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IMPLEMENTATION OF A DRIVING SIMULATOR BASED ON A

STEWART PLATFORM AND COMPUTER GRAPHICS

TECHNOLOGIES

Hung-Lung Tseng and I-Kong Fong

ABSTRACT

  This paper describes works related to the development of a land vehicle
driving simulator, which consists of a Stewart platform as its motion device
and a computer graphical system as its visual component.  The main task is to
enable the pilot-experience the sensation of motion while driving the vehicle
under the constraint of the platform’s finite working space.  Involved are works
such as establishment of the vehicle dynamical model, analysis of the forces
acting on the pilot, and application of the washout algorithm and human motion
sensation models.  With the results from these works, appropriate motion
trajectory commands for the platform can be generated.  Besides the physical
motion part, a computer graphical system is installed to generate scenes that
give visual cues.  While following the pilot’s steering signals and matching the
platform’s motion, the visual system creates animation scenes of the
environment, which are shown on a large screen in front of the pilot through
an LCD projector.  To test the completed system, different pilots operate it and
give subjective assessments.  Also, gyros are mounted on the platform to
measure its responses to motion commands.  Here some experimental results
are summarized and discussed.
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I. INTRODUCTION

Nowadays, vehicle driving simulators that provide
motion and visual cues and have interactive capability
are widely employed in pilot training and entertain-
ment utilities.  They are convenient and safe to use because
they can be operated indoors and are unaffected by
environmental factors, such as weather conditions.
Moreover, for some large and expensive vehicles, the
training scenarios of simulators can be richer than real
process, so the training cost can often be reduced and
effects improved.

This paper describes works related to the develop-
ment of a land vehicle driving simulator, which consists of
a Stewart platform as its motion device and a computer
graphical system as its visual component.  The Stewart

platform [1], as shown in Fig. 1, is a mechanical structure
which has an upper platform and a lower base platform
connected by six variable length links.  When the length of
each link is controlled properly, the upper platform is

Fig. 1.  A Stewart platform.
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capable of performing six degree-of-freedom motion
within its working space.  There are many research topics
concerning this mechanical structure, including its
construction, singular points and working space
determination, forward and inverse kinematic problem
solution, dynamic forces computation, motion control,
and practical applications [2-12].  Here, we use the hy-
draulic Stewart platform and its control system reported in
[11] and [12] as the basic apparatus to develop a land
vehicle driving simulator.

In addition to the motion generation device, a
visual system is the other essential component in a
driving simulator.  It is needed not only because a virtual
environment must be created in which the pilot of the
simulated vehicle can drive around, but also because
visual cues can greatly enhance the motion sensation of
the pilot.  Fortunately, computer graphics technologies
are quite mature today, and many tools can be utilized to
help build a reasonably good yet economical visual
system.  Foley, et al. [13] provided complete coverage of
computer graphics theory, including topics such as appli-
cation development, geometric transformation, model
construction, devices, interactive skills, and the use of
relevant software packages.  Trujillo [14] discussed the
background and use of the software Direct3D, a com-
ponent of Microsoft DirectX.  With the aid of this software,
we have developed a visual system for our simulator,
which creates animation scenes of the environment
and shows them on a large screen in front of the pilot
through an LCD projector.  The scenes are designed to
be synchronized with the pilot’s steering signals and
the platform’s motion.

Below, we present the development details of the
two main subsystems: the Stewart platform-based motion
component and the computer graphics-based visual
component.  First, we define our symbols and conventions
for three-dimensional coordinate frames in Section II,
which will be used throughout the paper.  Then, we
briefly introduce the inverse kinematics of the Stewart
platform in Section III and derive formulas for link lengths
that will be needed to provide the specific upper platform
position and orientation needed in the process of
motion simulation.  In Section IV, a simplified vehicle
dynamic model is described, which mainly considers the
influence of the vehicle suspension system.  Based on this
model, the motion of the pilot inside the vehicle is
analyzed in Section V, and the part that the pilot is
supposed to feel is extracted by means of a classical
washout algorithm explained in Section VI, which
generates the motion commands for the Stewart
platform.  After introducing the motion subsystem, we
introduce in Section VII the visual component, which in
cludes a big screen, an LCD projector, and a computer
with an appropriate algorithm for generating suitable
graphics.  Finally, in Section VIII, we use a picture and a
block diagram to present our experimental setup, and

give some experimental results obtained using the inte-
grated system.  Conclusions are given in Section IX.

