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Robust FIR Filter Design with Envelope Constraints and
Channel Uncertainty

Ching-Min Lee and I-Kong Fong

Abstract—In this note, a finite impulse response (FIR) filter design
problem is considered. The signals to be filtered are assumed to be
corrupted by the channel noise. In addition, the channel characteristics
are assumed to contain uncertainties. The linear matrix inequalities
approach is adopted to provide two optimization procedures for designing

optimal filters and robust filters subject to filter output envelope
constraints. A numerical example is presented to illustrate the proposed
filter design methods.

Index Terms—Bounded stability, integral quadratic constraints, linear
matrix inequality, robust FIR filter, time-domain envelope constraint.

I. INTRODUCTION

In the field of signal processing, many filter design problems can be
cast as constrained optimization problems. The constraints are usually
defined by the specifications of the desired filters, and these specifica-
tions arise either from the standards set by certain regulatory bodies or
from practical considerations. The time-domain envelope-constrained
filter design is one example of these problems, which often involve re-
quirements on the transient responses, such as the pulse-shape require-
ments in digital data transmission systems. In particular, these kinds of
filters may be seen in applications like the pulse compression for many
communication and radar systems, the TVwaveform equalization with
respect to the K-mask, and the data channel equalization or deconvo-
lution, [1]–[3].

As to the optimization part, the H1 optimization theory has been
widely used in robust control and signal processing problems [4]–[8].
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Fig. 1. Deconvolution filtering system.

Take the deconvolution filter design, for example. The objective of the
problemmay be set to the minimization of theH1 norm of the filtering
error transfer function. In this approach, the system formulation allows
the inclusion of the transmission channel and/or signal models. In ad-
dition, by utilizing methods developed in [7] and [9], the time-domain
envelope constraints may be accommodated simultaneously. However,
there are still other important factors to take care of, such as the system
uncertainties. In the literature [10], [11], there are some discussions
about input uncertainty of the filter, but consideration of input uncer-
tainty bounds only [11] does not fully use information about system un-
certainties that may be available. A more direct and complete approach
for handling the transmission channel model uncertainties is desirable.
In this correspondence, the H1 optimal finite impulse response

(FIR) filtering problem with envelope constraints and channel un-
certainties is studied. The linear matrix inequality (LMI) framework
is adopted, and the uncertainties in the channel are formulated as
satisfying the integral quadratic constraints (IQCs) [12], [13]. The
design method is also enhanced to ensure that the output of the filter is
not too close to the constraining envelopes [8], [10], [14]. Compared
with some existing method [14], which deals with the output envelope
constraint problem by optimization procedures depending on the
quasi-Newton method and golden section method, the LMI-based
method handling a convex optimization problem is numerically
more attractive. To illustrate the effectiveness of the proposed design
method, a numerical example is presented.

II. PROBLEM FORMULATION

Consider the deconvolution filtering system shown in Fig. 1. In the
system, the source signal s(k) 2 R is assumed to be generated by the
signal model

�S :
xs(k + 1) = Asxs(k) +Bsw(k)

s(k) = Csxs(k) +Dsw(k)
(1)

where xs(k) 2 Rn is the model state vector, w(k) 2 l2[0;1) is the
driving signal of the model, and As, Bs, Cs, and Ds are known con-
stant matrices of appropriate dimensions. The source signal is trans-
mitted through a channel with an uncertain characteristic modeled by

�C :
xc(k + 1) = Acxc(k) +Bcs(k) +

p

i=1
Hc1i�ci(k)

zc(k) = Ccxc(k) +Dcs(k) +
p

i=1
Hc2i�ci(k)

(2)

where xc(k) 2 Rn is the channel state vector, �ci(k) 2 Rn , i =
1; 2; . . . ; p is the ith uncertain vector satisfying the IQC [12]

�

k=0

k�ci(k)k
2 �

�

k=0

kE1ixc(k) +E2is(k) + E3i�c(k)k
2 (3)

as � ! 1, �Tc (k) = [�Tc1(k) � � � �Tcp(k)], and Ac, Bc, Cc,
Dc, Hc1i, Hc2i, E1i, E2i, and E3i are known constant ma-
trices with appropriate dimensions. For subsequent usage, we
define Hc1 = [Hc11 � � � Hc1p], Hc2 = [Hc21 � � � Hc2p],
ET
1 = [ET

