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Motivated by foundry service provisioning in the semiconductor industry, this
paper adopts a reverse auction-based mechanism to model job order assignment
from a job owner (auctioneers) to a few qualified and competing foundry fabs
(bidders). A job order owner announces job requirements and payments for fabs
to bid on while qualified fabs bid on a job by offering the discount to payment
and processing schedule of the job. This model aims at capturing the non-
cooperative gaming among the job owner and the fabs because of the private
information such as objectives, valuation of jobs, available capacity and
constraints. Two integer-programming formulations are formulated for the
reverse auction of job assignment; one is deterministic and models a common
practice of mean value-based bidder decision-making while the other is stochastic
and captures bidders’ consideration of uncertainties and the associated risk in
decision-making. A Lagrange relaxation-based, near-optimal scheduling method
is developed to model a bidder’s selection of job-to-bid and schedule for the
deterministic formulation. The bidder’s job selection and scheduling model for
the stochastic formulation combines simulation and simple heuristics. A bidder
decides the discount offer for each job-to-bid by a simple fixed-increment scheme.
The auctioneer simply assigns the job to the bid with the highest discount offer
in each round of bidding. Analyses show that the reverse auction model leads
to an equilibrium solution, where no single bidder would unilaterally deviate from
the auction result. Numerical study by using the reverse auction model
demonstrates that consideration of uncertainties in bidders’ decisions has a
larger impact on performance of both bidders and the auctioneer than optimality
of the mean value-based bidder scheduling algorithm.

Keywords: Foundry manufacturing; Reverse auction; Modelling; Assignment;
Scheduling; Lagrange relaxation

1. Introduction

Foundry service is a significant part of contract manufacturing in the semiconductor
supply chain (Su et al. 2005). The revenue of foundry business has seen a fast growth
in the past decade and is now approximately 20% of the semiconductor wafer
fabrication. On the one hand, fabless design houses of integrated circuits generate
various job orders and compete for the capacity of qualified foundry service
providers. On the other hand, foundry fabs/companies compete to get the job orders
by providing low-cost and timely manufacturing services. To match customers’ needs
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with chip fabrication processes, foundry brokers have recently emerged that forge
alliances with foundry fabs and serves as a ‘value-added broker’ (Clarke 2004).
Fabs within a foundry company may also compete internally for job orders from
the central planning.

In a competitive foundry service environment, non-cooperative gaming
phenomena naturally exist among all the decision-makers (DMs), i.e. job owners
and fabs. Individual DMs have different domains of management and control,
various objectives, and private information such as ones’ own valuation of jobs,
actual capacity and operational constraints. How the job orders are assigned or
scheduled to be manufactured by which qualified fabs at what cost must be done
via a distributed decision mechanism with significant gaming considerations. It is
therefore very challenging to model and design the job assignment/scheduling
mechanism for semiconductor supply chain management.

Models for job assignment and scheduling have a long history in supply-chain
management (Fan et al. 2003, Luh et al. 2003). However, most of the earlier articles
in the literature have been on centrally managed supply chains. There has been
a growing literature that examines decentralized chains, usually with information
asymmetry. A great deal of attention has been paid to the auction-based job
scheduling or assignment (Bertsekas 1990, Dewan and Joshi 2002, Luh et al. 2003,
Sarne et al. 2004, Srivinas et al. 2004). There are a few salient features in an auction
market. First, the value of the merchandise is not obvious and not the same to DMs.
Second, the buyers are independent and seek their own profits. Third, they also have
their own private information such as budget constraints and the valuations of
merchandises. Most of recent research considered an auction market with one
auctioneer and several bidders. In each round of bidding, the bidders send job ‘bids’
to the auctioneer and the auctioneer then temporarily assigns each job to the bidder
who offers the highest bid on the job. The highest bid on each job serves as the
starting bid for the job in the next round of bidding. The auction repeats round by
round until no new bids are offered and the final assignment is determined. Except
the job information of processing and delivery requirements and bidding information
of price, starting date and delivery date, there is no need for DMs to know the
objective functions and private information amongst each other.

In the literature, there have been extensive surveys of auction mechanisms
(Milgrom and Weber 1982, de Vries and Vohray 2003). Bertsekas (1990) designed an
auction algorithm to solve various assignment and network optimization problems.
The emphasis was on exploiting the parallelism of an auction-based scheme instead
of the gaming aspect. Kutanoglu and Wu (1999) studied a distributed scheduling
framework by exploiting Lagrangian relaxation-based decomposition and coordina-
tion. The basic idea is to localize and distribute the functionality of operational
scheduling decisions. Each DM has a local problem to maximize his/her expected
total reward subject to local constraints. The result can then be communicated to the
coordination mechanism as a ‘bid’. The coordination mechanism or an ‘auctioneer’
is a bid processor that makes resource allocation based on an iterative auction
process using the bid information.

