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Abstract 

An iterative mean value analysis (MVA) algorithm is developed in this paper for a class of queueing networks 
(QNs) with forking (MVAF). The algorithmic development is motivated by the performance evaluation of a 
Multicube multiprocessor system and its cache coherent protocol proposed by Goodman and Woest, 1988. We 
model the system as a multichain, multiclass, mixed QN with forking phenomena. The MVAF algorithm that we 
propose approximates a forking by independent flows at each iteration and iteratively applies MVA to the 
approximate QNs without forking. We prove that MVAF converges to the exact performance measures for the QN 
with forking. Comparisons among performance evaluations by MVAF, simulation and the mean value performance 
analysis by Leutennegger and Vernon, 1988, demonstrate both the validity and effectiveness of MVAF. 

Keywords: Performance evaluation; Multiprocessor; Cache coherence protocol; Queueing network model; Forking; 
Mean value analysis; Fixed-point iteration; Simulation 

1. Introduction 

The design of a high performance multiprocessor system is very complex and requires 
integration of various hardware and software technologies [ll]. Designer’s intuitions and 
experiences alone are not sufficient for designing such a complex system. To achieve a high 
performance/cost ratio system, namely, the competitiveness in the market, mathematical 
modeling for performance prediction and evaluation has become indispensable in the design 
process [ 1,121. 
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Mathematical models for computer systems range from relatively simple ones whose solution 
may be obtained analytically (e.g., product form queueing networks and the Mean Value 
Analysis), to very complex ones that are not analytically tractable and simulation is usually 
adopted to evaluate them (e.g., Timed Stochastic Petri Net) [1,12]. These models may each be 
useful at different stages of design. The former are usually fast in computation and provide 
insights for the first-cut design while the latter are time consuming but generate results closer 
to the reality. 

In the earlier phases of developing a multiprocessor computer system, timeliness of decisions 
and a good grasp of key system characteristics are more important than accuracy of decisions to 
shorten the design cycle and to achieve the success of a design. For this purpose, what design 
engineers need are rapid modeling and performance prediction/evaluation tools that provide 
timely evaluations and help narrow down options for the later design phases. Such needs have 
therefore posed challenges to the development of advanced modeling, analysis and perfor- 
mance evaluation methodologies for designing a large-scale and complex multiprocessor 
computer system. 

There have been many results in the literature on performance evaluation of multiprocessor 
systems with cache coherence protocols. Archibald and Baer presented a simulation model to 
compare various decentralized protocols [3]. A generalized Petri net technique was adopted in 
[lo]. The computational complexity of the technique, however, makes it unsuitable for the 
application to large-scale systems. There are many analytical queueing network models and 
their corresponding approximate mean value analysis (MVA) proposed [8,12,13] for evaluating 
cache coherence protocols for a global-bus multiprocessor system [20]. 

Vernon et al. [14,19] developed a Mean Value Performance Analysis (MVPA). Their analysis 
is founded on system designer’s good understanding of the computer system and their very 
basic skill on probabilistic modeling. Once a model is constructed, the analysis amounts to 
solving nonlinear equations in variables of mean performance measures. This approach has 
been applied to analyzing a Multicube architecture with a cache coherent protocol [8], which is 
more complex than the global-bus multiprocessor described in [10,20]. Though simple and 
intuitive, this approach has some disadvantages in effectiveness for performance evaluation due 
to modelling simplifications. 

In this paper, we also adopt the two-dimensional Multicube architecture proposed in [8] as a 
study system, develop a queueing network-based performance evaluation approach for it, and 
compare our approach with MVPA. The 2-D Multicube architecture employs a snooping cache 
system over a grid of buses. It has a cache coherence protocol to maintain data consistency 
among snooping caches of different processor modules. While providing a view of a single 
shared memory to the programmer, it imposes no notion of geographical locality. The 2-D 
Multicube is therefore regarded as a potentially general purpose multiprocessor which supports 
a wide range of applications. 

A mixed queueing network (QN) model is first constructed for this 2-D Multicube system, 
where processors, buses and shared memories are modeled as servers while data block 
transactions among processors are modeled as the customers. The snooping cache coherence 
protocol determines the routing and class changes of customers in the network. In this QN 
model, there are finite buffers and forking phenomena during data transactions. Among the 
existing numerical algorithms for queueing network performance evaluation, mean value 
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analysis (MVA) algorithm is an exact solution technique for the product form queueing 
networks [12,17]. However, the QN/model of the 2-D Multicube does not have a product form 
due to (1) finite buffers which may causes blocking and (2) the existence of forking phenomena. 

Exploiting problem features, we first assume that the effect of finite buffers to system 
performance can be neglected. We then develop an iterative MVA algorithm for a QN with 
forking (MVAF). In each iteration of the MVAF, a forking is approximated by two indepen- 
dent flows of open class and closed class of customers; the MVA algorithm for multichain, 
multiclass, mixed QNs is then applied to this approximated QN. The MVAF is essentially a 
Jacobi type of algorithm for finding the fixed point of the arrival rates of open-class customers 
in the QN model. We also prove that MVAF is a contraction mapping and converges to a 
unique solution, which is in commensurate with the results of [15]. 

