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Abstract

This paper considers the stability robustness analysis problem for linear distributed parameter systems containing known
perturbation operators multiplied by uncertain parameters. The nominal system operators are assumed to be normal, but
allowed to be unbounded. The perturbation operators are con�ned to some relative bounded set, but may be unbounded also.
By using the Lyapunov stability criterion, simple bounds on uncertain parameters are derived to ensure the stability of the
perturbed systems. Examples are provided to illustrate the usage of the theoretical results. c© 2000 Elsevier Science B.V.
All rights reserved.
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1. Introduction

Distributed parameter systems (DPS) refer to
systems whose dynamics are described by partial
di�erential equations, delay equations, or func-
tional di�erential equations de�ned on in�nite-
dimensional spaces [3,6,17]. Thus, they are called
the in�nite-dimensional systems. Just like the
�nite-dimensional systems, DPS also have the sta-
bility and stability robustness problems. While there
is a quite general theoretical framework [7,10] for
treating �nite-dimensional linear uncertain systems
with structured or unstructured perturbations, the cor-
responding problem for DPS is much more di�cult
because of the intricacy of the underlying mathemat-
ics. This is particularly true, if simple and computable
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results are to be obtained. In the literature, many
authors have, nevertheless, discussed the stability ro-
bustness problem of DPS with unstructured bounded
perturbations [8], structured bounded perturbations
[4], structured perturbations [18], and time-varying
perturbations [11,12].
In this paper, we consider via the Lyapunov stabil-

ity approach a case of DPS with multiple structural
perturbations, which consist of known perturbation
operators multiplied by unknown constants [15]. The
perturbations may appear in system dynamics as well
as boundary conditions. For simplicity, it is assumed
that the nominal system operators are normal, but pos-
sibly unbounded. In the mean time, the perturbation
operators are required to be relative bounded [13] with
respect to the nominal system operators, but may be
unbounded also. We shall see from the provided ex-
ample that these assumptions are not so restrictive.
Our development starts from the case with zero

boundary condition, and comes to the �rst result when
simple bounds on uncertain parameters are derived for
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the stability of the perturbed systems. Then, we move
to systems with perturbations on the boundary condi-
tions. We rely on the method devised in [2,14], which
transfers the original system into a suitable interpo-
lation space, creates an equivalent system with zero
boundary conditions and enables us to apply the es-
tablished robust stability analysis method. Finally, we
give examples to illustrate the usage of the theoretical
results.

2. Problem formulation

Let Z1 and Z be two separable Hilbert spaces de-
�ned on a bounded domain 
⊂Rm, where m¿1 is an

integer, andZ1
d
,→Z, i.e.,Z1 is a dense subset ofZ.

Consider a closed linear operator A0 :D(A0) → Z,
which is densely de�ned on the domain D(A0)⊂Z.
Assume that A0 ∈ L(Z1;Z), which means A0 is a
linear bounded operator mapping from Z1 to Z. Of

course,Z1
d
,→D(A0). Moreover, consider a boundary

operator B de�ned on a Hilbert space @Z , which in
turn is de�ned on the boundary of 
. Then, we focus
on the following system with boundary condition g(t):

d
dt
z(t) = A0z(t);

Bz(t) = g(t);

z(0) = z0; z0 ∈ Z:

(1)

We say system (1) is exponentially stable if there ex-
ist positive numbers � and � such that for all solution
z; ‖z(t)‖6�e−�t , where ‖ ·‖ is the norm inZ (subse-
quently, ‖·‖ will also be used to represent the induced
operator norm of operators de�ned on Z, and the
meaning will be clear from the context). For g(t)=0,
we can de�ne A0 :D(A0) → Z, the restriction of A0
toD(A0)=D(A0)∩Ker(B), where Ker(B) is the ker-
nel of B. If A0 generates a C0-semigroup T0(t) on Z,
then we can rewrite (1) as a standard Cauchy problem