In the context of contract manufacturing, Karabuk and Wu (2002) examined
issues of a decentralized coordination scheme between capacity reservation by
marketing managers and capacity allocation to competing marketing managers by
manufacturing managers. The authors compared the gap between centralized and
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decentralized allocation models, evaluated the price of decentralization and
proposed an information exchange principle. Karabuk and Wu (2005) further
modelled a semiconductor capacity-allocation problem in a game-theoretic setting
and designed an incentive scheme through bonus payments and participation charges
that elicit private demand information. They showed that their mechanism achieves
budget-balance and voluntary participation requirements simultaneously. Their
results provide important insights into the treatment of misaligned incentives.

In deregulated electricity markets, where electricity supplies cannot be specifically
assigned to load demands, the market clearing price (MCP) auction mechanism
has been a common practice (Hao 2000, Hogan 2005). Under the MCP auction
mechanism, market participants submit supply offers and demand bids for energy
and ancillary services to an independent system operator (ISO). The ISO then runs
auctions for energy and ancillary services to minimize the total payment and
determine the MCPs for each product. To determine MCP price and supply offers in
a sealed-bid pay-at-MCP problem, which is characterized by non-separability in the
objective function and discontinuity in offer curves, Luh et al. (2006) combined the
augmented Lagrangian relaxation approach with an advanced surrogate optimiza-
tion framework into an effective solution method.

This paper addresses the modelling of job order assignment from a job owner to
a few qualified and highly competitive foundry fabs. The foundry service provision
conditions of one-buyer (job owner) and multiple-sellers (foundry fabs) structure,
competitiveness among foundry fabs for orders from design houses, and clear
specifications of foundry service required by each job make a reverse auction-based
mechanism (de Vries and Vohray 2003, Fan et al. 2003) favourable for modelling the
job competition and assignment decisions (Ghawi and Schneider 2004). A job order
owner announces job requirements and payments for fabs to bid on while qualified
fabs bid on a job by offering the discount to payment and the processing schedule of
the job. This model aims at capturing the non-cooperative gaming among the job
owner and the fabs because of the private information such as objectives, valuation
of jobs, available capacity and constraints. Two integer-programming formulations
are formulated to represent two types of bidders’ logistic decision capability; one is
deterministic and models a common practice of mean value-based decision-making,
while the other is stochastic and captures the consideration of uncertainties and the
associated risk in decision-making.

In addition to mathematical problem formulations, this paper develops the
corresponding decision algorithms for individual DMs as part of the model. Given
the bid information from the auctioneer, a bidder’s selection of job-to-bid and
scheduling for the deterministic formulation are based on a near-optimal approach
of Lagrange relaxation (Hoitomt et al. 1993, Tang et al. 2002). The bidder’s job
selection and scheduling model for the stochastic formulation combines simulation
and simple heuristics. A bidder then decides the discount offer for each job-to-bid by
a simple fixed-increment scheme. The auctioneer simply assigns a job to the bid with
the highest discount offer in each round of bidding.

Properties of the reverse auction model such as the existence of an equilibrium
and convergence in finite rounds are analysed. The reverse auction model is then
used to assess the effects of problem formulation and scheduling algorithm. The
study compares job assignments obtained by using three different combinations of
formulation and scheduling algorithm: LR-based algorithm for the deterministic
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formulation (D-LR), simulation and heuristic-based scheduling algorithm for the
deterministic formulation (D-SH), and simulation and heuristic-based scheduling
algorithm for the stochastic formulation (S-SH). Numerical experiments with the
three combinations demonstrate that S-SH leads to lower discount offers and higher
bidder profits than the other two. Such results imply that consideration of
uncertainties in bidder’s decision has a larger impact on performance of both
bidders and the auctioneer than optimality of the mean value-based scheduling
algorithm that a bidder adopts.

The remainder of the paper is organized as follows. Section 2 first gives an integer
programming problem formulation of the reverse auction problem. There are two
formulations for bidder’s problem: deterministic and stochastic. Section 3 then
develops the complete and iterative solution algorithms, which include (1) a
Lagrange relaxation-based and a simulation and heuristic-based scheduling
algorithms for bidder job selection and scheduling, (2) a simple fixed
increment scheme for bidder discount offering and (3) the best-bid job assignment
by the auctioneer. Section 4 then presents solution analysis and numerical studies
of the reverse auction model. Finally, section 5 concludes the paper.

2. Problem formulation

Consider a foundry service environment of semiconductor manufacturing, where
there is a job provider who offers a set of jobs and calls for bids from a few fabs to
process the jobs. This paper assumes a simplified problem, where each job has only
one operation and requires a certain processing time of a unit capacity from a
foundry service provider. The job processing is non-preemptive; that is, once a job is
started, no interruptions are allowed until completion. Therefore, a job can only be
assigned to one fab at a time and there are no inter-fab transfers or backups. Each
job has a time window for processing between its target release date and due date.
If a job is planned to start before the target release date or to be delivered after the
due date, there will be a penalty incurred on the foundry service provider.
Assume that jobs under consideration are already available for processing.

The job provider out-sources the job processing to qualified fabs and sets for the
processing of each job a maximum payment. The fabs are competitive to each other.
Each fab has its own private information such as the actual capacity, the job
processing cost, the valuation of getting a job and its objective function. Without
knowing such private information of fabs, the job provider cannot perform
centralized job scheduling; the scheduling has to be decentralized.