The MVAF algorithm is validated by comparing its performance evaluation results with 
simulation results for the QN models of small scale (2 X 2 and 3 X 3) 2-D Multicube systems. 
Results from MVAF and simulation are very close, e.g., less than 5% difference in the measure 
of mean processor utilization. It seems that the larger the system, the smaller the difference. 
Performance evaluation results by using MVPA on the same sets of problems are similar in 
general trends but tend to be over optimistic, especially under high workload situations. MVAF 
is further applied to performance evaluation of large-scale systems and is compared to MVPA. 
Similar comparison conclusions are obtained except that the magnitude of differences may go 
up to 40%. Such differences are due to the superior modeling and analysis of our QN and 
MVA-based approach. The computation times for MVAF and MVPA are about in the same 
order. Though our approach requires some background on QN, we believe that the techniques 
developed in this paper are not only effective for performance evaluation of the 2-D Multicube 
system but also have a good potential for further extensions and applications. 

The remainder of this paper is organized as follows. Section 2 briefly describes the 
architecture and the cache coherence protocol of the 2-D Multicube. Its mixed queueing 
network model is constructed in Section 3. Section 4 develops the MVAF algorithm with 
convergence analysis given in Section 5. Section 6 then provides some validations of the MVAF 
by simulation. Performance analysis of the 2-D Multicube using both MVAF and MVPA are 
also compared. Conclusions are finally given in Section 7. 

2. A 2-D Multicube architecture and protocol 

In this section, we briefly summarize, for our modeling and performance evaluation purpose, 
the architecture of the 2-D Multicube and its cache-coherent protocol proposed by [8]. 

2.1. System architecture 

The 2-D Multicube architecture employs a snooping cache system over a grid of buses as 
shown in Fig. 1. Each processor is connected to a multi-level cache. The first-level cache, 
referred to as the processor cache, is a high performance cache designed with the traditional 
goal of minimizing memory latency of data accessing by the processor. A second-level cache, 
referred to as the snooping cache, is a large cache with a minimum of 64K DRAM designed to 
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Fig. 1. The Z-D Multicube computer architecture. 

minimize bus traffic between the local and shared memories [7]. Consistency between the two 
cache levels is maintained by using a write-through strategy to assure that the processor cache 
is always a strict subset of the data in the snooping cache. Every data block in the system has a 
copy kept by one of the shared memory modules, which is considered its home memory 
module. The controller of each snooping cache also monitors a row bus and a column bus in 
order to maintain data consistency among snooping caches and shared memories. The intercon- 
nection topology may be viewed as a collection of conventional single-bus multiprocessors 
connected by an orthogonal set of buses which transparently extends the snooping cache 
protocol to higher dimensions. 

2.2. The cache coherence protocol 

The 2-D Multicube architecture allows a cache-coherent protocol for which most bus 
requests can be satisfied with no more than twice the number of bus operations required for a 
single-bus multiprocessor. There are three states of a data block in a memory according to [8]: 
modified, shared and invalid. 

(1) modified: blocks th a were written by a processor, but have not been read or written by t 
any other processors, 

(2) shared: a cache block that does not exist in any cache in state modified, 
(3) invalid: a cache block that has at least one of its copies in the system modified by any 

other processor. 
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Note that if a block is in state modified, no other caches have such a copy. Each snooping 
cache controller maintains a modified block table (MBT) that contains addresses of all cache 
blocks that are in state modified in any one of the caches along the same column as the 
snooping cache. Main memory contains the current values of all shared cache blocks. 

A cache miss happens when the data in the snooping cache can not support the processing of 
the processor in the same module. There are two types of cache misses: a read miss happens 
when a processor only reads the requested data while a write miss occurs when a processor 
intends to modify the requested data. 

Under the cache-coherent protocol, four types of cache block transactions may be initiated 
by a snooping cache controller associated with a cache miss: READ, READ-MOD, 
WRITE-BACK and INVALIDATION, which are described as follows. 

READ transactions 
Suppose that a controller, say controller A in Fig. 1, issues to its row bus a READ request 

for a block not in the caches of processor A. If the requested block is in a shared state, a 
controller located at the intersection of the row bus and the column connecting to the home 
module of the requested block accepts the request, say controller B in this case. If B has the 
requested block in its cache, it sends the data to A; else it requests the column bus and passes 
the request to the home memory (M2). The memory controller of M2 then responds by sending 
the requested data to the requesting controller if the block is in a valid state. Otherwise, the 
memory controller takes no actions. 

If the requested block is in a modified state, then one controller (e.g., Cl located at the 
intersection of the requesting row and the column along which a cache keeps the requested 
block will accept the request after looking into its MBT. Controller C then relays the request to 
its column bus. All controllers on the column delete the block address from their MBT and the 
controller of the snooping cache that has the data block (D) fetches the data, changes its state 
from modified to shared and returns the data to A through the reverse route. Along this 
returning path to A, a controller on its home column (B) will also pick up a copy of the data 
block, and send it to the home memory (M2) with its state changed to “shared”. 

