemes. The major difference is that, 
instead of modifying subproblems' cost functions 
as a means of coordination, we choose initial and 
terminal states of subproblems as coordination 
terms. 

3. ACHIEVABILITY OF OPTIMAL SOLUTIONS 

In this section, we shall show that problems 
(P) and (P-H) have the same global optimum. 
We shall also show that the high level problem 
(P-H) is a convex programming problem if the 
original cost function gi is convex, the admissible 
state space X and the admissible control space U 
are convex, and the system dynamics f. is linear. 

Theorem 1. Problems (P-H) and (P) have the 
same global optimum. 

To prove Theorem 1, we first convert problem 
(P) into a parameter optimization problem. We 
then utilize the fact that a parameter minimiz- 
ation problem can be converted into a two-level 
minimization problem by first minimizing over a 
subset of parameters and then minimizing over the 
remaining parameters. Details are given in Appen- 
dix A. 

From Theorem 1, we see that instead of 
solving the original long horizon optimal control 
problem (P), we can solve a two-level problem. 
The high level problem (P-H) is a parameter 
optimization problem. Low level subproblems 
(P-j)s are optimal control problems of a shorter 
time horizon. These subproblems can be solved 
in parallel, as they are decoupled once { x r } ~ l  is 
set by (P-H). 

Though Theorem 1 guarantees that both (P) 
and (P-H) have the same global optimum, it is 
not clear whether the two-level formulation 
changes or creates local optima. In the following 
theorem, we present a sufficient condition for 
(P-H) to be a convex parameter optimization 
problem and therefore have the same optima as 
(V). 

Theorem 2. Problem (P-H) is a convex para- 
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meter optimization problem over the set Xrl if 
(i) gi(xi, ui) is convex, 

(ii) f (xi ,  ui) is linear, and 
(iii) X and U in (2.3) are convex sets. 

Proof. Since the cost function in (P-H) is of the 
additive form as given by (2.6), to prove the 
theorem, it is sufficient to show that 
JV(xu_l)r, xjr) is convex in terms of its 
arguments. We therefore consider subproblem 
(P-j). For simplicity of presentation, the 
subproblem index j is omitted and x(i_~) r is 
written as x0 in the following proof. Define the 
set of admissible state and control trajectories 
XUA as 

X U  A ~ ( ( x  N . . . . .  X l ,  UN_ 1 . . . . .  UO) • I N X O N [ 

(2.2) holds for (XN . . . . .  U0)}. (3.1a) 

Then define the set of admissible initial and 
terminal states Xor as 

Xor -- {(Xo, xr)  [ there exists a trajectory 

(xr . . . .  , x l ,  ur-1 . . . . .  Uo)•XUA}.  (3.1b) 

The proof is then reduced to the proof  of lemma 
1. 

Lemma 1. (a) Xov- is a convex set. (b) J*(xo, xr )  
is convex over )(or. 

Proof. (a) Since f i (x ,  Ui) is linear, we let 

xi+l = Aixi + Biui, i = 0 . . . . .  T - 1, (3.2) 

where A i e R  ~ and B i e R  "m. From (3.2), we 
obtain 

T - - 1  

x~ = ~-~Xo + ~ ~gBgui, (3.3) 
i = 0  

where 
T - I  

(I)~-= I-I Aj and ~ r -~ -= l .  
j=i+l 

Let x k, Xo k and (ui k , i = 0  . . . . .  T - l ) ,  k =  
1, 2, denote two sets of quantities satisfying 
(3.3). Define 

xo ° -= 0¢Xo 1 + (1 - c0x~, (3.4a) 

x °-= oct,-+ (1 - cr)x2r, (3.4b) 

u ° - = c r u ] + ( 1 - c Q u ~ ,  i = 0  . . . . .  T - l ,  (3.4c) 

for an arbitrary or • [0 ,  1]. Note that x ° • X ,  
x ° • X and u ° • U as X and U are convex sets. 
We then have 

x ° = *_l(a0c~ + (1 - ~)Xo 2) 
T - - 1  

+ i=oE ¢Y~iBi( O{ul + (1 - cr)u 2) (3 .4d)  

T - - I  

=f~-I xO+ E tY~iBi uO, 
i = 0  

which implies (x °, x°r)• Xor. Since this is true 
for an arbitrary tr • [0, 1], we conclude that Xor 
is a convex set. 