As the foundry service provision conditions of one job owner and multiple fabs,
competition among fabs, and clear specifications of job requirements make reverse
auctions favourable for modelling job competition and assignment (Ghawi and
Schneider 2004), in this paper, we consider a reverse auction-based mechanism
(de Vries and Vohray 2003, Fan et al. 2003). The objective of the job provider
(auctioneer) is to minimize its payment cost of completing all the jobs in hand plus
the penalty cost of unassigned jobs, if any. By distributing job information to all the
qualified fabs (bidders), the job provider solicits individual fabs to bid on the jobs,
where a bid on a job specifies the beginning time, the completion time and the
discount from the maximum payment for processing the job. In each round of
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bidding, the job provider first selects the fab that offers the highest discount of each
job as the temporary assignment of the job. The initial discounts are zero for all jobs.

Given the temporary discounts on assignments of jobs, a fab then evaluates and
schedules to determine whether to offer new bids on various jobs. The new discount
offer for a job must be higher than its current value. The objective of a fab is to
maximize the payment it may receive from processing the jobs minus the earliness/
tardiness penalty for each job not processed within the desired time window of the
job. Note that the earliness/tardiness penalty of a job is fully compensated by the job
winning fab. After the job provider collects the bids from all the fabs, one round of
bidding ends. Such a procedure repeats round by round until no new bids from any
fabs. The flowchart of a reverse auction is in figure 1, which provides a solution
framework to the non-cooperative game among the job provider and fabs.

2.1 Auctioneer’s decision problem

The objective of the auctioneer is to have the jobs completed on time at as low a cost
as possible. Since the auctioneer does not have the private information of individual

Each bidder schedules and determines bid
offers on jobs based on the bidder’s
objective function and constraints and
sends offers to the auctioneer.

Start

Auctioneer announces all the job
information to bidders

Auctioneer checks if
there are new offers

Bidding Ends

Auctioneer evaluates offers, makes
temporary job assignments, and announces
the temporarily winning offers of individual
jobs to all bidders

No Yes

Figure 1. Flowchart of a reverse auction.
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bidders, the auctioneer assigns a job to a fab based on bidders’ bids. Let us first

define some notations in table 1.
Define the auctioneer’s assignment decision variable as:

Xik ¼
1, if job i is assigned to bidder k;
0, otherwise;

8 i, k

�
; ð1Þ

and a bid indicator variable based on bidders’ bids as:

�Bik ¼
1, if bidder k bids on job i;
0, otherwise;

8 i, k

�
; ð2Þ

where both types of variables are integral variables. A job can be assigned to at most

one bidder. i.e.:

Single assignment constraint X
k

Xik � 1, 8i, ð3Þ

and a job can be assigned to a bidder only when the bidder bids on the job, i.e.:

Bid-based assignment constraint:

Xik � �Bik, 8 i, k: ð4Þ

The payment discount of a job is the discount offered by the bidder assigned to

the job:

Job payment discount equation

�i ¼
X
k

Xik�
0
ik 8 i: ð5Þ

The objective function consists of the payment cost of completing all the jobs in

hand plus the penalty cost of unassigned jobs. Combined with the constraints above,

the auctioneer’s decision problem (ADP) is:

ðADPÞMinimize
fX

ik
g

X
i

X
k

Xikðvi � �iÞ þ
X
i

1�
X
k

Xik

 !
fi ð6Þ

Subject to constraints (1) to (5).

Table 1. Notations.

i: Job index, i¼ 1, . . . ,N t: Time slot index, t¼ 1, . . . ,T,
where T is the time horizon

under consideration

k: service provider (fab)
index, k¼ 1, . . . ,M

�i: Maximum payment to
processing job i

fi: Penalty on job i if i
is not assigned

�0ik: Offered discount of
job i by fab k

�i: Discount for job i ESi: Earliest starting date ri: Earliness penalty of job i

di: Tardiness penalty of job i Ri: Release date of job i Di: Due date of job i

� i: Minimum tardiness
penalty

�ik: Operation cost of fab k for
processing job i

pik: Processing time of
job i by fab k
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2.2 Bidder’s Decision Problem

When bidders receive the job and bid information, they must decide which jobs
to bid on at what discount offer, when to begin and complete processing. Bidders
compete for jobs by offering discounts to the payment of job processing; the higher
the discount, the lower the job processing cost to the auctioneer but the lower profit
margin to the bidder. Once a bidder is assigned a job, the bidder is responsible for
delivery within the desired time window and has to take the penalty for earliness or
tardiness in delivery by contract. A bidder’s objective is to maximize the bidder’s
profit, which equals to the payments from processing the winning jobs minus
earliness/tardiness penalties if any.

2.2.1 Deterministic formulation. In this formulation, a bidder uses the mean
processing time to schedule jobs and determine bids. Define the decision variables
of a bidder k as

Bikt �
1, if bidder k will start processing job i at time t;
0, otherwise;

�
8k, t: ð7Þ

Let {Ckt, 8t} be the capacity over time, which is private information of bidder k.
Assume that a fab bids within its capacity, which means the number of jobs bid does
not exceed the capacity at any time. A bidder bids on a job at most once.