d
dt
z(t) = A0z(t);

z(0) = z0; z0 ∈ Z

(2)

for which the solution can be expressed as z(t) =
T0(t)z0 [3,6].
In this paper, for simplicity we restrict to the cases

in which A0 is normal i.e., A0 satis�es A∗
0A0 =A0A

∗
0

[5]. In Section 3, we shall study the stability robustness

of the system

d
dt
z(t) =

(
A0 +

i=�∑
i=1

kiAi

)
z(t);

z(0) = z0; z0 ∈ Z

(3)

with uncertain parameters ki’s and known perturbation
operators Ai’s. We require the perturbation operators
Ai’s to be relative bounded with respect to A0 [13].
Note that this requirement does not restrict Ai’s to be
bounded operators. In Section 4, stability robustness
problem of the more general case

d
dt
z(t) =

(
A0 +

i=�∑
i=1

kiAi

)
z(t);

Bz(t) = k�+1Gz(t);

z(0) = z0; z0 ∈ Z

(4)

will be considered, with an additional bounded bound-
ary perturbation operator G. Because the method de-
vised in [2] will be applied in our derivation process,
we need A0 to satisfy extra assumptions given therein,
which guarantee that (4) can be transformed into a
form like (3), but de�ned over certain interpolation
spaces. These assumptions from [2] are not restrictive,
as a wide class of interesting systems (such as Exam-
ple 2 in Section 5 of this paper, or examples given in
[1,2]) are known to satisfy them.
For (3) and (4), the robust stability problems as-

sume that when all ki’s are zero, the nominal systems
are exponentially stable. Letting k = [k1 · · · k�]T for
(3) and k = [k1 · · · k�+1]T for (4), respectively, the
problems are to �nd upper bounds �k such that when
‖k‖2 =

√
kTk ¡ �k, the perturbed systems are still ex-

ponentially stable.

3. Stability robustness with zero boundary condition

First, we state the Lyapunov stability criterion for
the DPS (2). We shall use L(Z) as a shorthand
notation for L(Z;Z), and P¿ 0 to denote that the
operator P is positive de�nite. Also, we say an oper-
ator Q is coercive if there exists a �Q ¿ 0 such that
〈Qz; z〉¿�Q〈z; z〉 for all z ∈ Z, where 〈·; ·〉 is the inner
product in Z.
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Theorem 1 (Curtain and Zwart [6], Gohberg et al. [9]).
If there exist a P0¿ 0 in L(Z) and a coercive Q0
inL(Z) such that

〈P0z; A0z〉+ 〈A0z; P0z〉=−〈Q0z; z〉 (5)

for all z ∈ D(A0); then (2); or simply A0; is exponen-
tially stable.

In [16] it is noted that if general perturbations are
to be treated by the Lyapunov stability criterion, then
the nominal DPS must be of linear parabolic type. But
here we consider only linear perturbations, therefore,
the perturbed DPS is also linear and the Lyapunov
stability criterion stated in Theorem 1 can be applied.
Moreover, it may be deduced [6] that if A0 is expo-
nentially stable, then any coercive Q0 and P0 de�ned
by P0z =

∫∞
0 T ∗

0 (t)Q0T0(t)z dt satisfy the conditions
required by Theorem 1, where T ∗

0 means the adjoint
operator of T0.
From the normality assumption ofA0, we know that

A0 is also normal. Then we have the following results.

Theorem 2. Let A0 be normal and exponentially sta-
ble. Assume thatD(A0)=D(A0+A∗0); then, we have:
(i) (A0 + A∗0) :D(A0)⊂Z → Z is the in�nitesimal
generator of T ∗

0 (t)T0(t); and A0+A
∗
0 is exponentially

stable. (ii)De�ne P0 as P0z=
∫∞
0 T ∗

0 (t)T0(t)z dt; then
P0z ∈ D(A0) =D(A∗0); (A0 + A

∗
0)P0z =−z; A0P0 ∈

L(Z); and A∗0P0 ∈ L(Z).