(b) For a given pair of (Xo k, Xlk), k = 0, 1, 2 as 
defined in part (a), denote {x7 k, u *k} as its 
optimal state and control trajectories and 
J*(x~o, x k) its corresponding cost. To prove that 
J*(xo, Xr) is convex in its arguments, we have to 
show that 

J*(x °, x °) <-- trJ*(x~, x~) + (1 - oOJ*(xZo, x2). 

(3.5) 
Define 

U(xo, xr)  -- {(ui, i = 0 . . . . .  T - 1) • U r [ (14) 

holds for the given Xo and xr} .  (3.6) 

Note that X and U are convex sets. By letting 

= + (1  - . 2 ,  

and a i = ~ u  * l + ( 1 - ~ ) u  *z, (3.7) 

we have (ai, i = 0 . . . . .  T - 1) • U(x °, x°r), and 
{~i} is the state trajectory for the control 
sequence {ai}. Therefore ,  

T - - I  
~- o o J (xo, xr )  = rain g r ( x r )  + ~ gi(xi, ui) 

(Uo ..... UT-1)~ U(xS,x~ ) i=O 

T--1 

<--gT(XT) + E gi('~i, tti) 
i=0 
T - - 1  

<--gT(xT)+ Z ( gi(x .1, U .1) 
i = 0  

+ (1 - o ( ) g i ( x 7 2 ,  u 7 2 ) )  

= ~r./*(Xo 1, x~) + (1 - oOJ*(xZo, x2). 

(3.8) 

The first inequality holds because of (i) above, 
and the second comes from the convexity of g~. 
The proof  is thus completed. 

4. A PARALLEL PROCESSING ALGORITHM 

As formulated in the previous section, the 
high level problem (P-H) is a parameter  
optimization problem, and many methods for 
parameter optimization can be used to solve it. 
Similarly, many optimal control techniques can 
be used to solve low level (P-j)s. The selection 
and integration of methods to solve the two-level 
problem should be carefully made based on 
desired nature of results and overall compu- 
tational efficiency. We present in this section a 
parallel, two-level algorithm to solve problems 
without state/control variable constraints, i.e. 
xl • X = R n and ul • U = R n. Our emphases are 
to illustrate the idea of the two-level approach, 
and to demonstrate its potential for parallel 
processing of long horizon optimal control 
problems. 

We assume in this section that all functions in 
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(P) are smooth so that all needed derivatives 
exist, and that the system is T-stage controllable, 
i.e. for any given pair of initial and terminal 
states of subproblem (P-j), there is a feasible 
solution. Since we are dealing with long horizon 
problems, T in principle is large. Furthermore, 
there is no constraint on control variables. 
Therefore T-stage controllability is not a 
stringent assumption. Newton's method is sel- 
ected for solving (P-H) as follows: 

x T M  = x k - [VZJ(xk)]-lVJ(xk),  (4.1) 

where - ' . .  Xh = (Xlr, •, X~r)' and k is the iteration 
index. 

From (2.6), we have 
¢r 

aJ _ aJ~(xq_or,x/T) 4 aJ/+1(X/r,X(/+t)T) 

(4.2) 

Similarly, the Hessian vEj consists of Hessians of 
Jj(x(j-1)T, X/r), j = 1 . . . . .  M, and is an M-level 
block tridiagonal matrix: 

bl Cl 

a2 b2 

V2J = a3 

0 

c2 0 

b3 c3 

bM-1 

aM-1 aM CM-- 1 

bM 

(4.3) 

where b~ =- a2(J * + JT+l)/ ax2r, aj =- a2(JT_, + J T ) /  
axq_,)waX/r and c/-=- a2(JT+l + JT+2)/axjrax(/+l)r. 
Note that both VJj and V2./j can be computed 
locally by the jth subproblem and passed onto 
the high level to form VJ and V2j. The problem 
then reduces to how to find the needed information 
efficiently while solving low level subproblems. 
Based on this concern, an extended Differential 
Dynamic Programming (DDP) technique is 
adopted at the low level. 