Capacity constraint:

X
i

Xt
t�pikþ1

Bikt � Ckt, 8 k, t, ð8Þ

where pik ¼ E ½pik�, 8 i, k:

At most one beginning time per job constraint:X
t

Bikt � 1, 8 i: ð9Þ

In order to be accepted by the auctioneer, a new discount offer on a job must be
higher than the currently announced discount for the job.

Increasing offer constraint:

�0ik > �i, 8 i: ð10Þ

As a job i is not available before its earliest starting date ESi, the bid on a job cannot
go before the available time of the job. So,

Earliest starting time constraint:X
i

Bikt � ESi � t, 8 t: ð11Þ

In our problem, we assume that the earliest starting date is one for all the jobs.
The objective function of a bidder consists of two terms. The first is from

processing a job and equals the maximum payment minus the offered discount and
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the cost of job processing. The second term corresponds to the earliness and
tardiness penalty as shown in figure 2 (Yu et al. 2005). Note that there is a jump in
the tardiness penalty once the delivery is late. A deterministic formulation of bidder’s
decision problem (BDP/D) is then:

ðBDP=DkÞ k ¼ 1, . . . ,K

max
Bikt,�

0
ik

fUkðBikt, �
0
ikÞ �

X
t

X
i

Biktðvi � �0ik � �ikÞ
� �

�
X
t

X
i

Bikt½ri maxð0,Ri � tÞ þ di maxð0,ðtþ �pik �DiÞÞ
2

þ �iStepðtþ �pik �DiÞ�g ð12Þ

Subject to (2) and (7)–(11).

2.2.2 Stochastic formulation. This formulation assumes prudent bidders, who take
into account the uncertainties of processing time and the risk incurred by the
uncertainties. Decision variables of a bidder, say k, are still {Bikt, 8i,t} as defined in
equation (7) and bidder k’s capacity over time, {Ckt, 8t}, is private information to the
bidder. Instead of using the expected processing time for scheduling, a bidder
schedules with risk consideration of individual jobs under job processing time
uncertainty. A bidder’s decision problem is then:

ðBDP=SkÞ k ¼ 1, . . . ,K

max
Bikt, �

0
ik

fUkðBikt, �
0
ikÞ � E

X
t

X
i

Biktðvi � �0ik � �ikÞ
� �(

�
X
t

X
i

Bikt ri maxð0,Ri � tÞ þ di maxð0, ðtþ pik �DiÞÞ
2

�
þ�iStepðtþ pik �DiÞ�

�o
ð13Þ

subject to (9)–(11) and

X
i

Xt
t�pikþ1

Bikt � Ckt, 8 k, t, ð8aÞ

where random job processing times are considered instead of the mean processing
times as in equation (8).

Figure 2. Penalty function of a job.
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Note that in (BDP/Dk) or (BDP/Sk), if the solution has
P

t Bikt ¼ 1, then fab k
bids on job i, i.e. �Bik ¼ 1 in equation (2) of ADP. In the problem formulation above,
bidders’ problems (BDP/Dk) and (BDP/Sk) are much more complicated than the
auctioneer’s problem (ADP) because of the complexity of fab operations. Bidders’
job-to-bid selection and scheduling require intensive decision power and would
significantly affect the auction results.

3. Solution methodology

In both deterministic and stochastic formulations of BDP, a bidder’s bid makes two
types of decision: job-scheduling and discount-offering. This section takes a two-
stage approach to develop a solution method for each problem. In the approach, a
bidder first decides which jobs to bid on by solving BDP for the scheduling decisions
based on the currently announced discounts, {�i}, of individual jobs. A bidder would
schedule as many profitable jobs as possible based on the trade off between the
potential gain {�i� �i� �ik} and the earliness/tardiness penalty cost. The bidder then
decides the discount offer for each job to bid on.

Once individual bidders’ bids are available, the auctioneer’s bid selection and job
assignment are quite straightforward by following the highest bid assignment and
one assignment per job rules. The auctioneer’s solution algorithm is independent of
the solution algorithm for BDP. Specific solution methods for (BDP/D), (BDP/S)
and (ADP) are now described as follows.

3.1 Lagrangian relaxation (LR)-based scheduling algorithm for (BDP/D)

We adopt a Lagrangian relaxation (LR)-based job shop scheduling approach
developed by Hoitomt et al. (1993) to solve the scheduling problem of a bidder k.
By relaxing the capacity constraint, Hoitomt et al. (1993) decomposed the original
problem into simple and independent list scheduling sub-problems among jobs.
To coordinate among subproblem solutions, Hoitomt et al. (1993) adopted a
subgradient method to adjust the relaxation multipliers. This approach generates
both a dual solution and a primal solution, where the dual solution serves as a lower
bound on cost function value. The relative difference in cost function values between
the primal and the dual solutions then gives an indicator of how close the primal
solution is to the optimum. Hoitomt et al. (1993) demonstrated that their LR-based
scheduling algorithm efficiently achieves near-optimal solutions for small to medium
job shop scheduling problems and Liao et al. (1996) and Hwang and Chang (2003)
successfully designed LR-based scheduling algorithms for fab production scheduling.

