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Abstract: This paper finds the appropriate pi-coefficients for a parameter estimation adaptive system and uses them to analyze the 
stability of two estimation algorithms. The estimation error dynamics of the system are modeled by a linear time-invariant subsystem 
and a nonlinear time-varying update law in a feedback loop. Then the so-called max-p problems are formulated and solved to obtain the 
pi-coefficients for the linear subsystem and nonlinear update law. For the investigated system, the quantitative results show that the 
least-squares update algorithm has larger stability range than that of the gradient algorithm, and the a-modification scheme gives larger 
stability ranges for both algorithms. 
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1. Introduction 

The pi-sharing theory [5] uses a set of pi-coefficients to describe the generalized concept of energy 
distributions of a system, such as passivity or dissipativeness. With different constraints, these coefficients 
represent various stability conditions quantitatively. The composite pi-coefficients of a feedback system can 
be determined by the pi-coefficients of its subsystems. By choosing proper coefficients, it is possible to get less 
conservative conclusions about the system stability than using the conventional stability conditions, such as 
the strictly positive realness (SPR) condition. 

Towards the objective of maximizing the finite mean-square gain (FMSG) stability range, the max-p 
problem [3, 6, 7] is formulated for finding the optimal pi-coefficients. In [7], the optimal constant pi- 
coefficients of the second-order linear systems are derived, and applied to the sampling time determination 
problem of an adaptive control system. 

This paper applies the piosharing theory to the stability analysis problem of a parameter estimation 
adaptive system [1]. The estimation error dynamics of the system are modeled by a linear time-invariant 
(LTI) subsystem and a nonlinear time-varying (NTV) update law in a feedback loop. Then the max-p 
problems [6] are formulated and solved to obtain the pi-coefficients for both the LTI subsystem and the 
NTV update law. From the investigated system, the quantitative results show that the least-squares update 
algorithm has larger stability range than that of the gradient algorithm, and the a-modification scheme gives 
larger stability ranges for both algorithms. 
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2. The optimal pi-coeflicients 

A single-input-single-output 'factorable' discrete-time system [-5] 

x(k + l) = A(k)x(k) + b(k)u(k), 
(1/ 

y(k) = cT(k)x(k) + d(k)u(k), 

where ke N, x(k)e ~", u(k)E R, y(k)e R, and A, b, c, d are system 'matrices' with appropriate dimensions, is 
said to be pi-sharing with respect to pi-coefficients {F(k), Q(k), p(k), r(k)} if for all z 6 [~, 

u(k)y(k) >__ x~(z + 1)F(z + 1)x(z + l) - xT(O)F(O)x(O) + ~" xT(k)Q(k)x(k) 
k = O  k = O  

+ ~ y2(k)p(k)+ ~" u2(k)r(k), (2) 
k = 0  k = 0  

where F(k) and Q(k) are positive-semidefinite (p.s.d., denoted as _> 0 hereafter) matrices for k _< z + 1. 
Different ranges of the pi-coefficients correspond to various stabilities, one of which is the FMSG stability. 
System (1) is said to preserve FMSG stability if there exist two finite real numbers el and e2 such that 
Y~k=0 Y2(k) --< eX~k=0 U2(k) + e2xT(0)X(0), for all u(.):  N ~ R, x(0)eR", and z e N. The equivalent con- 
straints on pi-coefficients have been proven [5] to be that there exist roe R and Po > 0 such that 

p(k) >_ Po, r(k) >_ ro, Vk. (3) 

However, the choice of pi-coefficients is not unique, and inappropriate selections may lead to conservative, 
or even useless, conclusions. In [5] there is a sufficient condition for 'legal' pi-coefficients: 

[ Ml(k) m2(k) I (4a) 
M ( k ) =  m~(k) m4(k) 

must be negative-semidefinite (n.s.d., denoted as _< 0 hereafter) for all k, where 