The DDP is a successive approximation 
technique for solving optimal control problems 
with free terminal states (Jacobson and Mayne, 
1970; Ohno, 1978; Yakowitz and Rutherford, 
1984; Yakowitz, 1986). It has been extended to 
problems with fixed terminal states in Chang et 
al. (1986a), and Chang (1986). It consists of two 
procedures: backward dynamic programming 
and successive policy construction. For a 
low-level subproblem (P-j), a backward dynamic 
programming procedure is applied by taking a 
quadratic approximation of (P-j) along a 
nominal trajectory, and formulating at each 
stage a quadratic programming problem in 
variational terms of control and state variables. 

By solving the quadratic programming problem 
at each stage, coefficients of the linear optimal 
variational control and coefficients of the 
quadratic variational cost-to-go function are 
obtained. The successive policy construction 
procedure uses these control coefficients and the 
nominal controls to construct new controls 
forward in time, and to calculate the new cost. If 
the cost is lower than the nominal one, the 
nominal trajectory is updated by the new 
trajectory. Otherwise the new control is 
modified in a specific way till the constructed 
control yields a cost lower than the nominal one. 
These forward and backward procedures are 
carried out repetitively to obtain a convergent 
solution. The information required by the high 
level Newton method is readily available from 
coefficients of the variational cost-to-go function 
at convergence. A more detailed description of 
DDP is given in Appendix B. The two-level 
optimization algorithm with parallel low-level 
subproblems is depicted in Fig. 1. Note that in 
the algorithm implemented, the matrix Bjr_~ is 
assumed to be invertible to simplify the handling 
of constraints caused by the fixed terminal state. 
Analysis for the case where Bjr-~ is not 
invertible can be found in Chang (1986). 

To further enhance the parallelism of the 
algorithm, the block tridiagonal structure of V2j 
is exploited and the cyclic odd-even reduction 
algorithm of Heller (1976) is adopted to find the 
Newton step 

y = [ • 2 J ( X h ) ] - l • J ( X h )  , (4.4) 

at the high level optimization. This algorithm is 
a parallel algorithm that solves the block 
tridiagonal equation 

[V2j(Xh)lY = VJ(Xh). (4.5) 

To briefly explain the idea of cyclic reduction, 
let us rewrite (4.5) in block terms defined in 
(4.3). The jth equation becomes 

ajyj-1 + bjyj + cjyj+ 1 = Vj, 

j = l  . . . .  ,M,  a ~ = c M = 0 ,  (4.6) 

where oj is a vector consisting of the components 
of VJ corresponding to the jth block. Assume for 
simplicity that M = 2 m + l - 1 ,  where m is a 
positive integer. There are two basic operations 
in cyclic reduction: reduction and back substitu- 
tion. If we multiply equation 2j - 1 by -a2jb~.[1, 
equation 2/" + 1 by -1 -c2jb2i+l and add them to 
equation 2j, we can eliminate the odd-indexed, 
off-diagonal blocks. Picking up blocks associated 
with the even-indexed unknown y, we form 
again a tridiagonal equation with 2 m-1 levels of 
blocks. The procedure is repeated till a 
one-block equation is obtained. This is the 

AUTO 25:1-F 
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I High Level l 

v,,, J ,  

VZr dt 

xo given 
SubprobLem k 

DDP 

J;  
v,,, #," 

v.~, . , , ,V 
i , j : k - I  t k 

Subprobtern k 

DDP 

FIG. 1. The Newton-DDP 

JC 
v,,r J,; 

i , J : M - I ,  M 

Subprobtem M 
DDP 

algorithm with parallel structure. 

reduction step. The one-block linear equation is 
then solved for Y,,+I. The back-substitution step 
is performed in a reverse sequence of the 
reduction step. At each stage, the available 
result is substituted into the block tridiagonal 
equation constructed at the corresponding stage 
in the reduction step, and the unresolved 
variables in the equation can be computed easily 
and independently for different blocks. This 
backward procedure continues till the original 
problem is solved. The algorithm is suited for 
parallel computation, as many quantities in- 
volved can be computed independently. Note 
that the number of processors used is reduced by 
half after each reduction, and this may not be 
desirable for the consideration of efficiency. 
There are other parallel algorithms for solving 
block tridiagonal equations (Kowalik and 
Kumar, 1985), and the selection of a proper 
algorithm depends on the architecture of the 
parallel processor to be used. 