Let us define a few more notations and omit the bidder index k in the remainder
of this section for the conciseness of presentation.

Notations

bi: beginning time of job i under the condition thatP
t Bit ¼ 1, i.e. the bidder selects job i to bid on, and

therefore bi �
P

t t � Bit;
ci: completion (delivery) time of a selected job i, where

ci¼ biþ �pik;
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ERi�max(0,Di�Ci), the earliness of delivering job i; and
TNi�max(0, ci�Di) the tardiness of delivering job i.

Observe that the coupling among jobs in (BDP/D) is through the capacity

constraint (inequality (8)). We apply Lagrange relaxation and associate a

Lagrange multiplier �t with the capacity constraint of time t to form a Lagrangian

as follows:

L �
X
t

Bit

(
�
X
i

vi � �0i � �i
� �

þ
X
i

ri � ERi þ di � TN
2
i þ �iStepðTNiÞ

� �( )

þ
X
t

�t

 X
i

Xt
t�piþ1

Bit � Ct

!)
:

A bidder’s BDP-S problem can then be decomposed into individual job

scheduling problems and form a dual problem.

ðJSPiÞ i ¼ 1, . . . , I:

L�i f�tgð Þ � min
fBitg

Li f�tg,fBitgð Þ

subject to (7), (9), (10) and (11) with {�t} given and

Li f�tg,fBitgð Þ

�
X
t

Bit � ðri � ERi þ di � TN
2
i þ �iStepðTNiÞÞ � ðvi � �0i � �iÞ

� �
þ �t

Xt
t�piþ1

Bit

8<
:

9=
;,

and the dual problem is

ðDÞ max
f�tg�0

L � �
X
t

Ct�t þ
X
i

L�i ðf�tgÞ:

The solution method of the dual problem then follows that of (Zhao et al. 1999)

as sketched in the following descriptions.

1. Initialize �t¼ 0, 8t, and set an iteration counter n¼ 0. Solve (JSPi) i¼ 1, . . . , I,

by searching through the admissible values of Bit, where there is at most one

time t when Bit¼ 1. The optimal beginning time decision fB�it, 8tg of job i is

the one yielding the lowest value of Li The computational complexity of this

search procedure is linear with respect to the number of time slots T. Note

that the earliest starting date constraint can be easily accommodated by

requiring the non-zero Bit to lie between the earliest starting date of job i

and T� piþ 1.
2. Once {fB�it, 8tg, i¼ 1, . . . , I} is obtained, the Lagrange multipliers � � f�t,8tg

are then updated according to a sub-gradient method for solving the dual

problem (D),

�nþ1 ¼ �n þ �ngð�nÞ,
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where g(�) is the sub-gradient of L with respect to the Lagrange multipliers �
and the step size �n at the nth iteration is calculated by

�n ¼ �
�L� Ln

gð�nÞ
Tgð�nÞ

, 05�52,

where �L is an estimation of the optimal solution, and Ln is the value of L
at the nth iteration.

Although Zhao et al. (1999) proved that this method converges to the dual

optimal, there is no guarantee of feasibility, i.e. some capacity constraints may be

violated in the dual solution. The value of the dual problem L* is a lower bound

of the minimum, J*, of the primal problem (BDP/D).
To construct a feasible schedule from the optimal dual solution, a greedy

heuristic is adopted. The feasibility adjustment is done sequentially over time. If

the capacity constraint is violated at time t, the heuristic calculates, for jobs with

beginning time at time t, the individual weighted tardiness penalties if their beginning

time is delayed to time tþ 1. The heuristic then assigns jobs to the available capacity

of time t in the descending order of their tardiness penalties. The remaining jobs are

delayed by one time unit and are considered together with those jobs originally

scheduled to start at time tþ 1. Such a procedure repeats over the whole time horizon

and leads to a feasible schedule. Once a feasible solution is obtained, the

corresponding value of the objective function J is an upper bound of J*.
Note that a job may not be profitable after the feasibility adjustment of

the schedule. Once a feasible schedule is obtained, the bidder keeps only

profitable jobs as the jobs-to-bid. Let the set of jobs-to-bid by the bidder be

SB � fij
P

t Bit ¼ 1,i ¼ 1, . . . , I g: The discount offer of each job-to-bid must increase

from one round to the next. We assume a least quantum increase, ", uniformly

across all the jobs and bidders. So a bidder will offer a new discount for a job-to-bid

i by

�0i ¼
�i þ ", if i 2 SB;
0, otherwise:

�
:

3.2 Simulation and heuristic-based scheduling algorithm for (BDP/S)

Each (BDP/Sk) problem is a challenging problem of stochastic dynamic optimiza-

tion. To mimic industrial applications of simulation and heuristics, simple heuristics

with job schedule evaluation by simulation are adopted in the bidder’s scheduling

algorithm. The algorithm is sketched as follows.