READ_MOD transactions 
A controller, say A, issues a READ-MOD request to its row bus when a write miss occurs. 

If the requested block is “modified”, the transaction procedure is the same as that for the 
READ transaction except that the return path is D-E-A. When controller E forwards the 
block to A in a modified state, all controllers along the same column add the block address to 
their MBTs. 

If the requested block is “shared”, the steps are that after the READ-MOD request is 
forwarded to it home memory (A-B-M2), M2 returns the requested data through its column 
bus and an appropriate row bus to A, and initiates an invalidation transaction concurrently to 
ensure that other copies of the block in the system are purged. After the reception at the 
requesting controller, a column bus operation is performed (by controller A) to update each 
MBT along the same column with the address of the newly acquired data block. 

WRITE -BACK transactions 
A WRITE-BACK transaction occurs during the returning procedure of a READ transac- 

tion for a modified data block. When the required data block is transmitting on the row bus of 
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the requesting controller, the controller at the intersection of the block’s home column and the 
row will also pick up the data, and relay it to its home memory. The data block is then written 
back to the memory and changed to a “shared” state. 

INVALIDATION transactions 
An invalidation request is sent along with the requested data block in its returning path for a 

READ-MOD transaction of a “shared” data block. The invalidation request is broadcasted to 
all controllers by controllers along the returning path so that other copies of the data are 
purged. 

3. A queueing network simulation model 

To evaluate the performance of the 2-D multicube architecture and its protocol, a queueing 
network-based simulation environment is first established. A queueing network consists of 
different classes of customers, servers, buffers, interconnection of servers/buffers and service 
discipline at each server. In modeling the 2-D multicube system, servers correspond to 
hardware resources, buffers correspond to memory storages and customers correspond to data 
block transactions. 

Now consider a processor module, where the processor and its first-level cache are busy with 
processing except when a cache miss occurs at the processor module. In that occasion, the 
processor generates a request for data block transaction which goes through the snooping cache 
controller to the interconnection bus. As uniprogramming is assumed at each processor, the 
processor then holds until the requested data is acquired. So we model the processor and the 
first-level cache as a processor server with no buffer, where the departure of a customer 
corresponds to the generation of a cache miss request and the server stays idle until the 
customer returns. The snooping cache and controller of the processor module not only handle 
transactions from and to their corresponding processor module but also relay transactions 
among other processor modules through buses. We therefore model the controller as a 
snooping cache server and the cache as an infinite buffer associated with it since the snooping 
cache is relatively large. 

A data block transaction may involve the access of a few row and column buses. If a bus is 
being accessed by a transaction and there is another transaction requesting the bus at the same 
time, the requesting transaction waits in its current snooping cache server (i.e., it is blocked) 
until the bus is free. When a transaction accesses a main memory module through its home 
column bus, it ties up both the memory module and the bus. We therefore model a column bus 
and its associated memory module into a coZumn bus server and model a row bus as a row bus 
server, where all bus servers are of no buffer spaces. 

Data transaction requests due to cache misses at a processor are modeled as closed-class 
customers in our QN model. This is based on the fact that a processor server generates one 
transaction request at a time and holds until the request is fulfilled to resume its processing. As 
there are four types of transactions and there are also various routing requirements among 
transactions, we further define classes of customers and the interconnection among servers 
according to the cache coherence protocol. 
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Fig. 2. The mixed queueing network model. 

The class of a customer may be changed upon its departure from a server when there are 
alternative routes, with the lzew class Label specifying the next server to visit and the service type 
to receive. A customer may split into a number of new customers after certain type of services, 
for instance, the broadcasting of invalidation signals due to READ-MOD transactions, 
write-back operations due to READ transactions, etc. A split function is built into the 
corresponding servers. As the customers originated from invalidation and write-back transac- 
tions do not go back to their generation server, sink nodes are created to absorb them after the 
completion of their required services. Such customers are naturally modeled as open-class 
customers and the model for the 2-D Multicube is therefore a mixed queueing network which 
consists of multiple closed classes of customers and open classes of customers as shown in Fig. 
2. 

Figure 3 gives an example illustrating the various paths of a customer generated by a 
processor module in a 2-D Multicube system. Assume that a program (or a task) is being 
executed in processor pll and is modeled as a closed-class customer p. When there happens a 
cache miss, the customer -goes to sell snooping controller server and changes class from p to 
pc. Because we use the probabilistic workload model, each alternative routing is associated with 
a probabilistic distribution. If this cache miss requests a shared block, it broadcasts the 
requested cache block address on the row1 bus and becomes a class sll customer. Suppose that 
the snooping cache controller sc12 detects the request and forwards it to one of the memory 
modules along co12 bus to access the data. The customer class changes from sll to ml1 during 
memory accessing. After accessing, the customer is probabilistically routed to two possible 
routes: one for a READ only request and one for a READ _MOD request. For the latter, the 
invalidation customers are spawned to do the invalidations in sc21 and sc22 and go to the sink 
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Fig. 3. Example of paths for a customer generated by a processor module. 

after the invalidation; the requested block is returned to processor pll following the reverse 
path direction of the request. Other cumbersome details in constructing Fig. 3 are omitted. 