5. NUMERICAL RESULTS 
As pointed out in Yakowitz and Rutherford 

(1984), there is no well-established, standard 
testing problem for large-scale optimal control 
systems. In this section, two problems with 
nonquadratic objective functions and linear 
system dynamics are adopted for the testing 
purpose. The one level DDP with free terminal 
state is also tested as a basis for comparison. 

As mentioned, numerical testings are per- 
formed in single precision on an IBM 3084 
mainframe computer due to a lack of a paral- 
lel processor. A user supplied subroutine (pro- 
vided by UConn Computer Center) is used to time 
the execution of the algorithm. Two performance 
measures, speedup and efficiency (to be 
explained later) are obtained assuming no 

communication cost among processors. These 
performance measures are good for tightly 
coupled parallel processing systems where 
memory is shared and interprocessor com- 
munications take a negligible amount of time. 
For loosely coupled systems where interpro- 
cessor communication times cannot be ignored, 
our measures provide bounds on actual perform- 
ances. The timing results listed throughout this 
section are in units of seconds. Testing results 
demonstrate the feasibility of the decomposition 
approach, and the advantage of the algorithm 
for solving long horizon problems under a 
parallel processing environment. 

Example 1. Cost function: 

J = E (xit - a,)Z~, u 2 + u 2 
t=l i=1 i=1 

+ ~ ~ u, ujt + 100 ~ (xit-ait)2], (5.1) 
i=1 j>i i=1 

where m = n =4,  and {air} is an independent, 
identically distributed random sequence with 
uniform distribution over the interval [ -2 ,  2]. 
This cost function is designed to let x,  close to air 
and have small controls. It is convex when 
magnitudes of x and u are not too large. 

System dynamics: 

A =  0 1 

0 0 

- 1  0 . (5.2) 
and B = 1 - 1 

0 1 - 
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TABLE 1. TEST RESULTS FOR TWO PERFORMANCE MEASURES 

83 

DDP Newton-DDP 

Stages T1 f.c. M x T lp Sp Ep f.c. 

42 0 .59  0.1764597 3 x 14 0.36 1.639 0.546 0.1764654 

84 1 .12 0.3430279 3 x 28 0.61 1.836 0.612 0.3430364 

168 2.21 0.7067726 3 x 56 1.12 1.973 0.658 0.7068281 

336 4 .41  1.240006 3 x 112 2.15 2.051 0.684 1.240177 

42 7 x 6 0.31 1.90 0.271 0.1764609 

84 7 x 12 0.43 2.605 0.372 0.3430302 

168 7 x 24 0.73 3.027 0.432 0.7068199 

336 7 x 48 1.16 3.80 0.543 1.240194 

f.c.: final cost/104. 

The initial state is x0 = [0 0 0 0]' ,  and the initial 
nominal control is t~it = 0 for all i and t. 

Convergence criteria 
The convergence criteria for the D D P  

algorithm is of the following form: 

IJ~ +1 -- Jkl/Jk <-- r 1. (5.3) 

The convergence threshold 7/ is 0.0001 for the 
one-level DDP,  and T/=0.001 for the D D P  in 
the two-level algorithm. For the high level 
optimization, the criterion is either (5.3) with 
threshold r /=  0.0001 or IVJI < 0.001. 

To measure the performance  of the algorithm, 
let T1 be the running t ime of the one-level D D P ,  
T2 be the total sequential running t ime of the 
two-level algorithm, Tp be the corresponding 
low level parallel running time (to be discussed 
later), and M be the number  of processors 
which is assumed to be equal to the number  of  
subproblems. Communicat ion time is ignored 
by assuming that either a shared memory  is 
available, or communicat ion time is relatively 
small. At  the kth iteration, let tk denote the 
longest processing time among all processors in 
solving low level subproblems.  The low level 
parallel running time Tp is calculated by adding 
up all the tks. The high level computat ion is 
assumed to be done by M processors in parallel, 
and its computat ion t ime Th is approximated by 
( T 2 -  Tp)/M. This approximation is justified by 
testing results that T 2 - T p  << Tp (approximately 
1:15), as the high level Newton optimization is 
much simpler than the low level DDP.  Two 
performance measures are then adopted (Heller,  
1978). Speedup,  defined as Sp =- T1/(Tp + Th), 
measures improvement  in computat ion time by 
using parallel processing. On the other  hand, 
efficiency Ep =-Sp/M, measures  how well the 
processing power is utilized. Testing results for a 
sequence of {ait} are given in Table  1. 