II. RELATED COORDINATE FRAMES

First, we will define three right-hand orthogonal
coordinate frames, FI, FC, and FV, needed to discuss the
vehicle dynamics.  For f = I, C, and V, let Xf, Yf, and Zf be
the three principle axes of Ff with unit vectors I f, J f, and
K f, respectively.  The inertial frame FI is land-fixed, and
its z-axis is against the direction of gravity.  The origin and
the other two axes of FI are on flat ground on which the
land vehicle moves.  We assume that, initially, the vehicle
is at rest and pointed toward the positive direction of XI.
The origin of the vehicle frame FC is attached to the mass
center of the vehicle, with its XC –YC plane always parallel
to the XI –YI plane.  The relation between FC and FI is a
translation equal to the displacement of the vehicle’s
center of mass, plus a rotation of angle θz about the ZC

axis, depending on the yaw motion of the vehicle, so that
the positive direction of XC keeps to be the vehicle
moving forwards.  The rotation matrix from FC to FI is,
thus, given by

   

R C
I = R z, θz

=
cz – sz 0
sz cz 0
0 0 1

, (1)

where cz and sz denote cos θz and sin θz, respectively.
Similar notations will be used in the following.  The origin
of the coordinate frame FV is the same as that of FC, but its
XV and YV axes coincide with the forward longitudinal
and lateral body axes of the vehicle, respectively.  More
precisely, FV can be obtained by rotating FC by an angle θx

about the XC axis, followed by rotating it by an angle θy

about the YC axis, depending on the roll and pitch motion
of the vehicle body, respectively.  Obviously, the rotation
matrix from FV to FC is

   

R V
C = R y, θy

⋅ R x, θx
=

cy 0 sy
0 1 0

– sy 0 cy
⋅

1 0 0
0 cx – sx
0 sx cx

  

=
cy sxsy cxsy
0 cx – sx

– sy sxcy cxcy
, (2)

and the rotation matrix from FV to FI is

   
R V

I = R C
I ⋅ R V

C =
cz – sz 0
sz cz 0
0 0 1

⋅
cy sxsy cxsy
0 cx – sx

– sy sxcy cxcy
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=
cycz sxsycz – cxsz cxsycz + sxsz
cysz sxsysz + cxcz cxsysz – sxcz
– sy sxcy cxcy

.

(3)

In the sections that follow, we shall assume that with
respect to FI, that FV has an angular velocity

   ω IV = θx I C + θy J C + θzK C . (4)

At any fixed point A inside the vehicle body, we
can further define a vehicle-fixed frame FA by trans-
lating the origin of FV to the point A.  This frame will be
useful when we analyze the specific forces acting on the
pilot and compute the pilot’s rotational velocity.

Finally, we need to mention two coordinate
frames pertaining to the Stewart platform.  In Fig.1, the
base frame FB and the platform frame FP are defined with
their origins located at the center of the base and the
upper platform of the structure, respectively.  The X-Y
planes of the two frames coincide with the base and
upper platform planes, respectively.