M~(k) = AT(k)F(k + 1)A(k) - F(k) + Q(k) + p(k)c(k)cT(k), (4b) 

m2(k) = AT(k)F(k + 1)b(k) - ½c(k) + p(k)d(k)c(k), (4c) 

m4(k) = bT(k)F(k + 1)b(k) - d(k) + r(k) + p(k)d2(k). (4d) 

For the composite system ~c in Figure 1, suppose the subsystem ~i has a set of pi-coefficients {Fi('), Q~(), 
pi(  ), ri(" )}, i = l, 2. Then it is easy to see that ~ has FMSG stability if r l (k) and Pz (k) are finite for all k e N, 
and 

inf rl(k) + p2(k) > 0, (5a) 
k e n  

inf p~(k) + r2(k ) > 0. (5b) 
k e n  

u + :~ ul [ '[ ~ l  (r1(k)'q1(k)'pi(k)'ri(k)} ] Yl 

-I Y2 [ e2 {r2(k)'q2(k)'P2(k)'r2(k)} ]' u2 

Fig. 1. A feedback system ~¢ with subsystems ~1 and ~2" 
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Thus, to maximize the FMSG stability range for the system ~c, we would like to find the pi-coefficients for 
~i's with p~'s and r~'s as large as possible, under the conditions F~(k) > 0, Q~(k) > O, and M(k)'s < 0, for 
i = 1, 2. Now, from (2) it is clear that p's and r's cannot be large simultaneously. Hence, we may choose to 
maximize the coefficient p, requiring r(k) to be greater than or equal to a parameter ro. This forms the max-p 
problem: 

Maximize p(k)  (6a) 
.r(k), Q(k), rtk} 

subject to r(k) >_ o, Q(k)  >_ 0, r(k) >_ to, (6b) 

M ( k )  < O. (6c) 

Although in [7] we have shown that the optimal solutions to (6) occur at Q(k)  = 0 and r(k) = r0, which 
largely simplifies the problem, the general solutions are still hard to find. For  LTI systems with order _< 2, 
i.e., with the transfer function 

1 + b l z  -1 + b2 z-2  
(7) H ( z  -1 )  = x 1 - a l z  -1 - a2 2 - 2 '  

a set of time-invariant suboptimal solutions are given in [7] for F restricted to be diagonal. The solutions are 
derived by applying the method developed in [6]. 

3. The parameter estimation adaptive system 

Consider the parameter estimation adaptive system shown in Figure 2, where 

y ( k  + 1) = 0TI//(k) 

is the plant with the parameter vector 0T=  [al a2 " ' "  an bl bE " ' "  b m ]  

[y(k) • • • y ( k  - n + 1) u(k) • • • u(k - m + 1)]. The estimated output is 

j)(k + 1) = 0T(k + 1)~(k), 

with the estimated parameters and regressor, respectively, being 

~T(k -t- 1) = [d~(k + 1) - . .  d(k + 1) bx(k + 1) " .  bm(k + 1)] 

and 

~T(k) = [33(k) . . .  ~(k - n + 1) u(k) ' ' '  u(k - m + 1)]. 

(8) 

and the regressor @,X(k)= 

(9) 

u(k) 

w k) 
i / A(q -I) 

pla~t I ~(k) v(k) ] y(k) ..+ +. , B(q -1) / A(q -1) J ~:- :- 

,[ ~(q-,)/,(q-,)]~(~) I- 
estimator 

Fig. 2. A parameter estimation adaptive system. 
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6 1 

+ .  [ ,ev(q ] 

t _((_k)_ )@(k) I 
.I 

62 

Fig. 3. The error model. 