Proof. (i) Firstly, for � ∈ �(A0), the resolvent set
of A0, let R(�)z = (�I − A0)−1z. Since A∗0A0 = A0A∗0
implies (�I − A0)A∗0R(�) = A

∗
0 (�I − A0)R(�) = A∗0 ,

we have A∗0R(�) = R(�)A∗0 . Secondly, it is easy
to check that A0� = �2R(�) − �I ∈ L(Z) and
A0�A

∗
0 = A

∗
0A

0
�. Hence T0(t)A

∗
0z = lim�→∞ etA

0
�A∗0z =

A∗0 lim�→∞ etA
0
� z = A∗0T0(t)z, or T0(t)A

∗
0 = A∗0T0(t).

Thirdly, for z ∈ D(A0), consider the di�erentiable
function � 7→T ∗

0 (t − �)T0(t − �)T0(�)T ∗
0 (�)z. The

equality T0(t)A∗0 = A
∗
0T0(t) implies that

d
d�

{[T ∗
0 (t − �)T0(t − �)][T0(�)T ∗

0 (�)]}
=T ∗

0 (t − �)[− (A∗0 + A0)T0(t − �)T0(�)
+T0(t − �)T0(�)(A∗0 + A0)]T ∗

0 (�)

=0:

Therefore, � 7→T ∗
0 (t− �)T0(t− �)T0(�)T ∗

0 (�)z is con-
stant, and in particular its values at � = 0 and � = t
are the same. Thus, T ∗

0 (t)T0(t) = T0(t)T
∗
0 (t). Finally,

if T ∗
0 (t)T0(t) = T0(t)T

∗
0 (t), then by direct check we

can conclude that T ∗
0 T0 is a C0-semigroup with the

in�nitesimal generator A0 + A∗0 . With this result, it is
clear that the exponential stability of A0 implies that
of A0 + A∗0 .
(ii) For exponentially stable A0, it is easy to show

that P0 is bounded. Since A0 + A∗0 is the in�nitesimal
generator of T ∗

0 (t)T0(t);
∫ t
0 T

∗
0 (s)T0(s)z ds ∈ D(A0 +

A∗0) for all t ¿ 0 [6]. By the normality of A0 and the
assumption, we have D(A0) =D(A∗0) =D(A0 + A∗0)
and (A0+A∗0)

∫∞
0 T ∗

0 (s)T0(s)z ds=−z. Also note that
since P0z ∈ D(A0); A0P0z is well de�ned for all z ∈
Z. With the closeness of A0 and A0P0, by the closed
graph theorem [5] we know that A0P0 is bounded. The
same argument also applies to A∗0 .

As to the perturbation operators Ai’s, for simplicity
we con�ne our discussion to those belonging to the
set P(A0) de�ned below.

De�nition 1. The set of relative bounded pertur-
bations with respect to A0 is de�ned as P(A0) =
{A :D(A)⊂Z → Z |D(A0)⊂D(A), and there exist
nonnegative numbers �; � such that ‖Az‖6�‖A0z‖+
�‖z‖ ∀z ∈ D(A0)}.

Note that in this de�nition A0 is allowed to be un-
bounded, and L(Z)⊂P(A0). A rich amount of ex-
amples of relative bounded operators can be found
in [13].
Under these postulates, the following theorem is the

main result of this section.

Theorem 3. Suppose in system (3) A0 is normal, ex-
ponentially stable, and the in�nitesimal generator of
T0(t).Assume thatD(A0)=D(A0+A∗0); for i=1; : : : ; �
the perturbation operator Ai satis�es A∗i ∈ P(A∗0);
and (A0 +

∑�
i=1 kiAi) :D(A0)⊂Z → Z generates

a C0-semigroup T�(t). Let P0 be de�ned as P0z =∫∞
0 T ∗

0 (t)T0(t)z dt; and

�ki = inf
‖z‖=1

1
|〈(P0Ai + A∗i P0)z; z〉|

: (6)

If the uncertain parameters are limited to ‖k‖2¡ �k=

(
∑�

i=1
�k
−2
i )

−1=2; then system (3) is exponentially
stable.