III. INVERSE KINEMATICS OF THE
STEWART PLATFORM

The inverse kinematics problem for the Stewart
platform is to determine link lengths given the relative
translation and rotation of the upper platform with
respect to the fixed base.  Ignoring the translational
difference for now, let the frame FP be obtained by
rotating FB by an angle γ about the XB axis, followed by
rotating it by an angle β about the YB axis, followed by
rotating it by an angle α about the ZB axis.  The rotation
matrix from FP to FB is given by

   R P
B = R z, α ⋅ R y, β ⋅ R x, γ

   

=
cα cβ cα sβ sγ – sαcγ cα sβ cγ + sα sγ
sα cβ sα sβ sγ + cα cγ sα sβ cγ – cα sγ
– sβ cβ sγ cβ cγ

. (5)

Suppose the position vector from OB to OP, OBOP ,
has the following coordinate vector in the frame FB:

OBOP
B = [x   y   z]T (6)

Note that, here, we adopt the convention of using a
superscript after a vector to represent its coordinate
vector in a certain coordinate frame.  This convention
will also be followed below, except for the superscript T,
which is reserved for the transpose of column and row

vectors.  From Fig. 2, we have

BiPi  

B = OBOP 

B + OPPi 

B – OBPi 

B 

= OBOP 

B + RP
B   ⋅ OPPi 

P – OBBi 

B, (7)

in which OPPi 
P and OBBi 

B are constant vectors determined
by the physical dimensions of the structure.  Hence, the
length of the i-th link is

li =    BiPi 

B
 2 . (8)

Note that the right side of (8) is a nonlinear
function of the position and attitude variables (x, y, z, α,
β, γ) of the upper platform.  In other words, given any
position and attitude of the upper platform within its
working space, we can use (8) to determine all six link
lengths that are required.  For the Stewart platform in a
driving simulator, (x, y, z, α, β, γ) of the upper platform
must follow the trajectory commands generated by the
system and the pilot.  Thus, (8) is the key equation for
motion realization, as link length changes can be imple-
mented by controlling the hydraulic cylinder links
appropriately.

IV. VEHICLE DYNAMIC MODEL [15]

It is important to predict the vehicle dynamic re-
sponses to the pilot’s inputs in an interactive driving
simulator.  In this section, we will introduce a simplified
vehicle dynamic model, which considers mainly the dy-
namic characteristics of the vehicle suspension system.
For simplicity, all other sources of dynamic forces, such as
engine vibration, structural flexibility, transmission ac-
tions etc., are ignored.  Consider the vehicle at rest on the
XI-YI plane as shown in Fig. 3.

Fig. 2.  Inverse kinematics of a Stewart platform.
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When the vehicle is not moving, the static forces
exerted by the ground on the front and rear wheels are

  Wf = Mug + Msg
r

L
, (9)

  Wr = Mug + Msg
f

L
, (10)

respectively, where Ms is the mass of the vehicle body,
Mu is the mass of two suspension systems and wheels, g is
the gravitational acceleration, and f, r and L are
lengths shown in Fig. 3.

When the vehicle has forward acceleration ax at
time t, we can take moments about points E1 and E2 in
Fig. 4 to obtain the normal reaction forces on the front and
rear wheels as

  Wf = Mug + Msg
r

L
–

Msa x(h + s z)
L

, (11)

  Mr = Mug + Msg
f

L
+

Msa x(h + s z)
L

, (12)

respectively, where h is the height of the vehicle’s
center of mass when it is at rest, as shown in Fig. 3, and
sz is the shift of the vehicle’s center of mass along the
positive direction of ZC at time t.  From (9)-(12), we know
that the deflection of front and rear suspension is,
respectively,

   ∆ f =
Msa x(h + s z)

LK f

, (13)

   ∆r =
Msa x(h + s z)

LK r

, (14)

where Kf and Kr are the stiffness coefficients of the front
and rear suspension systems, respectively.  At the next
instant t + ∆t, where 0 < ∆t << 1, the shift of the vehicle’s
center of mass due to pitching of the vehicle body is

   s z1 = r

L
∆ f – f

L
∆r , (15)

and the rotation angle of FV along the YC axis with respect
to FC is

   θy = –
∆ f + ∆r

L
. (16)

For the lateral motion of the vehicle, consider Fig. 5.
When the vehicle is not moving, the static forces ex-
erted by the ground on the left and right wheels are,
respectively,

  Wl = Mug + Msg
d rt

D
, (17)