11 � � � ET
1p], E

T
2 = [ET

21 � � � ET
2p], and ET

3 =
[ET

31 � � � ET
3p].
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At the receiving end, the measured signal y(k) is equal to zc(k) +
v(k), where v(k) is the energy-bounded channel noise. To optimally
recover the source signal s(k), the signal y(k) is deconvoluted by a
filter

�F :
xf (k + 1) = Afxf (k) +Bfy(k)

ŝ(k) = Cfxf (k) +Dfy(k)
(4)

where xf (k) 2 Rn is the filter state vector, andAf ,Bf ,Cf , andDf

are constant matrices to be designed. Let the filtering error be defined
as e(k) = s(k)� ŝ(k). Then, it satisfies

�e :
xe(k + 1) = Aexe(k) +Bewe(k) +H1e�c(k)

e(k) = Cexe(k) +Dewe(k) +H2e�c(k)
(5)

where xTe (k) = [xTs (k) x
T
c (k) x

T
f (k)],w

T
e (k) = [wT (k) vT (k)], and

Ae =

As 0 0

BcCs Ac 0

BfDcCs BfCc Af

Be =

Bs 0

BcDs 0

BfDcDs Bf

; H1e =

0

Hc1

BfHc2

Ce = [Cs �DfDcCs �DfCc � Cf ];

De = [Ds �DfDcDs �Df ]; H2e = �DfHc2: (6)

The purpose of this paper is to design an FIR filter �F with three
desired properties, of which the first one is given by the following def-
inition.

Definition 1: [12] The filtering error dynamics�e is called bounded
stable if there exists a constant � � 0 such that kxe(k)k � � for all
k � 0, no matter what the initial condition xe(0) and input we(k) 2
l2[0;1) are.

The second desired property of the filter is that for a given filter input
signal y(k) of finite duration, the output signal ŝ(k) has to be bounded
above and below by

ls(k) � ŝ(k) � us(k) (7)

for k = 0; 1; . . . ; n, where ls(k) and us(k) are the lower and upper
bounds of the time-domain mask, respectively, and n+1 is the duration
of ŝ(k). Finally, it is desired that when xe(0) = 0, the filter has theH1
performance


�1

�

k=0

ke(k)k2 � 

�

k=0

kwe(k)k
2 (8)

for some scalar  > 0 and all we 6= 0, as � ! 1.

III. FIR FILTER DESIGN

To start, the S-procedure [15] is applied to convert two of the above
design objectives into a quadratic condition, and a theorem is derived.

Theorem 1: Under all admissible channel uncertainties satisfying
the IQC (3), the error dynamics �e is bounded stable and satisfies (8)
when xe(0) = 0 if there exists a symmetric positive definite matrix
X 2 Rn +n +n and positive scaling scalars �1; �2; . . . ; �p,  satis-
fying the following inequality:

(Aexe +Bewe +H1e�c)
T
X(Aexe +Bewe +H1e�c)

� x
T
e Xxe +

p

i=1

�i kE1ixc + E2is+ E3i�ck
2 � k�c k

2

+ 
�1kCexe +Dewe +H2e�ck

2 � kwek
2
< 0 (9)

for all [xTe ; w
T
e ; �

T
c ]

T
6= 0.

Proof: Summing up the left-hand side of the inequality in (9)
along any trajectory of the error dynamics �e, one gets

x
T
e (�+ 1)Xxe(�+ 1)� x

T
e (0)Xxe(0)

+

p

i=1

�i

�

k=0

kE1ixc(k) +E2is(k) +E3i�c(k)k
2

�

�

k=0

k�ci(k)k
2

+ 
�1

�

k=0

ke(k)k2 � 

�

k=0

kwe(k)k
2

< 0 (10)

for all we 6= 0. From (3), it follows that

x
T
e (�+ 1)Xxe(�+ 1) < x

T
e (0)Xxe(0) + 

�

k=0

kwe(k)k
2

as �!1. Thus, the bounded stability of the filtering error dynamics
is implied. As to the H1 performance, when xe(0) = 0, it follows
from (3) and (10) that (8) holds.