Proof. Clearly P0¿ 0, and by Theorem 2 P0 sat-
is�es 〈A0z; P0z〉 + 〈P0z; A0z〉 = −〈z; z〉 for all z ∈
D(A0). Let the Lyapunov function candidate be
‘(t; z) = 〈P0T�(t)z; T�(t)z〉 for all z ∈ D(A0), where
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T�(t)z ∈ D(A0 +
∑�

i=1 kiAi) = D(A0). From direct
computation, we get

d‘
dt
=−

〈[
I−

�∑
i=1

ki(P0Ai+A∗i P0)

]
T�(t)z; T�(t)z

〉
:

(7)

Since A∗i ∈ P(A∗0) and for all z ∈ Z; P0z ∈ D(A0)=
D(A∗0); A

∗
i P0 is well de�ned for all z ∈ Z. Further-

more, A∗i ∈ P(A∗0) means there exist nonnegative
�i; �i such that ‖A∗i P0z‖6(�i‖A∗0P0‖ + �i‖P0‖)‖z‖,
which together with the boundedness of A∗0P0 and P0
imply that A∗i P0 ∈ L(Z). This, in turn, implies that
(A∗i P0)

∗ ∈ L(Z), and that P0Ai has a bounded ex-
tension de�ned on Z, because P0Ai is a restriction
of (A∗i P0)

∗. We use the same notation P0Ai to de-
note this extension. Thus, we have P0Ai ∈ L(Z) and
‖A∗i P0‖= ‖P0Ai‖.
Next, we want to determine a range of k within

which I −∑�
i=1 ki(P0Ai+A

∗
i P0) is coercive. De�ne a

setK(z) = {k | ∑�
i=1〈(P0Ai + A∗i P0)z; z〉ki ¡ 〈z; z〉}.

Note that for each nonzero z ∈ Z; K(z) is a
half-space in R� which includes the origin of
R�. Also, the boundary of K(z) is a hyperplane
which intercepts the ith coordinate axis of R� at
ki(z) = ‖z‖2=〈(P0Ai + A∗i P0)z; z〉 and has the mini-
mum distance [

∑�
i=1 k

−2
i (z)]−1=2 from the origin of

R�. Here, when necessary, we take ‖z‖2=0 =∞ and
∞−2 = 0. Let �ki = inf ‖z‖=1|ki(z)|. The in�mum ex-
ists and is positive because both P0Ai and A∗i P0 are
in L(Z). It is clear that if ‖k‖2¡ (

∑�
i=1

�k
−2
i )

−1=2,
then k ∈ K(z) for all z ∈ Z. This is the range we
are looking for, which, by the Lyapunov stability cri-
terion, is also a range of uncertain parameters for the
robust stability of system (3).

To utilize the theorem, the main di�culty is the
search of the in�mum in (6) in order to get a good
bound. In fact, it is not always feasible, so we give
the following two corollaries to handle some special
cases.

Corollary 1. Under the assumptions of Theorem 3;
if we know the relative bounded coe�cients �i and �i
such that ‖A∗i z‖6�i‖A∗0z‖+�i‖z‖ for all z ∈ D(A0);
as well as the positive constants � and ! such that
‖T0(t)‖6�e−!t for all t¿0; then
�ki¿

1
2(1 + r0)�i + (�2=!)�i

(8)

where r0 = ‖A0P0‖.

Proof. Since

‖A∗i P0z‖6 �i‖A∗0P0z‖+ �i‖P0z‖
= �i‖ − A0P0z − z‖+ �i‖P0z‖

6
[
�i(1 + r0) + �i

�2

2!