  Wrt = Mug + Msg
d l

D
, (18)

where drt, dl, and D are shown in Fig. 5.  Suppose the
vehicle has a velocity vx in the positive direction of XC

and an angular velocity  θz in the positive direction of ZC;
then, the centripetal acceleration is

   a y =
v x

2

ρ = v xθz . (19)

Via similar derivation for the longitudinal case,
we can obtain relative quantities at time t as

  
Wl = Mug + Msg

d rt

D
–

Msa y(h + s z)

D
, (20)

  
Wrt = Mug + Msg

d l

D
+

Msa y(h + s z)

D
, (21)

   ∆ l =
Msa y(h + s z)

DK l

, (22)

   ∆rt =
Msa y(h + s z)

DK rt

. (23)

Consequently, we can determine the shift of the
mass center at time t + ∆t due to the rolling of the vehicle
body as

   s z2 =
d rt

D
∆ l –

d l

D
∆rt (24)

Fig. 3.  Side view of the vehicle at rest on the XI-XI plane.

θy

Fig. 4.  Side view of the vehicle during acceleration.
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and the rotation angle of FV along the axis XC with
respect to FC as

   θx =
∆ l + ∆rt

D
. (25)

Thus, at time t + ∆t, the total shift of the mass
center is

sz = sz1 + sz2. (26)

V. PILOT MOTION ANALYSIS

In this section, we will analyze the motion of a
fixed point A inside the vehicle body.  In our simulator, this
point will be the center of the pilot’s seat in the simulated
vehicle, so we shall be able to describe the motion that the

pilot will experience in appropriate frames.  Let   r VA  be the
position vector from the origin of FV to point A; thus,

  r VA
V  is a constant vector.  Coordinate transformation gives

   r VA
V = R I

V ⋅ r VA
I . (27)

Hence,

   r VA
V = R I

V ⋅ r VA
I + R I

V ⋅ r VA
I = 0 . (28)

Symmetrically, we have

   r VA
I = R I

V ⋅ r VA
V + R V

I ⋅ r VA
V = R V

I ⋅ r VA
V . (29)

According to the kinematics of non-inertial frames,
we also have

   r VA
I = ΩIV

I ⋅ r VA
V , (30)

where

   

ΩIV
I =

0 – ωIV3
I ωIV2

I

ωIV3
I 0 – ωIV1

I

– ωIV2
I ωIV1

I 0
(31)

is skew-symmetric and    [ ωIV1
I ωIV2

I ωIV3
I ]T = ω IV

I  from
(4).  Based on (29) and (30), we see that

   R V
I ⋅ r VA

V = ΩIV
I ⋅ r VA

I = ΩIV
I ⋅ R V

I ⋅ r VA
V . (32)

Since   r VA
V  is arbitrary, it can be concluded that

   R V
I = ΩIV

I ⋅ R V
I , (33)

   ΩIV
I = R V

I ⋅ R I
V . (34)

Now, if we treat FV as the fixed frame and FI as the

rotating one with angular velocity    – ω IV, we get

   R I
V ⋅ r VA

I = – ΩIV
V ⋅ r VA

V = – ΩIV
V ⋅ R I

V ⋅ r VA
I , (35)

   R I
V = – ΩIV

V ⋅ R I
V . (36)

The orthogonality of FI and FV implies that

  R V
I = (R I

V)T = (R I
V)– 1 , (37)

  R V
I = (R I

V)T . (38)

Substitution of (36), (37), and (38) into (34) yields

   ΩIV
I = (R I

V)T ⋅ R I
V = ( – ΩIV

V ⋅ R I
V)T ⋅ R I

V = R V
I ⋅ ΩIV

V ⋅ R I
V ,

(39)

which in turn can be substituted into (33) to produce

   R V
I = (R V

I ⋅ ΩIV
V ⋅ R I

V) ⋅ R V
I = R V

I ⋅ ΩIV
V . (40)

θz

Fig. 6.  The vehicle turning right.