The update rule for the parameters chosen in [5] is the least-squares algorithm: 

/?(k + 1) + 0(k) + h(k)P(k)qb(k)v(k + 1), (10) 

where h(k) > 0 is the step size, the covariance matrix P(k) iterates through 

P -  l(k + l) = 7(k)P-  l(k) + 6(k)q~(k)~T(k), 0 < ),(k) < 1, 0 < 6(k) < ~ ,  

and v(k + 1 )  = y(k + 1 )  - j)(k + l) + ~(k + 1) with output noise ~(k + 1). 
Let the parameter error be/t(k + l) = 9 -  0(k + 1). Then the estimation error is 

e(k  + 1) = 0T~(k) -- /~T(k + 1)#(k) = OT(k + 1)~(k). (11) 

Denote q-  l as the delay operator. The error model shown in Figure 3 can be obtained by introducing an 
'input noise' w(k + 1) = A ( q - 1 ) ~ ( k  + 1), where A ( q - x )  is defined below. The LTI feedforward subsystem 
61 comes from the relation between e(.), v(.)  and w(.) [5]: 

v(k + 1) = nev(q-~)[e (k  + 1) + w(k + 1)], (12) 

where 

He~(Z -~) - _ _  
1 1 

A(z - 1 ) -  1 - a lz  -1 - a2z -2 . . . .  a , z - ""  

The parameter error and the update rule constitute the NTV feedback subsystem 62, which can be described 
by the 'state equations' [5] 

/t(k + 1) = A2(k)O(k) + b2(k)v(k + 1), - e(k + 1) = C2(k)O(k) + d2(k)v(k + 1), (13) 

where 

{A2 (k), b2(k), cT2(k), d2(k)} = {L - h(k)P(k)~i(k), - iU(k), h(k)~IT(k)P(k)~i(k)}. 

To analyze the stability of this feedback system by the pi-sharing theory, Lawrence and Johnson [5] 
choose the following pi-coefficients: 

( , ~'], 2~1, ~ n~,½}, (14) { F 1 , Q I , p l , r , } =  diag[n~ , (n -1)~  . . . .  l ~ _  

{ " # T ( k ) P ( k ) # ( k ) }  (15) 
{F2(k) ,Q2(k) ,p2(k) ,r2(k)}  = P- ' (k ) , [1  - r ( k ) ] P - ' ( k ) , - ( $ ( k ) ,  4 ~  ' 



J.-S. Heh et al. / Pi-coe~cient analysis of update algorithms for adaptive systems 293 

where ~t = ~ =  l a 2 and h(k) = 1/(2~(k)). Then the F M S G  stability condit ions are: 

inf {rl + p2(k)} = ½ -  sup t~(k) > 0, (16a) 
k k 

inf {Pt + r2(k)) = ½ - net + inf ~T(k)P(k)~(k)  > 0, (16b) 
k k 4)'(k) 

where (16b) is a signal condit ion of the regressor. If  

Pt = ½ - n e t < 0 ,  

the regressor vector  #(k) has to satisfy 

i n f#T(k )P(k )# (k )  > l ½ -  nctl (17) 
k 4~(k) 

to ensure the F M S G  stability. 
Take  n = 2 as an example.  Then 

1 
(18) H e Y ( z - t ) -  1 -- a t z  - t  -- a2 z -2  

whose SPR condi t ion [4] is 

1 + a t - a 2  > 0 ,  1 - a t - a 2  > 0 ,  and 1 + 3 a 2  > 0  or a 2 + 8 a 2 + 8 a 2 2 < 0 .  (19) 

With  al  = - 0.85 and a2 = - 0.10, it is clear that  Hev(z- 1) is SPR. By the passivity theorem [1], this system is 
FMSG-s tab le ,  no mat te r  what  #(k) is. However ,  f rom (17), #(k) has to satisfy 

i n f # r ( k ) P ( k ) ÷ ( k )  > l½ - net] = 1½ - 2"( 0.852 q- 0-12)1 = 0.965 
k 47(k) 

to ensure the F M S G  stability. So, (17) is more  conservat ive than the passivity theorem. But, when we use the 
subopt imal  pi-coefficients in 1-7] for ~ t ,  i.e., 