4. Mean value analysis 

As there exist (1) finite buffers and (2) forking phenomena, the QN model developed in 
Section 3 is not a product form QN. Existing mean value analysis (MVA) algorithms [12,17] 
cannot be directly applied to it for a quick performance evaluation. Approximate MVA 
algorithms for queueing networks with finite buffers, are limited to single-chain queueing 
networks [2,6]. Since the snooping cache of each processor module is assumed to be quite large, 
we expect only low to medium bus load due to cache miss. It in turn implies that there may be 
only minor blocking caused by bus and memory contentions at processor and snooping cache 
servers. We therefore neglect the blocking effect and approximate the QN by one with infinite 
buffers. 

The difficulty remains to be overcome is then the forking phenomena. Observe that some 
open-class customers and a closed-class customer are generated after each forking in the QN, 
that all the open classes are generated by forking and that the generation rate of an open class 
depends on the throughput of its associated closed-class customer at the forking server. Such 
observations suggest a variations of the QN model where each open class of customers is 
generated by an external source node (rather than from forking) in an average rate equal to the 
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forking server’s throughput. This variation facilitates the development of an iterative MVA 
algorithm for the QN model with forking. 

The idea is that by first assuming independence between the open-class sources and the 
throughput of the closed-class at a forking server, open-class customers and closed-class 
customers in the approximate QN are decoupled. Under the exponential distribution assump- 
tion, the approximate QN then becomes a multi-chain, multi-class, product-form mixed QN. 
Given a set of open-class arrival rates, we can easily extend the existing MVA algorithms to it 
and compute the throughputs of closed-class customers at all forking servers. The mean arrival 
rates of open-class customers are then updated by the average throughputs of their associated 
closed classes respectively. This procedure iterates until the average rates of open-class arrivals 
converge. 

To formalize the development of the MVA algorithm for the forking QN model (MVAF), let 
us first define some notations. 

Notations: 

4 
J 

K 

N, 
N 

nr 
n 

‘r,j, k 

‘rjk > > * 

‘rjk 

L:,;,k 

Q j 
TX, 
C. 
0 

Ls 
% 
er 
6 

= number of chains in the QN, 
= number of service centers in the QN, 
= number of customer classes in the QN, 
= maximum population of chain r, r = 1,. . . , R,, 
=W,, N,,...,N,J 
= population index of chain r, r = 1,. . . , R,, 
= h,, n,,...JQ, 
= mean number of visits to server j by a class-k customer of chain r, 
= mean service time of a class-k, chain-r customer at server j, 
= inflated mean service time of a closed, class-k, chain-r customer at server j, 
= mean response time of a class-k chain-r customer at server j, 
= arrival rate of an open class-k chainr customer at server j, 
= dummy arrival rate of an open class-k chain-r customer at server j, 
= mean queue size of server j, 
= total throughput of chain Y, 
= the set of closed-class customers, 
= the set of open-class customers, 
= mean utilization of server j, 
= mean utilization of open class customers at server j, 
= a unit vector of dimension R, with the rth element being 1, 
= a convergence threshold. 

As a mixed product form QN is evaluated in each iteration, we extend the existing MVA 
algorithm for mixed QN [12] to our multi-chain and multi-class case. It is quite intuitive that the 
mean utilization of a server by open-class customers is 

q,O = 5 c 'r,j,k x 'r,j,k x 'r,j,k forj=l,...,J. (4.1) 
r=l kE0 
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The mean capacity of a server left for processing closed-class customers is 1 - q,O. So, the 
closed-class customers are equivalently going through a closed QN with an inflated mean 
service time 

c ‘r,j,k 
‘r,j,k = 

1 - q,o 
for r= 1 ,..., R,, j=l,..., Jand kEC. (4.2) 

The mixed QN problem is now reduced to a closed QN problem. 
Three key equations constitute the backbone of MVA for a closed QN, which relate among 

performance measures such as mean queue length, mean response time and throughput of each 
server. 

R,,j,k(n)=T,,j,kX[l+Qj(~-e,)] for r=l,..., R,, j=l,..., J, kEC, P-3) 

Txr = c c'r,j,*"; Rr,j,k(n) ’ 
j k 

(44 

Q,(n) = C ? Txr ’ ‘r,j,k ’ Rr,j,k* 
k=C r=l 

(4.5) 

Equation (4.3) is obtained from the arrival instant distribution theorem [18] and Eqs. (4.4) and 
(4.5) are based on Little’s Law of queueing theory. 

Since the arrival rates of open-class customers should actually be equal to the throughputs of 
their respectively associated closed-class customers at the forking servers, the open-class arrival 
rates are updated for the next iteration by 

h,jk=TX,Xv,j,k > 3 for r=l,..., R,, j=l,..., J,and kE0. 

The complete iterative algorithm is summarized as follows. 

(4.6) 

MVAJT algorithm 
Step 1. 