Fig. 5.  Rear view of the vehicle at rest.
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From (29), (33), and (39), we get

   r VA
I = ΩIV

I ⋅ r VA
I = (R V

I ⋅ ΩIV
V ⋅ R I

V) ⋅ r VA
I , (41)

which can be simplified as

   R I
V ⋅ r VA

I = ΩIV
V ⋅ r VA

V . (42)

The position vector   r IA pointing from the origin of
frame FI to fixed point A can be expressed as the sum

  r IA
I = r IV

I + r VA
I , (43)

where   r IV is the position vector pointing from the origin
of frame FI to the origin of frame FV.  If the vehicle has
both translation and rotation motions in frame FI, then
the first and second order time derivatives of the position

vector   r IA expressed in FI are, respectively,

   r IA
I = r IV

I + R V
I ⋅ ΩIV

V ⋅ r VA
V , (44)

   r IA
I = r IV

I + R V
I (ΩIV

V ⋅ r VA
V +ΩIV

V ⋅ ΩIV
V ⋅ r VA

V ) , (45)

where (37), (40), and (42) are used to compute these
derivatives.  By taking  R V

I  on (45) to the left side of the
equation, (45) can also be used to express the second

derivative of   r IA in FV:

   R I
V ⋅ r IA

I = R I
V ⋅ r IV

I + (ΩIV
V +ΩIV

V ⋅ ΩIV
V ) ⋅ r VA

V ) , (46)

where the first term on the right side can be changed to

   R I
V ⋅ r IV

I = r IV
V + ΩIV

V ⋅ r IV
V (47)

by taking the derivatives of both sides of the equation

   r IV
I = R V

I ⋅ r IV
V (48)

and using (40).
For our simulator development problem, we can use

(46) and (47) as well as (50) and(51) given in the next
Section to compute the specific force and angular velocity
on point A, the pilot’s seat.  Note that the right hand
sides of (46) and (47) are the vehicle angular and transla-

tional velocities   ΩIV
V  and   r IV

V  and the acceleration   ΩIV
V

and   r IV
V  represented in frame FV.  These quantities can be

easily determined from the information provided by
the vehicle dynamic model introduced in Section IV.

VI. THE CLASSICAL WASHOUT
ALGORITHM

To generate the sensation of motion for pilots driv-
ing a simulator, a standard approach is to compute the
specific force [16] acting on the pilot in the vehicle, which
is defined as the nongravitational force per unit mass.
Suppose from the vehicle dynamic model and the method
described in Section V, we know that at a certain instant,

the acceleration of the center of the pilot’s seat is  a .  Then
the specific force acting on the pilot is

   f ≡ a – g . (49)

Clearly, due to the motion capability and working
space constraints, the Stewart platform can not re-create
the specific force faithfully in the entire operational
process.  Thus, some adjustments are necessary so that
only the part that can be sensed by the pilot is re-created.
The principle human sensing organs for rotation motion
and the specific force are the semicircular canals and
otolith, respectively.  The mathematical response
models for the semicircular canals and otolith are shown
in Fig. 7 and Fig. 8, and are active within the frequency
region of 0.2 –10 rad/sec and 0.2 – 2 rad/sec, respectively.
Exploiting the threshold and band-pass properties of the
human motion sensation, the washout algorithms sug-
gests how we can create a sensation of motion by per-
forming translation and rotation of certain frequency
bands only, and by replacing the sustained linear trans-
lation with a tilt motion.

Consider the seat center point A on which the pilot
sits.  Because FA is merely a translation of FV, the specific
force acting on point A has the same representation in
both frames:

   f A

A
= f A

V
= R I

V ⋅ r IA
I – R I

V ⋅ g I , (50)

and the angular velocity of point A with respect to FI is
equal to that of the vehicle’s center of mass, i.e.,

ω δ

δTH

∆ ω̂
TasTLs

(TLs+1)(Tss+1) Tas + 1

Fig. 7.  Mathematical response model of the semicircular canals [17,18].

f d

dTH

D f̂(τas+1)
K

(τLs+1)(τas+1)

Fig. 8.  Mathematical response model of the otolith [17,18].
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   ΩIA
A = ΩIA

V = ΩIV
V . (51)