]
‖z‖;

we have

|〈(P0Ai + A∗i P0)z; z〉|
6 ‖(P0Ai + A∗i P0)‖ · ‖z‖262‖A∗i P0‖ · ‖z‖2

6
[
2�i(1 + r0) + �i

�2

!

]
‖z‖2:

Hence,

1
|〈(P0Ai + A∗i P0)z; z〉|

¿
1

2�i(1 + r0) + �i(�2=!)

By the de�nition of �ki, we have �ki¿ 1
2(1+r0)�i+(�2=!)�i

.

Corollary 2. Under the assumptions of Corollary 1;
if A0 = A∗0 is self-adjoint, then

�ki¿
1

�i + (�=!)�i
: (9)

Proof. For A0 = A∗0 , we have T
∗
0 = T0 because Z is

a Hilbert space. Thus,

P0z =
∫ ∞

0
T ∗
0 (t)T0(t)z dt =

∫ ∞

0
T0(t)T0(t)z dt

=
∫ ∞

0
T0(2t)z dt =

1
2

∫ ∞

0
T0(t)z dt

P0z ∈ D(A0) =D(A∗0), and A0P0z =− 1
2 z. Note that

‖A∗i P0z‖6�i‖A∗0P0z‖+ �i‖P0z‖=
(�i
2
+ �i

�
2!

)
‖z‖:

Therefore,

|〈(P0Ai + A∗i P0)z; z〉|6
(
�i +

�
!
�i
)
‖z‖:

The rest of the proof is similar to that in Corollary 1.

The result of Corollary 2 simpli�es the computation
for self-adjoint systems, such as those described by
the heat conduction or di�usion equations.

4. Stability robustness with boundary perturbation

To extend the results derived in Section 3 to system
(4), we adopt the mathematical framework devised
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by Amann [2]. To do so, we must restrict our discus-
sion to parabolic type evolution problems on Hilbert
space only, and need to assume that A0 and B in (1)
satisfy the assumptions (A1)–(A7) made in [2]. In
these seven assumptions, the �rst three give a detailed
characterization of the domains of A0 and its adjoint
operator, which limit the types of parabolic equations
that can be handled. The fourth assumption de�nes
the boundary space of the boundary operator B, and
the �fth assumption ensures that the Green’s formula
for A0 and B is valid. The sixth one poses the condi-
tions for deriving A0, which is the restriction of A0 to
the kernel of B, and the last one is �(A0) ∩ �(A∗0) 6=
∅. These assumptions are basic ones to ensure that
the derivations based on the Green’s formula can be
done. In Section 5, Example 2 gives a case that �ts
into such a framework, and more examples can be
found in [1,2]. Subject to these basic assumptions, the
method developed in [2] enables us to construct the
“scale” {(Ea; Aa0); a ∈ R} with E0 =Z. Here we re-
quire every Ea to be a Hilbert space with norm ‖ · ‖a
and inner product 〈·; ·〉a. Also we use Ta0 to denote the
C0-semigroup generated by Aa0. From [2] it is known
that there exist a real number b ∈ (0; 1), an opera-
tor Rb, and a real number � ∈ �(A0) such that, in the
sense of weak solution, the solution of (1) is the same
as the wild solution of

d
dt
z(t) = Ab−10 z(t) + (�I − Ab−10 )Rbg(t);

z(0) = z0

(10)

in the interpolation space Eb−1. Note that if we con-
sider time-invariant boundary operator B and bounded
boundary condition function g(·), then the solution of
(10) is a global solution [2] which preserves the sta-
bility property of the solution of (1).
For g(t) = k�+1Gz(t), if RbGb ∈ L(Eb), where Gb

is the restriction of G in Eb, then we have

‖[(�I − Ab−10 )RbGb]∗z‖b−1
6‖RbGb‖b · [‖(Ab−10 )∗z‖b−1 + |�| · ‖z‖b−1]

for all z ∈Eb−1, which means that [(�I − Ab−10 )
RbGb]∗ ∈P[(Ab−10 )∗] with relative bounded coe�-
cients �b−1�+1 = ‖RbGb‖b, and �b−1�+1 = |�| · ‖RbGb‖b.
Furthermore, assume the perturbation operators Ai,
i = 1; : : : ; �, can be extended to Eb−1 to be Ab−1i , and

we can transform the perturbed system (4) to

d
dt
z(t) =

(
Ab−10 +

�∑
i=1

kiAb−1i

)
z(t)