0 0 . 0 5 -  0.005ro ' 0,0.05 - 0.0025ro,ro , (20) 

the F M S G  stability condit ions become 

ro - sup ~(k) > 0 and 0.05 - 0.0225ro + inf ~ r (k )P(k )o (k )  > 0. (21) 
k k 4~(k) 

An appropr ia t e  choice of  ro can make  all regressor vectors #(k) satisfy (21). 
Moreover ,  if at  = 0.85 and a 2 = - -  0 . 9 0 ,  it is known from (19) that  Hey(z- 1) is not  SPR. Then the passivity 

theory  and the Lyapunov  method  fail. However ,  the subopt imal  pi-coetiicients [7] for 61 ,  

0 l t 0 0.450 - 0.675. ro , 0, - 0 . 7 5  - 0.5625ro, ro , 

lead to the F M S G  stability condit ions 

ro - sup 6(k) > 0 and inf oT(k )P(k)o(k )  > 10.75 + 0.5625rol. (22) 
k k 4~(k) 

F r o m  the above results, we see that, by choosing the appropr ia te  pi-coeflicients for a subsystem in a feedback 
configuration,  we m a y  obta in  a less conservat ive conclusion abou t  the F M S G  stability. 
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4. Pi -coef l ic ient  analys is  o f  the update a lgor i thms  

In Section 3, though the suboptimal pi-coefficients [7] are used for ~1 to get the less conservative results 
(21) and (22), these FMSG stability conditions are still based on the original pi-coefficients [5] for ,~2. To 
further improve the results we may try to find 'better' pi-coefficients for ~2. However, the update rule (13) is 
an NTV system, which makes the corresponding max-p problem more difficult to solve. So, we add some 
more constraints to the max-p problem for ~2, and form the constrained max-p problem: 

Maximize p(k) 
F(k), Q(k), r(k) 

subject to F(k) >_ O, 

M~ (k) _< 0, 

(23a) 

Q(k) >_ 0, (23b) 

m2(k) = 0, m4(k) = 0. (23c) 

As we shall see later, the value of r(k) will be decided by the equality m4(k) = 0. Hence, there is no need 
to put an additional constraint for r(k). The purpose of the constraints in (23c) is to form a more 
tractable mathematical problem. As it turns out, the solutions of this problem can give still more analytic 
results. 

4.1. The least-squares update law 

When the parameter update rule is the least-squares law (10), we have the following theorem. 

T h e o r e m  1. A feasible solution to (23), which may not be optimal, is 

{rz(k + 1), Q2(k), p2(k), r2(k)} 

= {½h- l(k) P -  1(k) - q*(k)~(k)~T(k), 0, q*(k), ½h(k)q~T(k)P(k)tk(k)}, (24) 

where q*(k) is the laroest q(k) satisfyin9 the followin9 inequality: 

½[h-X(k)- h-~(k + 1 )y (k ) ]P-~(k ) -  [q(k) + ½h-~(k + l)6(k)]q~(k)~T(k) >_ O. 

Proof .  From (4c) and (13), requiring m2(k) = 0 is equivalent to requiring 

[ -FE(k  + 1).h(k). P(k) + ½ I -  pE(k)h(k)~(k)~T(k)P(k)]qb(k) = O, 

which F2(k + 1) = ½h-l(k)P - l ( k ) -  p2(k)~(k)tkT(k) satisfies. From (4d) and P(k) = P(k) T, requiring 
m4(k) = 0 is equivalent to requiring 

½ h (k)q~T (k) P(k) qb (k) - h (k) ~k T (k) P(k) P2 (k) q~(k)~T (k) h (k) P(k) ~ (k) 

- h(k)fbT(k)P(k)~(k) + rE(k) + pE(k)h2(k)~T(k)P(k)~(k)qkT(k)P(k)tk(k) = O. 