Step 2. 
MAIN 
for nR 

. . . 

Initialize the mean queue length of servers 
Qj<O> = 0, for j = 1,. . . , J; 
Loop over number of customers 
LOOPS 
= 0 NRC9 ,***, 

or II, = O,.. ., N,; 
step 3. 

Step 4. 

Step 5. 
Step 6. 
Step 7. 

Initialize arrival rates of open-class customers 
hr,j,k = 0, for r = 1,. . . , R,, j = 1,. . . , J, and k E 0. 
Calculate the inflated mean service time of closed-class customers according to 
Eqs. (4.1) and (4.2) 
Calculate mean response times of closed-class customers by using Eq. (4.3) 
Calculate the mean throughput of each chain according to Eq. (4.4) 
Store the newly calculated open-class arrival rates 
Lr,j,k = TX, X v,,~,~; for r = 1,. . . , R,, j = 1,. . . , J, and k E 0. 
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Step 8. Check the convergence 
If I Lr,j,k - hr,j,k I < 6, for r = 1,. . . , R,, j = 1,. . . , J, and k E 0, then the algo- 
rithm converges for population distribution n, go to Step 10. 

Step 9. Update arrival rates of open-class customers 
Ar,j,k = Lr,j,k, for r = 1,. . . , R,, j = 1,. . . , J, and k E 0. 
Go to Step 4. 

Step 10. Compute the queue length of each server 
Qj<n> = Ck E cc:: ,Txr X vr,j,k X Rr,j,k> for j = I,. . . , J. 

End of MAIN LOOPS. 
Step 11. Calculate server utilizations 

u;. = &&TX, x vr,j,k x 7,,j,k, for j = 1,. . . , J. 
Step 12. OUTPUT and STOP. 

Remark. The computational complexity of each iteration from Step 4 to Step 9 is dominated by 
R, X J X K. Since the number of chains, the number of server nodes and the number of classes 
all grow proportionally to the number of processors in the system, i.e., N2, O(N6> is a simple 
estimate of upper bound to the computational complexity of Steps 4-9. 

5. Convergence analysis 

The MVAF algorithm developed in the previous section is essentially a Jacobi type of fixed 
point iteration algorithm. Let mapping Ai represent the algorithm of step i, i = 4,. . . ,9 in the 
MVAF algorithm and define 

A=A,~A,~A,~A,~A,~A,, (5.1) 

where Ai+,oAi(.)~Aj+l(Ai(.)) for i=4,.. .,8. The iterative procedure of MVAF under a 
given population distribution n of closed-class customers can be abstracted as 

A’+‘=A(A’), i=O, 1, 2 ,..., with h”=O, (5.2) 

where A is a vector consisting of all the open-class arrival rates Ar,j,k, for r = 1,. . . , R,., 
j= 1,. . . , J, and k E 0. 

This section shows that MVAF converges to a unique fixed point by proving that A of (5.1) is 
a contraction mapping [4]. 

Definition. A mapping A: [w” -+ Iw” is monotonically decreasing if A(w) <A(u) for any pair of 
u, w E R” with u < W. 

A sufficient condition for a continuously differentiable mapping to be monotonically decreas- 
ing is given in Lemma 1. 

Lemma I. Let [a, ~]ER, a<b, D=[a, bin, xiEDfori=l ,..., n, andX=[x, ,..., ~~1. Aho 
let fi:D + [a, b] for i = 1,. . . , n, fi E C1 and a mapping A:D + D, where A(X) = 

[f&X), . . . , f,(X)]. If dfi(X)/dx, < 0 for 1 I i, j I n and VX E D, then A is monotonically 
decreasing. 
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The proof of Lemma 1 is described in the Appendix. 
The following theorem then gives a set of conditions under which a continuous and 

monotonically decreasing mapping is a contraction mapping with a unique fixed point. 

Theorem 1. Let D c R" be a closed set. A mapping A: D --) D is monotonically decreasing and 
continuous. Suppose A(O) =z and O<A(z) <z. Let H={x]O<x<z} CD, and xi+’ =A(x’) 
with x0 = 0, i = 0,. . . ,m. Then A is a contraction mapping and the sequence {xi} converges to a 
unique x * E H. 

Interested readers may refer to the Appendix for the details of the proof. 
Finally, Theorem 2 concludes the convergence of algorithm A. 

Theorem 2 (Convergence of the MVAF algorithm). Algorithm A as defined in (5.1) for one 
iteration of WAF under a given closed-class population distribution n is a continuously differen- 
tiable contraction mapping that Ai+’ =A(A?, i = 0, 1, 2,. . . , It,. . . , with ho = 0, converges to a 
unique fixed point h* E [O,A,,], where h,, is the vector of maximum arrival rates of open-class 
customers. 