TABLE 2. STATISTICS FOR THE TWO PERFORMANCE MEASURES 
OF EXAMPLE 1 BASED ON MONTE CARLO SIMULATION 

M M x T Sp o~s Ep (10 -2) (10 -5) (10 -10) 

3 42 1.35 0.293 0.448 3 . 2 5  0 .325  0.044 

3 84 1.37 0.049 0.455 0.551 0.463 0.037 

3 168 1.54 0.074 0.513 0.819 0.638 0.189 

3 336 1.56 0.052 0.519 0.579 0.005 0.193 

7 42 2.21 0.942 0.315 1 . 9 2  0 .854  0.109 

7 84 2.70 0.143 0.385 0.292 1.32 0.431 

7 168 3.12 0.311 0.446 0.635 0.010 0.041 

7 336 3.26 0.118 0.465 0.242 0.178 0.052 

Sp: mean of Sp, o2: variance. 
Ac: final cost accuracy (percentage difference between one- 

and two-level final costs relative to the one-level final cost). 

To further study the performance of the 
algorithm, Monte  Carlo simulation is per formed 
by randomly generating ai, s. Forty runs are tested 
for each case. The statistics of  per formance  
measures are provided in Table 2. 

Note that the objective function of Example  1 
is not everywhere convex. The following 
example has a nonquadratic,  strictly convex 
objective function, and its optimal  solution can 
be specified by the user. 

Example  2. t The system dynamics is the same as 
in Example  1. Stagewise Cost Function is given 
by 

gt(xt, Ut) = exp (a[xt) + exp (b~u,) 

' ( a t x t )  -- b,ut exp - -  a t x  t e x p  ' * ' ' * (btut  ) 

+ c l ( x ,  - x , * ) ' ( x ,  - x ,*)  

+ c2(u, - u*) ' (u t  - u*)  + dr, (5.4) 

t This example and corresponding testing results are 
prepared by Mr Jian Shi. 
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TABLE 3. S T A T I S T I C S  F O R  T H E  

P E R F O R M A N C E  O F  E X A M P L E  2 
B A S E D  O N  MONTE' C A R L O  

S I M U L A T I O N  

M M × T  Sp Ep 

3 42 0.94 0.313 

3 84 1.12 0.373 

3 168 1.17 0.390 

3 336 1.25 0.417 

7 42 2.19 0.313 

7 84 2.19 0.313 

7 168 2.35 0.336 

7 336 2.15 0.307 

where 
d, = - exp  (a~x*)  - exp (b~u*)  

¢ ~ t ,k t '¢r P "Jr (b,x, ). b t u  t exp q" (ltX t e x p  (a tx  t ) -k 

In (5.4), x* and u* are user-designed optimal 
solutions, a t and b, are coefficients, Cl, c 2 > 0  
guarantee the strict convexity of J, and 
dimensions of u~ and xt are four. 

Forty Monte Carlo simulation runs are 
performed, with {at} and {be} being two 
independent, identically distributed random 
sequences whose components are uniformly 
distributed over [-0.03, 0.03]. The values of Cl 
and cz are both 0.0001. The initial state x0 is 0. 
The optimal control u* is set to be - 2  when t is 
a multiple of 5, otherwise u* = 0.5. The optimal 
states are then determined according to the sys- 
tem dynamics. The initial nominal controls are 
arbitrarily picked from the interval [-11,  11]. 
Testing results are given in Table 3. 

The above testing results for both examples 
show that the performance of the two-level 
algorithm improves as the number of stages 
increases. This indicates that the temporal 
decomposition has good potential in tackling 
long horizon problems under a parallel process- 
ing environment. However, we also observe that 
the efficiencies of the 7-processor cases are lower 
than those of the 3-processor cases. Though 
Table 2 shows a trend that the 7-processor case 
could outperform the 3-processor case in the 
efficiency measure, this is not observed in Table 
3. Further investigation on the nature of the 
algorithm and more numerical testings are 
needed to draw specific conclusions on the 
relationship between efficiency and the number 
of processors. 