A. H1 Optimal FIR Filter Design

To develop a set of easy-to-use conditions for designing the FIR fil-
ters, the parameter matrices of the filter �F are assumed to be of the
form [5]

Af =

0 1 0 � � � 0

0 0 1 � � � 0
...

...
...

. . .
...

0 0 0 � � � 1

0 0 0 � � � 0
n �n

; Bf =

0

0
...
0

1
n �1

Cf = [f(nf) f(nf�1) � � � f(1)] ; Df = f(0)

where f(0); f(1); � � � ; f(nf) are the parameters to be determined. Ac-
cordingly, the transfer function of the filter is

Cf(zI �Af )
�1
Bf +Df

= f(0) + f(1)z�1 + f(2)z�2 + � � �+ f(nf)z
�n

: (11)

At this point, it is appropriate to consider the second desired property of
the filter. Suppose that a signal fy(0); y(1); y(2); . . . ; y(m); 0; 0; . . .g
is given, and it is required that (7) be satisfied. Let [7]

y=

y(0)

y(1)
...

y(m)

; f=

f(0)

f(1)
...

f(nf)

; lb=

ls(0)

ls(1)
...

ls(n)

; ub=

us(0)

us(1)
...

us(n)

(12)

and

Y =

y(0) 0 � � � 0

y(1) y(0) � � � 0
... y(1) � � �

...

y(m)
... y(0)

0 y(m)
... y(1)

...
...

...
0 0 � � � y(m)

(13)

where Y is an n� (nf + 1) matrix, and n = m+ nf + 1. Therefore,
the time-domain constraints in (7) are equivalent to

diag(lb) � diag(Y f) � diag(ub) (14)
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where“diag(�)”denotesadiagonalmatrixformedbyputtingtheelements
of the argument vector on the diagonal positions of thematrix. Based on
the inequality (14) and Theorem 1, the following theorem can be estab-
lished to provide a convex optimization problemwith the LMI formula-
tion, which may be easily solved for finding the filter parameters.

Theorem 2: An H1 optimal FIR filter of the form (11) satisfying
the three desired properties formulated in Section II exists if the fol-
lowing optimization problem has solutions:

min
X;f;J

 (15)

subject to (16), shown at bottom of the page, and

diag(lb) � diag(Y f) (17)

diag(Y f) � diag(ub) (18)

X > 0; J > 0;  > 0 (19)

where J = diag(�1In ; � � � ; �pIn ), Ce = [Cs 0 0] � Df

[DcCs Cc 0] � Cf [0 0 I], De = [Ds 0] � Df [DcDs I],
Ee = [E2Cs E1 0], and Ew = [E2Ds 0].

Proof: Note that (9) can be rewritten as

(Aexe+Bewe+H1e�c)
TX(Aexe+Bewe+H1e�c)�x

T
e Xxe

+ (Eexe+Ewwe+E3�c)
TJ(Eexe+Ewwe+E3�c)

� �Tc J�c+
�1(Cexe+Dewe+H2e�c)

T

� (Cexe+Dewe+H2e�c)� wT
e we

= xTe wT
e �Tc M xTe wT

e �Tc
T

< 0:

B. Robust H1 FIR Filter Design

When anH1 optimal FIR filter is designed using Theorem 2 in the
above subsection, the time-domain constraints in (7) will be satisfied.
However, in some cases, the output response of the filter may be very
close to or even touch the constraint envelopes. In certain applications,
this is regarded as undesired. To avoid this kind of situation, the enve-
lope constraints and objective function considered in Theorem 2 can
be modified as

ms(k)� � � es(k) � ŝ(k) � ms(k) + � � es(k) (20)

for k = 0; 1; . . . ; n, and

min
X;f;J

(�1 + �2�) (21)

respectively, where

ms(k) =
1

2
(us(k) + ls(k)) (22)

es(k) =
1

2
(us(k)� ls(k)) (23)

�1 and �2 are tunable weighting parameters, and 0 < � < 1 is a new
scaling parameter to be determined. Note that (20) is equivalent to the
LMIs

diag(mb)� � � diag(eb) � diag(Y f) (24)

and

diag(Y f) � diag(mb) + � � diag(eb) (25)

where

mb =

ms(0)

ms(1)
...

ms(n)

; eb =

es(0)

es(1)
...

es(n)

and f and Y are defined in (12) and (13).