Proof. The mapping A = A, 0 A, 0 A, 0 A, 0 A, 0 A, is continuously differentiable due to the 
facts that Aj E C’, j = 4,. . . , 9 and that a composite mapping of mappings in C’ is also in C’. 
Let Ai,,j,k be a component of A’. Then 

dAi+l d Ai;j;k 
-= 

dAi 
I 1 dAir,,i’,k, ’ 

where r, r’ E (1,. . . , I?,], j, j’ E 11,. . . , J}, k, k’ E 0. By chain rule, we have 

dA, dA, dA, dA, dA, dA, 
---- 

=dA,XdA,XdA,XdA,XdA,X dAir,,jt,k, 

= 
- ‘r,j,kO X X [l + Qj(n - e,>] X 

rr j kx 7r’j’ k0 

;; - q,;;2 

<O, for kOE0 and kEC. 

So, A is monotonically decreasing in [0, A,,] according to Lemma 1. 
Now let A0 = 0 (no open-class customers arriving) and A1 =A,, =A(O). Note that upper 

bounds for throughputs of closed-class customers at each server under a given population 
distribution n can be obtained by assuming no open-class customers in the queueing network, 
which in turn yields upper bounds for A since open-class customer arrival rates should actually 
be equal to their associated closed-class customer throughputs. Let H = [0, Amax]. As A’ =A,_, 
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A is monotonically decreasing in [0, A,,], and A2 =A(h) <A,, =A’, it is clear that A satisfies 
all the conditions in Theorem 1, is a contraction mapping and (A’) converges to a unique fixed 
point A* EH. q 

6. Performance evaluation 

6.1. Validation of WAF 

To validate the MVAF algorithm for performance evaluation of the QN model developed in 
Section 3, a simulation environment is developed for the QN model using the Q’ [16] 
simulation package. In the simulation environment, an N X N system is assumed where a 
modified data block requested by one processor due to a cache miss is possessed by one of the 
other (N2 - 1) processors with a uniform probability distribution and so is a shared block by 
one of the N main memory modules. It is also assumed that row bus and column bus speeds 
are equal, the time unit is one bus cycle, and bus access times are deterministic depending on 
whether the access is an address request or a cache block transfer. Although the bus access 
time of a cache block is determined by both the block size and bus bandwidth, these two 
parameters are reduced to a single parameter, the cache block transfer time in our model. 

Key input parameters of our simulation model are listed as follows: 

t, = mean processing time at a processor, 
ps (p,) = probability that a cache miss request is for a shared (modified) data block, 
P read_mod (Pread) = probability that the cache miss is a write (read) brequest, 
tA,r (tA,J = time for transmitting the block address on a row (column) bus, 
t,,, (to ,> = time for transmitting the data on a row (column) bus, 

t WB,c =‘time for transmitting a data block to the main memory module through a column 
bus, 

= time for transmitting an invalidation signal on a row bus, 
2;,, = main memory latency, 
d cache = cache memory latency, 
N = number of processors per row (or column). 

Baseline parameter values used in our simulation are tA,r = t,,, = 2 cycles, t,,, = 1 cycle, 

tD,, = tD,c = the number of cycles of the quoted cache block size, t,,,, = tD,c, and dcache = d,,, 
= 15 bus cycles. Given a cache miss rate, a memory reference frequency and a bus cycle time, 
the average processing time of a processor server t, can then be calculated as 

t, = l/(bus cycle time x memory reference frequency x cache miss rate). (6.1) 

Mean processor and bus utilizations are the performance measures considered, since the 
design of a parallel computer is desirable to fully exploit the power of its processors. It is 
assumed that each processor is constantly busy processing tasks except when waiting for data 
due to memory latency or communication. The mean processor utilization UP is defined as 

UP = 
mean processing time 

mean waiting time + mean processing time 
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Fig. 4. (a) Mean processor utilization versus mean processing time; (b) Row bus utilization versus mean processing 
time; (c) Column bus utilization versus mean processing time for N = 2 and cache block size = 16 under even load 
distribution. 

Similarly the bus utilization can be defined as 

u, = 
mean data transmission time 

mean data transmission time + mean bus holding time 

where b is a bus index and a bus is held during a memory access. 
The validation is performed on a 2 x 2 and a 3 X 3 2-D Multicube system models with the 

baseline parameters. Both the Q’ simulation and the MVAF algorithm are run on a 
SUN/Spare-IPC workstation. It takes in average 2-3 hours of CPU time for one simulation 
run and less than 0.1 s for getting a MVAF solution. 

61.1. Homogeneous workload scenario 
In this scenario, routing probabilities and the mean processing time distributions are the 

same among processor modules. Figures 4(a)-(c) give the processor utilization, row and column 
bus utilization versus the mean processing time t, in a 2 X 2 Multicube respectively. The 
variation of t, reflects the variation of bus communication load; the shorter the t,, the higher 
the load. Figures 5(a)-(c) are for a 3 X 3 Multicube. Very good agreement between the MVAF 
and simulation results are observed from all these figures, where the maximum relative 
difference that happens in the high load range (short tp> is less than 5% for the 2 X 2 case, and 
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Fig. 5. (a) Mean processor utilization versus mean processing time; (b) Row bus utilization versus mean processing 
time; (c) Column bus utilization versus mean processing time for N = 3 and cache block size = 64 under even load 
distribution. 

there is almost no difference between the two for the 3 X 3 case. Intuitively, blocking occurs 
more significantly at short tp, i.e., high communication load. We therefore conjecture that the 
minor overestimate of utilization at the high load range is caused by the infinite buffer (or 
non-blocking) assumption of MVAF. 