Algorithm sketch

Step 1: Consider all the jobs that are unassigned and have �i� �i� �ik40.

Sequence these jobs in a descending order of their �i� �i� �ik values. Let the ordered
job set be S0 and the iteration index i¼ 0.

Step 2: Set S¼Si. Schedule the jobs in S one-by-one according to the sequence.

Each job is started at the earliest possible time, i.e. the completion time of the

previous job. A simple and single run simulation then determines the profit value and
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the completion time of the job being considered. If the profit is positive, the job stays
in S; otherwise, the job is deleted from S. Collect the final S into the sequence set �.

Step 3: Exchange the sequence between a pair of adjacent jobs in Si and set it
as Siþ1. Set i iþ 1. Go to step 2. The iteration repeats till all the two-exchanges of
S0 are evaluated.

Step 4: Perform Monte-Carlo simulation to evaluate each of the job sequence S

in �. In each replication, the jobs in S are scheduled one-by-one according to the
sequence in the same way as in Step 2. Among all the job sequences in � select the
sequence with the highest expected profit as the final sequence. Let it be S*.

Step 5: Sequentially determine the beginning and completion times, i.e. scheduling,
of jobs in S* according to (13).

3.3 Auctioneer’s simple assignment algorithm

The solution algorithm to (ADP) is simple. Let f�0ik,8ig be the discount offers made
by bidder k. The auctioneer makes a new but temporary job assignment by

Xik ¼
1, if k 2 argmaxf�ik0 , 8k

0g and i 2 SB
k ;

0, otherwise;

�
8 i, k:

If the assignment of the previous round belongs to the solution set of this round, the
auction terminates. If not, further rounds are needed. When there is a tie in discount
offers among bidders for an object, a random selection is used to break the tie.
The discount offers {�i, 8i} are then updated based on the offers of the assigned
bidders, i.e.

�i ¼ �ik, where Xik ¼ 1, 8i:

4. Performance analysis and evaluation

Now investigate the properties of the reverse auction algorithm. First let us analyse,
in the deterministic problem context, if the auction terminates in finite steps and the
property of the solution. Then let us conduct numerical study to investigate how
bidders’ use of information and scheduling algorithms may affect job assignments
via the reverse auction.

4.1 Convergence analysis

To examine the termination of the algorithm, let us consider the profit of bidder k
by bidding on job i

pfik ¼ vi � �0ik � �ik � ½ri maxð0,Ri � tÞ þ di maxð0,ðtþ �pik �DiÞÞ
2

þ �iStepðtþ �pik �DiÞ�:

Bidder k would not bid on job i if pfik50. When pfik� 0 and bidder k can finish
job i within the time window, there will be no penalties. Then the maximum discount
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�0ik that bidder k may offer for job i is �0ik � vi � �ik. Note that there is a minimum
increment of discount offer, "40, for each round of bid. Let Nik be the number of
increments that bidder k can make on job i. Then Nik� (�i� �ik)/".

With such an upper bound, a bidder can not bid on a job for
infinite times. Whenever no bidder offers new bids, the auctioneer will end the
auction. Thus the auction will be ended in finite rounds as stated in the following
theorem:

Theorem 1: The reverse auction solution algorithm described in section 3 terminates
in finite rounds.

As the reverse auction is essentially a non-cooperative game problem, let us consider
a game theoretic definition of an equilibrium solution to the problem.

Definition: equilibrium solution
A solution to the reverse auction problem is an equilibrium solution if and only if

no single bidder can benefit from unilaterally changing the bidder’s decision given
other bidders’ decisions.

It is easy to see that when the reverse auction terminates, no bidders would
change their bids under the terminating assignments and discount offers. Otherwise,
there would have been new bids and the auction would not have terminated. So, we
have the following conclusion:

Theorem 2: The reverse auction-based algorithm leads to an equilibrium solution.

4.2 Optimality of bidder’s LR-based scheduling algorithm

This numerical study illustrates, via two simple test cases, that the LR-based solution
algorithm described in section 3.1 achieves near-optimal job-to-bid selection and
schedule under different loading intensity. Let LD be the cost of dual solution to (D)
and J be the cost of the solution to the primal problem (BDP/D) obtained from
feasibility adjustment of the dual solution. Note that LD

� J. The optimality metric
chosen is duality gap � ðJ� LDÞ=jJj � 0; the smaller the gap, the closer the solution
to the optimum.

1. Medium load case

The loading intensity is 46.66% of the capacity in this case. Input data and
results are given in Appendix A. How the duality gap varies as the LR
iteration is shown in figure 3. Since the duality gap approaches zero, an
optimal solution is achieved in this case.

2. Overload case

Its loading intensity is 113.33% of the capacity in this case. The scheduling
is expected to be difficult and the dual solution will have many capacity
constraint violations. Input data, output data and resultant job sequence are
given in Appendix B. Figure 4 shows that the duality gap evolves with respect
to the LR iteration to 1.89%.