Note that the second equality in (50) comes from the
results derived in Section V.  To extract from (50) and (51)
the parts that both need to and can be implemented on the
Stewart platform, the classical washout algorithm [9,18]
shown in Fig. 11 employs three functions.  First of all, it
generates platform translational motion commands x, y,

and z by putting  f A

A
 through a nonlinear attenuator of the

characteristics shown in Fig. 9 and a filter H1(s).  The
nonlinear attenuator is used to simulate the threshold
effect of human sensation and to scale the amplitudes of
the motion commands.  The filter is used to eliminate the
low frequency content of the motion commands to which
the pilot is not sensitive.  Secondly, it generates some of
the platform rotational motion commands α , β, and γ
by putting    ω IA

A  from   ΩIA
A  in (51) through a nonlinear

attenuator and a filter H2(s).  Thirdly, it generates the
remaining platform rotational motion commands.  The
purpose here is to implement the sustained linear trans-

Output ξ

Input ξ

k

1

d

Fig. 9.  Nonlinear attenuator of the washout algorithm.

g 
A➞

f A
A➞

g 
I➞

ω 
A➞

IA ω 
➞

1 ω 
➞

H

f 1

➞

a1
➞ aH

➞

fL 

➞

Nonlinear

Attenuator #1

Nonlinear

Attenuator #1

Nonlinear

Attenuator #2 H2(s) RP (t)
B

1

s

cos
sin

RP (t + ∆t)B+

+

+

+

+

+

+

+

−

−

L(s)
Tilt

Coordinate

x, y, z

Inverse
Kinematics

li

1

s2RP (t)
BH1(s)

α, β, γ

Fig. 11.  Classical washout algorithm.

Fig. 10.  Tilt corrdinates.

fL2

fL1

g

fL3

φx

φx

lational acceleration by means of tilt-coordinates shown

in Fig. 10, where the relative tilt angles φ  = [φx   φy   φz]
T

are

   φx = tan– 1(
f L2

f L3

) , (52)

   φy = – tan (
f L1

f L3

⋅ cos (φx)) , (53)

φz = 0, (54)

and  f L

T
 = [fL1   fL2   fL3]

T is obtained by putting  f A

A
 through

a nonlinear attenuator in series with a low-pass filter

L(s).  Obviously,  f L

T
 is the specific driving force for the

sensible part of the sustained linear translational
acceleration, and if we tilt the upper platform with
angles φx and φy around the axes XP and YP, respec-
tively, then the gravity force will produce the first two
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components of  f L

T
 for us.   The related parameters of the

filters and nonlinear attenuators are listed in Tables 1, 2
and 3, respectively, in which the transfer functions of the
filters are expressed by the z-transform because they need
to be implemented by the digital computer.

VII. VISUAL SYSTEM

The visual system is needed not only to create a
virtual environment for the pilot of the simulated vehicle
to drive around in, but also to produce visual cues which
greatly reinforce the sensation of motion experienced by
the pilot.  For our system, the image generation software
was developed using the graphics tool package Direct3D
on the operating system Windows 95.  The environmental
scenes, such as trees, road, and road signs, were con-
structed using the method of texture mapping [13,14],
as shown in Fig. 12.  A typical scene like that shown
Fig. 13,  is displayed on a large screen in front of the pilot
using an LCD projector.  When the pilot inputs steering
signals into the simulator through a joystick, we decide
what the pilot should see by computing the position and
orientation of the view port marked in front of the vehicle
as shown in Fig. 12.  In our system, two computers are

employed.  The master computer receives/transforms
commands, determines the view port, generates images in
real time, and passes the transformed commands to the
other computer, the slave computer, for the vehicle
dynamics, utilizing the washout algorithm, and control-
ling the Stewart platform.