Performance measures obtained by using the Mean Value Performance Analysis (MVPA) 
algorithm of [19] are also plotted in Figs. 4 and 5. It is obvious that the MVPA overestimates 
the utilizations; the shorter the t,, the higher the overestimation; the overestimation is more 
severe in the 3 X 3 case than in the 2 X 2 case. The cause of such difference will be discussed in 
the next subsection. 

6.1.2. Heterogeneous workload scenario 
Inter-cache miss time tp for processor pll in the 2 X 2 2-D multicube system is set 40% 

shorter than that of the other three processors, i.e., pll has a higher cache miss rate. Figures 
@a)-(c) again demonstrate excellent agreements between results of the MVAF algorithm and 
the simulation. The minor differences also occur at the high load range as in (a). The MVPA 
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Fig. 6. (a) Mean processor utilization versus mean processing time; (b) Row bus utilization versus mean processing 
time; (c) Column bus utilization versus mean processing time for N = 2 and cache block size = 16 under uneven load 
distribution. 

algorithm cannot be applied to cases of heterogeneous load and is therefore not compared 
with. 

Simulations of larger scale systems would provide further validations of the MVAF algo- 
rithm. However, the construction of routing path and transaction paths and simulating a 
large-scale system are very time consuming. As we have shown the method of doing so and the 
excellent validation results for small-scale systems, we claim that the validity of the MVAF 
algorithm for evaluating the performance of the QN model of a 2-D Multicube system has been 
preliminary justified. 

6.2. Performance evaluation by WAF 

The MVAF algorithm is now applied to evaluate the performance of large-scale 2-D 
Multicube system. The same set of problems as those of [14] are studied, with parameter values 
adopted in Subsection 6.1 as the baseline parameters. Study issues include the effect of system 
scale, cache miss rate and cache block size on processor and bus utilizations. Results are then 
compared with those obtained by the MVPA algorithm in [14]. 
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Fig. 7. Mean processor utilization for cache block size = 16. 

6.2. I. Processor utilization 
Figures 7 and 8 illustrate how the mean processor utilization is varied with respect to system 

size (N) for the cases of data block size 16 and 64 respectively. Mean processor utilization 
decreases as N increases because for the 2-D Multicube architecture, the number of buses 
increases linearly with N while the number of processor modules and the total system 
workload increase quadratically. The load per processor under which an 8 X 8 Multicube can 
sustain a utilization over 90% is about two times of that for a 32 X 32 system and utilization 
degradation due to scale increase turns out to be graceful. Such an observation holds for both 
MVAF and MVPA results. Although MVAF and MVPA show similar trends in their results, 
MVPA generates much more optimistic utilizations that does MVAF (may be up to 30% 
difference). The difference reduces as data block size grows larger. 

Figure 9 shows that a smaller block size gives a more graceful degradation in mean processor 
utilization. Note that in the one hand, the larger the cache block size, the more communication 

tp( a:M”AF l :t”lw* cElS=64) 

Mean processor utilization for cache block size = 64. 
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time needed in one transmission and the higher probabilities of bus contention for a given 
cache miss rate; on the other hand, due to the property of the locality of reference [ll], the 
cache miss rate may increase if the block size is smaller. There is therefore a trade-off to 
determine the optimal block size for the system. Comparing the processor utilization curves of 
the same system size in Figs. 7 and 8, we also observe that the trend of degradation predicted 
by MVPA is more sensitive to the block size than that predicted by MVAF. 

6.2.2. Bus utilizations 
Bus utilizations with respect to different performance factors are expected to have a reverse 

trend as compared to that of processor utilization because the utilization of buses intuitively 
implies the idleness of some processors. Figures 10(a)-(d) indeed confirm this expectation. In a 
2-D Multicube system with a homogeneous workload, the cache coherent protocol basically 
distribute the bandwidth demands equally to row and column buses with the exceptions of 
invalidation and write back transactions. The amount of invalidation traffic on the row buses 
versus write-back traffic on the column buses determines which type of buses is more heavily 
utilized. 

Figures 10(a)-(d) give the row and column bus utilizations for systems with block sizes of 16 
and 64, respectively. Figures 10(a) and (b) show that for a cache block size of 16, the row bus is 
much more utilized than the column bus when cache miss rate is above one per 1000 cycles. 
Figure 10(c) and (d) show that for a block size of 64, the column bus is now more heavily 
utilized than the row bus. This phenomenon can be explained by the fact that although an 
invalidation request generates concurrent traffic to all row buses, it requires a shorter time on 
each row bus than transmitting a data block on a column bus (i.e., t,, < tws,,). When the block 
size is large enough, the utilization of one column bus due to a write-back request becomes 
higher than the total row bus utilization caused by an invalidation signal. 