+ k�+1(�I − Ab−10 )RbGbz(t)

z(0) = z0:

(11)

Under the above setting, we can apply the result ob-
tained in Section 3 to system (11) for solving the ro-
bust stability problem of system (4). This is done in
the following theorem and corollary.

Theorem 4. Suppose in the system (11) Ab−10 is ex-
ponentially stable as well as normal in Eb−1; and
‖Tb−10 (t)‖b−16�e−!t for some positive �; !; and
all t¿0. Assume that D(Ab−10 )=D[Ab−10 +(Ab−10 )∗],
(Ab−1i )∗ ∈ P[(Ab−10 )∗] and [Ab−10 +

∑�
i=1 kiA

b−1
i +

k�+1(�I − Ab−10 )RbGb] :D(Ab−10 )⊂Eb−1 → Eb−1
generates a C0-semigroup Tb−1�+1 (t) on Eb−1. Let P

b−1
0

be de�ned by Pb−10 z=
∫∞
0 (T

b−1
0 )∗(t)Tb−10 (t)z dt; and

�ki = inf
‖z‖=1

1

|〈[Pb−10 Ab−1i + (Ab−1i )∗Pb−10 ]z; z〉b−1|
;

i = 1; : : : ; �;

�k�+1 =
1

2(1 + rb−10 )�b−1�+1 + (�2=!)�
b−1
�+1

;

where rb−10 = ‖Ab−10 Pb−10 ‖b−1. If ‖k‖2¡ �k =

(
∑�+1

i=1
�k
−2
i )

−1=2; then the perturbed system (4) is
exponentially stable.

Proof. The proof is the same as that for Theorem 3,
except the space considered here is Eb−1.

Corollary 3. Under the assumptions of Theorem 4;
if Ab−10 = (Ab−10 )∗; then

�ki¿
1

�b−1i + (�=!)�b−1i

; i = 1; : : : ; �; (12)

where �b−1i and �b−1i are the relative bounded coe�-
cients of perturbation operator (Ab−1i )∗ with respect
to (Ab−10 )∗.

5. Examples

Example 1. Consider the distributed parameter sys-
tem described by the following partial di�erential
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equation, which is basically a di�usion equation de-
�ned onZ=H(0; 1)= {f(x) | ∫ 10 |f(x)|2 dx¡∞}:
@
@t
z =

(
@2

@x2
+ I

)
z + k1

@
@x
z

+ k2

∫ 1

0
h(x)z(t; x) dx · v(x);

z(t; 0) = z(t; 1) = 0;

z(0; x) = z0;

(13)

where h(x)¿0 for all x ∈ [0; 1], ‖h(x)‖=1, ‖v(x)‖=1,
and ¡ 0. Putting this system into the frame of our
discussion, we have A0z=(@2=@x2+I)z withD(A0)=
{z ∈ Z | z and @z=@x absolutely continuous, @2z=@x2 ∈
Z; z(0)=z(1)=0}. It is easy to verify that A∗0=A0, i.e.,
A0 is self-adjoint, and T0(t) satis�es ‖T0(t)‖6et . The
perturbation operators are A1z=(@=@x)z withD(A1)=
{z ∈ Z | z absolutely continuous, @z=@x ∈ Z; z(0) =
z(1) = 0} and A2z =

∫ 1
0 h(x)z(t; x) dx · v(x).