6. CONCLUSIONS 

In this paper, a new method is presented to 
solve long horizon optimal control problems. Its 

key features include decomposition along the 
time axis, coordination using initial and terminal 
states of subproblems, and parallel processing to 
take advantage of the availability of cost- 
effective parallel processing facilities. The 
two-level approach has nice properties in that 
the global optimum is not changed, and 
furthermore, the high level problem is a convex 
programming problem under appropriate con- 
ditions. A parallel, two-level optimization algo- 
rithm for unconstrained problems is then 
presented. It employs Newton's method at the 
high level and the Differential Dynamic Pro- 
gramming at the low level. The high level 
solution is open-loop in nature, whereas low 
level control is in linear variational feedback 
form. Numerical testing results show that our 
approach is feasible, the two-level algorithm is 
suitable for parallel processing, and its perform- 
ances improve as the time horizon increases. 

Note that although the NM-DDP algorithm is 
designed for unconstrained, convex problems, 
the two-level problem formulation and its 
properties (Sections 2 and 3) are addressed 
based on a larger class of problems. It is 
therefore believed that the ideas of time 
decomposition and coordination is promising in 
tackling many long horizon optimal control 
problems. A successful application of the 
approach depends on the availability of efficient 
two-level algorithms. The Newton-DDP com- 
bination presented here is an example for 
unconstrained, convex problems. The develop- 
ment of efficient algorithms for specific appli- 
cations can be very problem dependent as for 
many other large-scale optimization techniques. 
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APPENDIX A: PROOF OF THEOREM 1 

To show that problems (P) and (P-H) have the same global 
optimum, we shall first examine the original problem (P). In 
(P), an admissible control sequence {ui, i =0  . . . . .  N - 1 }  
generates an admissible state trajectory. The optimization 
can therefore be thought of as being carried out over all 
possible pairs of admissible controls and corresponding state 
trajectories. Let us define the set of admissible state and 
control trajectories XUA as 

XUA ~ ((XN . . . . .  X l '  UN 1 . . . . .  UO) e X N X U N I (2.2) 

holds for (XN . . . . .  U0)}, (A.1) 

then problem (P) is equivalent to the parameter optimization 
problem (P)' defined below 

N - - I  

(P)' min J, with J = gN(XN) + ~ ,  g~(x~, U~). 
(XN,...,uo)eXUA i = 0  

(A.2) 

It is well known that a parameter minimization problem 
can be converted into a two-level minimization problem by 
first minimizing over a subset of the parameters, and then 
minimizing over the remaining parameters. To apply to 
problem (P)', let us first define the set of all admissible state 
trajectories XA as 

XA =- {(XN . . . . .  Xl) I there exists a 

(XN . . . . .  XA, UN--I . . . . .  UO) ¢XUA} .  (A.3) 

Let us also define the set of admissible controls for a given 
admissible state trajectory (XN . . . . .  X 0 as 

Ualx(XN . . . . .  xl)  

( ( U N _  1 . . . . .  UO) I (XN . . . . .  X 1, UN-1 . . . . .  UO) E XUA}.  

(A.4) 

Problem (P)' is then equivalent to the following two-level 
problem (P-H)': 

(P-H)' min min J, 
(XN,...,Xl)~X A (UN-I,...,uo)~UAIx 

N--I 
with J ~ gN(XN) + ~ gi(xi, ul). (A.5) 

i = 0  

In (P-H)', we choose all state variables as high level 
decision variables. If the set (x/r, j = 1 , . . . ,  M} is chosen 
instead, we obtain (P-H) in (2.6) by following the same 
arguments. Note that in this case, the high level decision 
variables {x/r } are to be chosen from the following feasible 
set: 

X n  =- {(X~T, X(M-t)T . . . . .  Xr) [ there exists a 

(XN, XN_ t . . . . .  Xl) e X A } .  (A.6) 

APPENDIX B: DIFFERENTIAL DYNAMIC 
PROGRAMMING WITH FIXED TERMINAL STATES 

Consider a subproblem (P-j): 
iT-1 

Jj(X(i_I)T, XjT ) ~ rain ~ gk(Xk, Uk) (B.1) 
uk k~( j - l )T  

subject to Xk+ 1 = AkX k + BkU k, k = (j  - 1)T, . . . .  j T  - 1, 

and xti_OT and XjT given. (B.2) 

Let {ti k, k = (j - 1)T, . . . .  ]T - 1} be a given set of nominal 
controls, and {-~k, k = (j - 1)T, . . . .  j T }  be the correspond- 
ing state trajectory. By taking the Taylor series expansion of 
the above objective function at the last stage, we formulate 
an approximate linear quadratic problem: 