Thus, r E (k)  is obtained. Finally, from (4b) and the iteration formula of P(k), requiring M1 (k) _< 0 is equivalent 
to requiring 

--  ½ [ h -  X(k - 1 ) P -  ~(k - 1) - h -  a ( k ) P -  l ( k ) ]  + Q2(k)  + pE(k - -  1)O(k - 1)OT(k --  1) 

= -- ½[h- ' (k  - 1 ) - h - a ( k ) 7 ( k  - 1 ) ] P - ' ( k  - 1 )  + Q2(k) 

+ [ P2 (k - 1) + ½ 6 (k - 1 )h - '  (k)] ~(k - 1) ~T (k -- 1) 

<0 ,  
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from which it is seen that Q2(k) = 0 makes t/*(k) the largest solution for p2(k). Note that this choice will meet 
the p.s.d, constraint on FE(k): 

F2(k + 1) = ½h-l(k)P-l(k) - p2(k)¢(k)¢T(k) 

_> ½h- l(k + 1)[7(k)P- l(k) + 6(k)~(k)~r(k)] 

_>0. [] 

Although these pi-coefficients in (24) may not be the optimal solution for the max-p problem, they can be 
used to produce good results, as the discussions below show. By setting h(k) = 1/(2~(k)), the pi-coefficients 
(15) from [5] are 

(r~(k + 1), O.~(k), p~(k), r~(k)) 

{ . . . .  CT(k)P(k)¢(k)} 
= 7(k)p- l (k)  - ,~(k)~(k)~T(k), [1 - 7 ( k ) ] P - l ( k ) ,  - o~K), 4 ~  ' (25) 

and the pi-coefficients in (24) become 

{ *" ' 'T(k)P(k)q}(k)}  
{F2(k +l),Q2(k),p2(k),r2(k)} = 7 (k )P- l ( k ) -  ~l*(k)#(k)#r(k),O,~l tKI, 4 ~  ' 

where r/*(k) is the largest r/(k) satisfying 

(k) [ 1 - 7 (k + 1)] P-1  (k) - [~/(k) + 6 (k) ~ (k + 1)] ¢ (k) ÷r(k) > 0. (26) 

The setting ~/(k) = - ~  (k) will satisfy (26), hence ~/* (k) > - 6(k), i.e., the pi-coeflicients in (24) imply a larger 
stability range than those in (25). Furthermore, the condition 0 < 7(k + 1) < 1 makes r/*(k) > - 6(k). If y(k) 
is chosen properly, we can even have ~/*(k)> 0. When al = 0.85 and a2 = - 0 . 9 0 ,  the FMSG stability 
condition (22) becomes 

ro + inft/*(k) > 0 and inf er(k)P(k)¢(k) > 10.75 + 0.5625'rol, (27) 
k k 4~(k) 

which reduce the restriction on ¢(k) for small ro. 

4.2. Gradient algorithm 

Compared with the least-squares update law, the gradient algorithm has a simpler form, 

/~(k + l) =/~(k) + e(k)¢(k)v(k + 1), (28) 

whose 'state matrices' in the "state equation" (13) are 

{A2(k), bE(k), c~(k), d2(k)} = {I, - e(k)¢(k), - eT(k), e(k)¢T(k)¢(k)}. (29) 

For analyzing its FMSG stability, we have the following theorem. 

Theorem 2. A feasible solution to (23), which may not be optimal, is 

{Fz(k + 1), Q2 (k), p2(k), rE(k)} = {½e- ~(k)l - ~l*(k)¢(k)¢T(k), 0, r/*(k), ½e(k)¢r(k)¢(k)}, 

where t/*(k) is the largest tl(k) satisfying 

½[e- l(k) - e- l(k + 1)] I - rl(k)¢(k)¢T(k) >_ O. 
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Proof. This is a special case of Theorem 1, as can be seen by setting h(k) = e(k) and Pik) = L with 7(k) - I 
and 6(k) --- 0. 

For the gradient algorithm with fixed step size, i.e., e(k) = constant, t/*(k) must be zero, which implies that 
its r2(k ) and p2(k) cannot be positive at the same time. On the other hand, the least-squares method allows 
both r2(k ) and p2(k) to be positive, provided y(k) and 6(k) are chosen carefully. In this case, our analysis 
results reveal that the system with gradient update algorithm preserves smaller stability range than that with 
least-squares algorithm. 