Here, we will briefly describe how the position and
orientation of the view port are computed.  In response to
steering signals, which are the axial acceleration ax

and the front wheel turn angle ϕ, the master computer
first determines the yawing velocity of the vehicle
based on the relation given in Fig. 14, where L is
defined in Fig. 3, dx is an infinitesimal translational
displacement, dθz is an infinitesimal yaw angle, and

dx ⋅ sin(ϕ) = L ⋅ sin(dθz) ≈ L ⋅ dθz. (55)

An infinitesimal time dt is divided on both sides to
obtain

   dx
dt

⋅ sin (ϕ) = L ⋅ dθz

dt
(56)

or

   ωIC3
C =

sin (ϕ)
L

⋅ v IC1
C , (57)

Table 1.  Parameters of the filters.

Transfer function   b 0 + b 1z
– 1 + b 2z

– 2

1 + a 1z
– 1 + a 2z

– 2

H1(z) H2(z) L(z)

a1 –1.9187 –1.9112 –1.8890

a2 0.9244 0.9150 0.8949

b0 0.0378 0.9565 0.0015

b1 0 –1.9131 0.0029

b2 –0.0378 0.9565 0.0015

Table 2.  Parameters of nonlinear attenuator #1.

Surge Sway Heave
( x-axis ) ( y-axis ) ( z-axis)

Threshold value d
0.17 0.17 0.28(m/sec2)

Amplitude ratio k 0.4 0.4 0.4

Table 3.  Parameters of nonlinear attenuator #2.

Roll Pitch Yaw
( x-axis ) ( y-axis ) ( z-axis)

Threshold value d
3.0 3.6 2.6(deg/sec)

Amplitude ratio k 0.7 0.7 0.7

Fig. 12.  Scene construction.

Fig. 13.  A typical scene projected by the simulator.
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where    ωIC3
C  is the angular velocity of the vehicle about the

axis ZC, and   v IC1
C  is the axial velocity of the vehicle.  Note

that   v IC1
C  can be obtained by integrating the axial ac-

celeration ax, which is the first component of   a IC
C , i.e.,

  a IC1
C .  Clearly,    ωIC3

C  and   v IC1
C  together are sufficient to

define the position of the view port.  As to the orientation
of the view port, we use a simplified scheme to speed up
the computation and graphics display. In Direct3D,
every object in the scene belongs to some frame, and
the view port is no exception. Also, a frame may be the
“child” frame of some “parent” frame, which in turn may
be the “child” frame of some other “parent” frame and,
eventually of the “root” frame.  We describe the transla-
tional and yawing motion of the view port using a frame
Z, which is the “child” frame of the “root” frame.  Then, we
describe the pitching motion of the view port using a
frame Y, which is the “child” frame of the frame Z.
Finally, we describe the rolling motion of the view port
using a frame X, which is the “child” frame of the frame Y.
Figure 15 shows the frame structure of the view port
except that, actually, frames X, Y, and Z have the same
origin.  They are separated in Fig. 15 to facilitate
presentation.  For the view port, the pitching angle θy is
the rotation angle of the Y-axis of the frame Y and is
largely proportional to the axial acceleration   a IC1

C  ac-
cording to (13), (14), and (16).  Therefore,

   θy = σ y ⋅ a IC1
C (58)

where σy is a constant.  Similarly, the rolling angle θx is
the rotation angle of the X-axis of the frame X and is

largely proportional to the centripetal acceleration
determined in (19) according to (22), (23), and (25).
Therefore,

   θx = σ x ⋅ v IC1
C ⋅ ωIC3

C , (59)

where σx is a constant.  Lastly, the yawing angle θz is
the rotation angle of the Z-axis of the frame Z and can
be obtained by integrating    ωIC3

C .

VIII. EXPERIMENTAL RESULTS

Figure 16 shows the driving simulator assembled in
the Advanced Control Laboratory of the Department of
Electrical Engineering, National Taiwan University.
The block diagram of its system configuration is shown in
Fig. 17.  In the system, the master computer generates

dx ⋅ sin(ϕ) = L ⋅ sin(dθz)

ϕ

dθz

dx

L – dx

Fig. 14.  Yawing velocity of the vehicle.

axωx

az

ωz

ay

ωy

Fig. 15.  Frame structure of the view port.