Both MVAF and MVPA results reflect the above features, but there are significant 
differences (up to 40% in Fig. 10(b)) of predicted utilizations in the high load range. Such 
differences are mainly due to the difference in modeling. In MVPA, a bus is not concurrently 
held when accessing a memory or a cache module and may serve other requests. In MVAF, a 
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Fig. 10. (a) Row bus utilization for cache block size = 16; (b) Column bus utilization for cache block size = 16; (c) 
Row bus utilization for cache block size = 64; (d) Column bus utilization for cache block size = 64. 

bus is tied up (but considered idle) till the completion of a memory or a cache access. The 
former therefore has a higher utilization than the latter, especially in the high load range. 

7. Conclusions 

In this paper we conducted the performance evaluation of a 2-D Multicube, cache coherent 
multiprocessor architecture. A multiclass, multichain queueing network (QN) model was first 
constructed for the multiprocessor, which had salient features of blocking and forking. Simula- 
tion results showed that the blocking effect was relatively minor and was neglected in our later 
study. To handle a QN with forking phenomena, we developed an iterative mean value analysis 
algorithm (MVAF), which first approximates a forking by the generation of an open-class 
customer and a closed-class customer and the Mean Value Analysis (MVA) is applied to the 
resultant mixed QN. The MVAF then iteratively applies both the approximation and the MVA 
till convergence. We proved that the MVAF is a contraction mapping and converges to the 
solution of the original QN with forking. Comparing the performance evaluation results by 
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MVAF for small-scale multicube multiprocessors to those by simulation, we observed less than 
5% of differences in average processor and bus utilizations and the larger the system, the 
smaller the differences. We also compared MVAF with the mean value performance analysis 
(MVPA) on large-scale 2-D Multicube systems. Results indicated that the two approaches 
required the same order of computation times, generated performance measures of similar 
trends, but the difference in magnitude went up to 40%. Though our approach required some 
knowledge about QN as compared to MVPA, we believe that it is not only superior for 
evaluating the 2-D Multicube multiprocessor, but also has a good potential for further 
extensions and applications. 
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Appendix 

Proof of Lemma 1. Define 6xi = [0, . . . , axi,. . . ,O] and SX = [6x,, . . . , 6.~~1, where 6xi > 0 for 
i=l , . . . , n. Since af,(X)/ax, < 0 for all X E D, 

fj(X+ 6x,) <fj(X) for all X+6xi and XED, (AJ) 

which implies that all the fis are monotonically decreasing in each coordinate. 
Let X0 =X and X, =X + C~=iSxj E D, for k = 1,. . . , n. As a result of (A.l), 

fj(Xk)>fj(Xk+l) for k=O,...,n-1, 

i.e., 

fj(X) >fi(X+ 8X) f or any 6X> 0 such that X+ SXED. 

So, fj< X> is monotonically ‘decreasing, vj. 
It then easily follows that 

tfdn- 7 fn<X>] > [f#+ q, * - .Y fnW+ SW1 
or 

A(X)>A(X+aX) for all aX>Oand X+~XED, 

So A(X) is monotonically decreasing in D. q 

Proof of Theorem 1. We need only show that the mapping 
H, i.e., 

I( A(#+’ ) -A(x’) II < II x’+l -xi 11, i r 0. 

A strictly contracts in the closed set 

(A-2) 
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The existence and uniqueness of the fixed point then follows from Proposition 1.1 of [4, pp. 
182-1831. We now show that (A.21 holds by mathematical induction: 

(1) i=o. s in c e x0 = 0 E H, x1 =t E H, 0 <A(z) <z and x2 =A(z) E H by assumption, 

IIA(x’)-A(x0)lI = IIA(z)-zll < Ilz-011 = ()x1-x011. 
(2) i = 1. As 0 = ’ x < x2 <x1 and A is monotonically decreasing, 

A(.$) =x2 <A(X2) =x3 <A(xO) =x1 =z, 

So, x3 E H and ]I &x2> -A(x’) (1 = II x3 -x2 II < II x2 -x1 II. 
(3) Assume that (A.2) holds for 1 I i I n, 

O<X’-~IX’<X’-~<Z if i isodd, 
0 <x’-~ In’<?-l <z if i is even. 

(4) i = n + 1. From (A.3) and the monotonically decreasing property of A, 

0 <A(x”-~) =Y-l <A(x”) =xn+’ <A(x”-‘) =x” <z if it is odd, 

0 <A(n”-l) = xn <A(x”) =xnil <A(x”-~) =xnpl <z if II is even, 

i.e., 

0 <x(n+l)-l <y+1 <x(n+w2 <z if it + 1 is odd, 
0 <X(n+1)-2 <X”+l <x(n+l)-r <z if n+l iseven. 

For both (A.4a) and (A.4b), we have x”+l E H and 

)I A(x”) 74(x”-‘) ]I = ]I X”+l -xXn (I < II x” -xn-I II. 

(fw 

(A.4a) 

(A.4b) 

By mathematical induction, we conclude from (1) through (4), that (A.2) holds for all k 2 1, 
strictly contradicts on H and has a unique fixed point. 
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