These preliminary results indicate that our LR solution method leads to near-
optimum solutions.
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4.3 Effects of formulation and algorithm on bidder’s schedule

In the proposed reverse auction, bidders’ decisions (BDP) obviously require intensive
decision power because of the complexity of fab operations and significantly
affect the auction results. The problem formulation and the scheduling algorithm
adopted by a bidder reflect the logistic decision capability of the bidder. To assess
how individual bidders’ logistic decision capability may affect the auction results,
this study compares bidder’s schedules obtained by using three different combina-
tions of formulation and scheduling algorithm: LR-based algorithm for BDP/D
(D-LR), simulation and heuristic-based scheduling algorithm for BDP/D (D-SH),
and simulation and heuristic-based scheduling algorithm for BDP/S (S-SH). D-LR
represents mean value-based decision with a near-optimal scheduling algorithm
while S-SH uses statistical information beyond mean values to make risk-based
decision with simple scheduling heuristics. D-SH is the baseline among the three
and serves the purpose of a baseline for comparison. In assessing single-bidder
decision, what a bidder schedules to bid on are assumed to be what a bidder
actually gets assigned. For conciseness of the following discussions, D-LR, S-SH and

Figure 4. Duality gap of overload loading intensity pattern.

Figure 3. Duality gap of medium loading intensity pattern.
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D-SH will represent the schedules obtained by using the three combinations,
respectively.

The assessments are carried over high and low loading intensity cases,
respectively. In each case, there are 100 jobs to be assigned over 400 units of time.
The release time of a job is uniformly distributed in [1, 400] while its due time equals
the release time plus a time duration randomly generated from [2, 10]. Let the time
window of a job be W� due time – release time and uniform random variables
�, � 2 (0, 1) and �2 (0, 2). The maximum payment to a job, �i, is generated uniformly
in [1, integer(�Wþ 3)] and mean processing time of a job, �i, in [1, integer(�Wþ 1)],
and the operation cost, �i, in [1, integer(��þ 1)], where integer(x) takes the integral
part of a real number x. Earliness and minimum tardiness penalty coefficients are
random in 1 or 2 and the tardiness penalty coefficient is random integer from 1 to 3.
Job processing times are exponentially distributed.

Thirty simulation replications are run for each of D-LR, D-SH and S-SH to
evaluate their respective bidder’s expected profits according to the objective function
defined by equation (13). It is expected that D-LR, D-SH and S-SH have significant
performance differences under high loading intensity and that D-SH has the poorest
performance. Results are as follows.

1. High load case

Under a loading intensity of 86.75%, S-SH uniformly outperforms the other
two both across the replications as shown in figure 5 and in terms of profit
mean and variance as listed in table 2. Table 2 shows that D-LR is optimistic
in bidding for jobs in lack of risk consideration and has the highest number of
jobs (84) while S-SH is relatively conservative and has the lowest (73) among
the three schedules. In depth analysis of simulation results of D-LR indicates
that the LR-based near-optimal scheduling algorithm generates a very tight
schedule, where there is little buffering time among jobs. When evaluated by
simulation, the processing time outcome of one job may be much longer than
the mean value used for D-LR scheduling. Under a tight schedule, the delay
of one job may cause delays in many of the subsequent jobs and leads to high
over-due penalties and low total job processing profits. Such a phenomenon
happens in six replications (1, 2, 7, 9, 28 and 30, figure 5).

High loading intensity
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Figure 5. Bidder profits over replications (high loading intensity case).
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As hypothesized, D-SH indeed has the poorest profit value in all the
replications but the aforementioned six, where the use of heuristic gives more
time for buffering the processing time uncertainty. Namely, D-SH is more
robust to processing time uncertainties than D-LR. This is also supported by
the smaller variance of D-SH than that of D-LR. Although S-SH has the least
number of jobs, it is uniformly the best in profit over all replications. Such a
result indicates the value of using statistical information and risk considera-
tion. The capture of uncertainties in the stochastic problem formulation in
conjunction with simple heuristic solution may lead to a schedule superior to
the schedule obtained by a near-optimal solution method over a mean value-
based problem formulation.

2. Low load case

When loading intensity is low, 43.375% of the capacity in this case, the
relative performance among D-LR, D-SH and S-SH is different from that in
the high loading intensity case. Table 3 shows that D-LR, D-SH and S-SH bid
on 95, 95, and 93 jobs out of the 100 jobs, respectively. This is of no surprise
when loading intensity is low. Although S-SH is the most conservative in job
bidding and has the lowest average profit, it has the lowest variance of profit.
Figure 6 shows that D-LR is superior to the other two in most of the
replications and has a low variance too. The average profit of D-LR is slightly
(about 3%) higher than those of D-SH and S-SH. Such superiority may be
due to the use of the near-optimal LR algorithm. The average profit of D-SH
is about the same as that of S-SH. In both the high and low intensity cases,
D-SH obvious has a high profit variance than S-SH. Such a result indicates
the value of capturing the processing time uncertainty in the problem
formulation when SH is used as the solution method.

Table 3. Bidder statistics (low loading intensity case).