First, we check the condition of the perturbation
operator A1. Note that A∗1 =−A1. From [13] we have
the following estimate for all z ∈ Z:∥∥∥∥@z@x

∥∥∥∥6 1
n− 1

∥∥∥∥@2z@x2
∥∥∥∥+ 2n(n+ 1)(n− 1) ‖z‖;

where n is any integer larger than unity, i.e., we have

‖A∗1z‖6
1

n− 1‖A
∗
0z‖+

2n(n+ 1)
(n− 1) ‖z‖

and D(A∗0)⊂D(A∗1). Thus, A
∗
1 ∈ P(A∗1) with relative

bounded coe�cients �1 = 1=(n− 1) and �1 = 2n(n+
1)=(n−1). By (9) a lower bound of �k1 can be obtained
as

�k1 =
1

�1 + (�=!)�1
=

||(n− 1)
||+ 2n(n+ 1) :

For the perturbation operator A2, since ‖h(x)‖ =
‖v(x)‖ = 1, we have A2 ∈ L(Z) and A∗2 ∈ L(Z).
Thus, the relative bounded coe�cients �2=0 and �2=1
can be used.
Finally, we give the results of �k1, �k2, and �k corre-

sponding to various values of  and n in Table 1

Example 2. This example follows the example 1
given in [1]. Let 
 be a bounded domain in Rn

with boundary @
, s ∈ R, H0 = L2(
;CN ) be
the space of Lebesgue square integrable functions,
Hs=Ws

2(
;C
N ) be the Sobolev space of order s, and

Table 1

; n �k1 �k2 �k

 =−1; n = 3 0:08 1 0:0797
 =−2; n = 3 0:1538 2 0:1533
 =−10; n = 4 0:6 10 0:5989

@Hs =Ws
2(@
;C

N ). Consider the system described
by

@
@t
z = A0z;

Bz = k1Gz;

z(0) = z0;

(14)

where z = [z1(t; x) · · · zN (t; x)]T; x = [x1 · · · xn]T,
A0 = D� + I :H2 → H0, D = diag[d1; : : : ; dN ]
with d1¿ 0, � is the Laplacian, B = D @

@� with �
being the outward normal vector on the boundary,
k1 ∈R is an uncertain parameter, and Gz = [h1(x)

∫



g1(x)z1(t; x) dx · · · hN (x)
∫

 gN (x)zN (t; x) dx]

T with
given functions hi(x) and gi(x).
LetW′

B= {z ∈ H2 |Bz=0}; D�B be the operator
D� restricted toW′

B, and A0 = D�B + I . Following
the result of Section 4 and assuming that  makes
A0 exponentially stable, we know that the stability
robustness problem of system (14) with respect to
the uncertain parameter k1 is equivalent to that of the
system

@
@t
z(t) = Ab−10 z(t) + k1(� − Ab−10 )RbGbz(t);

z(0) = z0;

(15)

where Rb = (A0; B)−1|{0}×@H2b−3=2 [2] for some
06b61, the operators Ab−10 , Gb are as explained in
Section 4, and � can be chosen to be zero because
here A0 is basically an exponentially stable Laplacian.
From [2] it is known that there exists a constant �
depending on b such that ‖Rb‖6�. Therefore, the ro-
bustness problem of the above system can be treated
by Corollary 3, and the relative bounded coe�cients
are �b−11 = � · ‖Gb‖ and �b−11 = 0, where ‖Gb‖ is
determined by the functions hi(x) and gi(x).

6. Conclusion

The robust stability problem of nominally normal
DPS is discussed via the Lyapunov approach. The
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perturbed system may contain a class of unbounded
perturbation operators multiplied by uncertain param-
eters. Bounds on these uncertain parameters appearing
in system dynamics as well as boundary conditions
are derived to ensure the stability of the perturbed sys-
tem. The results may be more conservative compared
with those for �nite dimensional systems, but for DPS
such simple and computable results are harder to �nd.
It is hoped that in the future more improved results in
this regard will appear.
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