4.3. The effect o f  a-modification 

In practice, the adaptive systems will encounter some unmodeled dynamics and/or perturbations, which 
will make the performances of the previous update laws poor. To attain robustness, the update laws have to 
be modified by some schemes, such as a-modification [2]. The gradient algorithm with a-modification is 

/~(k + 1) = O(k) - e (k )~ (k )e (k )  - a O ( k )  = (1 - a ) O ( k ) -  e(k)~(k)e(k), 0 < a < 1, (30) 

whose 'state matrices' in the 'state equation' (13) are 

{A2(k), b2(k), c~2(k), d2(k)} = {(1 - a)l, - e(k)~(k), - (1 - a)~X(k), e(k)~T(k)~(k)}. (31) 

For analyzing its FMSG stability, we have the following theorem. 

Theorem 3. A feasible solution to (23), which may not be optimal, is 

{F2(k + 1), O2(k),p2(k), r2(k)} = { ½ e - ' ( k ) l -  q*(k)#(k)#T(k) ,O,q*(k) ,½e(k)~(k)#(k)} ,  

where tl*(k ) is the largest q(k) satisfying 

½[e-~(k) - ( 1  - a)2•- l(k -t- 1)] l - -  rl(k)q~(k)q~(k) >_ O. 

(32) 

Proof. This proof is similar to those of Theorems 1 and 2. [] 

Comparing (32) with the previous results, we know that the pi-coefficients of the gradient algorithm with 
a-modification can have q* (k) > 0, even with the step size e(k) fixed. Hence, the pi-coefficients r E ( k )  and Pz (k) 
may both be positive. The magnitude of q*(k) is directly related to the quantity of the modification a. 

Finally, consider the least-squares method with a-modification. The 'state matrices' of'state equation' (13) 
become 

{A2(k), b2(k), eT(k), d2(k)} = {(1 - a)I, - h(k)P(k)~(k),  - (1 - a)~T(k), h(k)~T(k)P(k)~(k)}  (33) 

after adding a-modification with a e (0, 1). For analyzing its FMSG stability, we have the following theorem. 

Theorem 4. A feasible solution to (23), which may not be optimal, is 

{FE(k + 1), QE(k), p2(k), r2(k)} 

= { ½ h - l ( k ) P - l ( k )  - q*(k)qb(k)q~X(k), O, q*(k), ½h(k)q~T(k)P(k)q~(k)}, 

where tl*(k ) is the largest q(k) satisfying 

½ [h- l(k) - (1 - -  a )  2 h- X(k + 1)2:(k)] p -x  (k) - [r/(k) + ½(1 - -  a )  2 h ~ (k + 1) 6 (k)] ~(k)~X(k) _> 0. 

(34) 

Proof. This proof is similar to those of Theorems 1 and 2. [] 
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Compare the two ~/*(k)'s in Theorems 1 and 4. From the inequalities they must satisfy, respectively, we see 
that the one in Theorem 4 should have a larger positive range, since (1 -a)2E(0,  1). That is to say, the 
least-squares update law with a-modification may have more positive r2 (k) and P2 (k) to compensate for the 
possible non-SPR of the subsystem ~1 than that without. 

5. Conclusions 

In this paper, pi-sharing theory is used to study the FMSG stability of a parameter estimation adaptive 
system, whose error model includes an LTI subsystem and an NTV update rule in a feedback configuration. 
For the linear subsystem, a set of suboptimal pi-coefficients are found and shown to be more suitable for 
analysis purposes. For the nonlinear time-varying update laws, a constrained max-p problem is formulated 
for solving useful pi-coefficients. From the use of these coetficients, the quantitative results show that the 
system with the least-squares algorithm has a larger stability region than that with the gradient algorithm, 
and a-modification gives both algorithms larger stability ranges. 
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