Fig. 16.  Stewart platform driving simulator.



H.-L. Tseng and I.-K. Fong: Implementation of a Driving Simulator with a Stewart Platform 97

vehicle to accelerate constantly for 10 seconds without
making any turns, and to cruise with zero acceleration
afterwards.  The resulting command signals for the plat-
form orientation and position are the dark lines in each
diagram in Fig. 19.  Apparently, these command signals
are correct, as the commands for α, γ, and y are all zero, and
the commands for β, x and z reflect the motion that the
pilot would experience at the beginning and end of a
constant translational acceleration.  Figure 19 also in-
cludes the orientation responses (light lines) for α, β, and
γ of the platform measured by gyroscopes.  These re-
sponses contain some small tracking errors, which may
be due to the bias of the gyroscope and to coupling
between different degrees of freedom of platform motion.
The second experiment was similar to the first one
except that this time the simulated vehicle was required to
make a turn while accelerating forwards.  The steering
signals are shown in Fig. 20.  Note that it is the yawing
velocity    ωIC3

C  that is shown, not the front wheel turn
angle ϕ received from the joystick.  Again, we see that
the resulting command signals for the platform orientation
and position represented by the dark lines in Fig. 21
are reasonable, and that the orientation responses (light
lines) measured by the gyroscope contain only small
tracking errors.  Finally, in the third experiment, a pilot
tested the platform by steering it using the joystick and
produced the steering commands displayed in Fig. 22.
It is worth noting that even with these almost random
inputs, the platform respondsed quite well, as the gyro-
scopic outputs in Fig. 23 show.  More detained results of
these experiments can be found in [19].

IX. CONCLUSION

We have constructed a driving simulator by integrat-
ing a realistic vehicle dynamic model and virtual reality
technologies.  The system has been tested thoroughly, and
the performance has been found to be quite satisfactory.  A
video clip showing operation of the simulator and its
components can be viewed at the Web site http://acl.ee.
ntu.edu.tw.  For more complex vehicles such as ships and
aircraft, it will be possible to use the same approach to
build simulators.  More complex factors, such as road
roughness, air resistance etc., will be introduced into our
system in the future.

Joystick
Input

Pilot

PCL-726

PCL-813

PCL-816

Gyro
Stewart
Platform

LVDT

Proportional
Valve

LCD
Projector

Display Area
150cm×100cm

   Pentium 200
Computer Graphic Generator
(Master Computer)

    Pentium Pro 180
Vehicle dynamics computation
Stewart Platform Controller
(Slave Computer)

Motion Cue

Visual Cue

16-bit A/D Converter

12-bit A/D Converter

12-bit D/A Converter

Fig. 17.  Block diagram of the driving simulator.
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Fig. 18.  Steering commands.

images at a rate of 25 pictures per second while the slave
computer controls the motion of the Stewart platform
based on the vehicle model at a rate of 400 Hz.  This
method of computational load sharing successfully satis-
fies the real time operational requirements of the system.
Also, because the steering commands received from the
pilot are received by the master computer and used for
signal processing, and are then passed to the slave com-
puter which controls the motion part, visual cues and
motion cues are well synchronized.  Besides the computer
part of the system, the mechanical part also plays an
important role.  As we mentioned above, the controller is
based on the results reported in [11] and [12], where only
LVDTs are meaning unclear feedback link lengths.  Here,
we add gyroscopes to record the real time orientation
responses of the platform but do not feed the signals back
to the controller, thus avoiding the bias effect of the
gyroscopes.  Use of the hydraulic Stewart platform en-
ables us to carry heavy loads, such as human pilots, but
also restricts the operational speed, compared with those
of Stewart platforms driven by electric motors.  However,
the response time of the hydraulic actuators and controller
adopted here is fast enough for this application project, as
the test results to be presented below show.

Here, we will present three groups of experimental
results obtained using this setup.  In the first experiment,
without putting a pilot on the platform, we let the master
computer itself generate a set of steering signals shown in
Fig. 18.  These command signals asked the simulated
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