Average
bidder
profit

Standard
deviation of
bidder profit

No. of
jobs bidded

% profit difference
with D-SH*

D-SH 398.1 11.8 95 0
D-LR 407.2 5.2 95 2.3%
S-SH 395.9 3.7 93 �0.5%

*% difference of A with B¼ (value of A – value of B)/value of B*100.

Table 2. Bidder statistics (high loading intensity case).

Average bidder
profit

Standard
deviation of
bidder profit

No. of
jobs bidded

% profit difference
with D-SH*

D-SH 262.2 37.1 80 0
D-LR 281.3 65.0 84 7.8%
S-SH 328.7 17.4 73 25.4%

*% difference of A vs. B¼ (value of A – value of B)/value of B*100.
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4.4 Effects of formulation and algorithm on auctioneer’s assignment

This experiment evaluates how bidders’ problem formulation and solution algorithm
affect the job assignment and the auctioneer’s cost. There are two bidders, who have
the same capacity and 100 jobs to bid over a period of 400 time units. Job parameters
are generated in the same way as that of section 4.3 except that the loading intensity
adjustment parameter �ÿ is doubled in value. The notations D-LR, D-SH, and S-SH
now represent the auction decisions for the three different combinations of bidders’
problem formulation and scheduling algorithm respectively.

Again, the two cases of low and high loading intensity are investigated,
respectively. Key performance metrics include the number of jobs assigned,
auctioneer’s total cost and the job winning discounts offered by the bidders. In the
reverse auction, as the bidders have to take all the risks due to their respective
uncertainties, it is natural to hypothesize that S-SH will result in the least numbers of
assigned jobs and the lowest bidders discount offers among D-LR, D-SH, and S-SH.
It is also expected that bidders’ winning discount offers in the low loading intensity
case will be higher than those of the high intensity case because there is less job
competition in the former case.

Simulation results in figures 7 and 8 depict bidders’ conservatism under S-SH in
both cases, where the winning discount offers and the numbers of bided jobs are the
lowest among the three combinations. Statistics in tables 4 and 5 show that average
discounts in the low loading intensity case are higher than those in the high loading
intensity case. Such observations are consistent with what are hypothesized and
suggest that when loading intensity is low, the three combinations are about equally
good and that when loading intensity is high, S-SH leads to a superior result for the
bidders. We further reason that since the bidders take all the risk due to uncertainty,
the auctioneer may raise the maximum payment values to induce more job bidding
from the bidders.

5. Conclusions

Motivated by foundry service provisioning and the emergence of foundry brokerage
in the semiconductor industry, this paper adopted a reverse auction-based
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Figure 6. Bidder profits over replications (low loading intensity case).
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Table 4. Auction statistics (low loading intensity).

Auctioneer’s cost
Number of

Winning discount (%)

Average Difference with D-SH (%) unassigned jobs *Average Std. dev.

D-SH 481 0 5 37.08 18.32
D-LR 491 2.1 3 37.36 19.87
S-SH 557 16.9 6 29.90 16.89

*%Winning discount¼ (job discount/job value)*100.
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Figure 7. Discount for each job under low loading intensity.
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Figure 8. Discount for each job under high loading intensity.
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mechanism to model job order assignment between a job owner and a few qualified
fabs. With the simplifying assumptions of single-operation jobs and no job transfers
or capacity backups among fabs, the model focuses on the non-cooperative gaming
because of private information among the job owner and the fabs such as objectives,
valuation of jobs, available capacity and constraints. In addition to a mathematical
formulation of the reverse auction problem for job assignment, solution algorithms
for both bidder and auctioneer are proposed to model the job assignment decision
of the job order owner and the bid selection and production scheduling decision of
the fabs. A simple analysis has shown that the auction algorithm converges to an
equilibrium, where no single bidder would unilaterally deviate from the auction
result. Numerical experiments with the reversed auction model demonstrate that
consideration of uncertainties in bidder’s decision has a larger impact on
performance of both bidders and the auctioneer than optimality of the mean
value-based scheduling algorithm that a bidder adopts.
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Appendix A

Table 5. Auction statistics (high loading intensity).

Auctioneer’s cost
Number of

Winning discount (%)

Average Difference with D-SH (%) unassigned jobs *Average Std. dev.

D-SH 570 0 16 30.03 21.73
D-LR 565 0.9 14 29.58 21.54
S-SH 617 8.2 18 24.18 17.76

*%Winning discount¼ (job discount/job value)*100.

Data of medium loading intensity pattern

Release
date

Due
date

Earliness/
tardiness
penalty

Step
penalty Value

Operation
cost

Process
time

Job 1 2 6 1/1 1 8 1 2
Job 2 5 7 1/2 1 10 2 3
Job 3 9 11 2/2 1 6 1 2
Job 4 13 15 1/1 1 5 1 2
Job 5 13 16 1/1 1 6 1 3
Job 6 10 14 2/2 1 7 2 2

Reverse auction-based job assignment 671

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
N
a
t
i
o
n
a
l
 
T
a
i
w
a
n
 
U
n
i
v
e
r
s
i
t
y
]
 
A
t
:
 
0
2
:
1
4
 
1
2
 
J
a
n
u
a
r
y
 
2
0
0
9



Appendix B
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