VjT_I(6XjT_I, 6XjT ) ~ min gjT_I(6XjT_I, 6UjT_I) , (B.3) 
6ujT--1 

with 

=- tSX}T_IC/T_t6XiT_ , + 6U;T_,D/T_tt$XiT_ 1 

+ au;~_~en-_lau/,-_, + ~,-_,ax/~_, + ~/r_,au/~_,. 
(B.4) 

subject to 6x/r =A/r_16x/r_l + B/r_16u/r_l .  (B.5) 

The above approximate problem is a Quadratic Program- 
ming (QP) problem (Avriel, 1976) with linear equality 
constraint, where 6X/T and 6x/r_l  are treated as given terms 
in the problem. The solution of the above QP problem is 
determined by the nature of the equality constraint (B.5). To 
convey main ideas, we assume that BiT_ ~ is invertible to 
simplify the handling of constraints caused by fixed terminal 
state. Analysis for the case where BiT_ ~ is not invertible can 
be found in Chang (1986). When B~-T~_~ exists, there is no 
need for QP. The unique solution is obtained by solving 
(B.5): 

* __ --1 --1 
6UiT- 1 -- B i t  - t 6xjr  - B / r  - 1A/r- 16x/r - 1 

=-- %r-1  + fljr-16XjT-1 + Yjr-16x/r-1,  (B.6) 

where otjr_ l, f l jr-1 and Yjr-1 are called control coefficients. 
Substituting this solution into (B.4), the cost-to-go function 
is then of the following form: 
^ 

V/r- l (GX/r- l ,  6XjT--,) = t~X~r_iP/T_16XiT_ 1 + 6X;T_,QjT_16XiT 
+ ' 6x/rRjr-ltSXiT+ S/T-, 6x / r - ,  + Wit_ ,  6X/T + O/T_ 1 , (e.7) 

where P, Q, R, S, W and 0 are appropriate coefficients. 
For an intermediate stage k, ( j - 1 ) T < - k < _ j T - 2 ,  by 
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applying quadratic approximation to gk, we have 

fZk(6Xk, ~XjT)=--min [~k(6Xk, ~Uk)+ fZk+~(~Xk+l, 6Xir)], 
tSu k 

(B.8) 

subject to 6Xk+ 1 = A , b x  k + BkbU k. (B.9) 

By assuming that lT"k+l(6Xk+ l, 6X/T) is in a quadratic form 
similar to (B.7) and by subsmuting (B.9) into it, an 
unconstrained quadratic optimization problem is obtained: 

Vk( 6Xk, 6xjr) = min [ 6x'kCk6x k + 6u'kDkbX k 
&u k 

+ 6u'kEkt~Uk + Fk(OXjr)6X k + Gk(6Xl~r)bU ~ + 0k+l], (B.10) 

where F and G are affine functions of 6x r. The optimal 
solution again has the following affine form: 

6u~ = o: k + flk6Xk + )'k6XjT, (B.11) 

and 17', turns out to be a quadratic function of 6x k and 6Xjr. 
Performing above steps backwards in time along the 

nominal trajectory, control coefficients ok, /~k and Yk for all 
stages can be found. Since (B.10) is an approximation, a 
successor policy construction step is needed to guarantee that 
the actual cost associated with constructed controls is less 
than the original nominal cost. This step proceeds by letting 

uk(e) = uk + cock + flk(x~ - xk), (B. 12) 
and 

Xk+l=AkXk + Bkuk(¢), k = ( j - 1 ) T ,  . . . .  i T - 1 .  (B.13) 

The initial value of e is one and the corresponding cost is 
evaluated. If the cost is lower than the nominal cost, the new 
policy is used to update the nominal trajectories. Otherwise, 
e is reduced by half till the constructed policy yields a cost 
lower than the nominal. The backward approximation and 
forward policy construction procedure are repeated until 
convergence is achieved. Since V(I_I)T(~X(j_I)T, ~XjT ) is a 
quadratic approximation of the variation of J~  with respect 
to 6x~j_l) r and 6xjr, the gradient and Hessian of the 
low-level optimal cost with respect to 6x<j ~)r and 6xj. r are 
thus readily available at convergence. 