IV. NUMERICAL EXAMPLE

In this section, an example is worked out to illustrate the proposed
design algorithms. Suppose that the system shown in Fig. 1 has the
signal model �S with the following system matrices:

AT
s =

�2:3060 1 0 0 0 0

�2:9625 0 1 0 0 0

�2:2590 0 0 1 0 0

�1:0922 0 0 0 1 0

�0:3009 0 0 0 0 1

�0:0325 0 0 0 0 0

; Bs =

1

0

0

0

0

0

Cs = [0 0 0 0 0:0062 0:2170]; Ds = 0

and the channel model �C with the following system matrices:

Ac =

�1:90 �1:18 �0:24

1 0 0

0 1 0

; Bc =

1

0

0

Cc = [�0:360 � 0:153 � 0:027]; Dc = 0:45:

To simplify the discussion, assume that there is only one uncer-
tain variable in the channel. The related matrix parameters are
HT
c1 = HT

c11 = [0:02 0:03 0:01], Hc2 = Hc21 = 0:024,
E1 = E11 = [0:62 0:51 0:55], E2 = E21 = 0:73, and
E3 = E31 = �0:082. In addition, assume, to start, that there is
no channel noise (i.e., v � 0). In Fig. 2, the filter output constraint
envelopes corresponding to a particular channel output y(k) are
shown. This y(k) is generated by the unit-impulse response of the
signal model when the uncertain variable of the channel model equals
zero. Then, the H1 optimal filter is designed using the LMI Toolbox
of Matlab [16] with nf selected to be 15. The resultant optimal
 = 3:5330, and the filter output with respect to the above y(k)
is also displayed in Fig. 2. Clearly, the output is quite close to the
lower envelope. Thus, the robust H1 filter is designed with �1 = 1
and �2 = 1:5. The resultant optimal  and � are 3.8891 and 0.6243,
respectively. In Fig. 3, the new filter output is displayed, which is very
close to the envelope center line, as desired.
To see the robustness of the two filters, the filter outputs are com-

puted again with respect to the same signal s(k), but this time, a nor-
mally distributed white channel noise v(k) with zero mean and vari-
ance equal to 1 � 10�4 is added. In addition, the channel uncertain
variable �c1(k) is set to be �3:356k=(k2 + k + 1) for k � 0. The re-
sults are shown in Figs. 4 and 5. It is seen that most of the time, the filter

M =

AT
e XAe �X + ET

e JEe AT
e XBe + ET

e JEw AT
e XH1e + ET

e JE3 CT
e

BT
e XAe + ET

wJEe BT
e XBe +ET

wXEw � I BT
e XH1e + ET

wJE3 DT
e

HT
1eXAe + ET

3 JEe HT
1eXBe +ET

3 JEw HT
1eXH1e + ET

3 JE3 � J HT
2e

Ce De H2e �I

< 0 (16)
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Fig. 2. Filter output ( ) (dotted line), the corresponding filter output
constraint envelopes (dashed lines), and output of the optimal filter (solid
line).

Fig. 3. Center line of the mask (dash-dotted line) and output of the robust
filter (solid line).

Fig. 4. Filter output of the optimal filter (solid line) with channel noise
and uncertainty.

Fig. 5. Filter output of the robust filter (solid line) with channel noise
and uncertainty.

output of the robustH1 filter is kept within the envelopes, whereas the
situation for the optimal H1 filter is relatively worse.

V. DISCUSSION AND CONCLUSION

In this correspondence, an LMI-based optimization approach is
proposed to design FIR filters that satisfy prespecified time-domain
envelope constraints at the output. In addition to the widely treated
channel noise, the less-considered channel uncertainties are accom-
modated using the versatile IQC formulation. Both the H1 optimal
filter and the robust H1 filter are offered so that the tradeoff between
theH1 performance and constraint robustness may be carried out.
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Eigenstructure Approach for Complete Characterization of
Linear-Phase FIR Perfect Reconstruction Analysis Length

Filterbanks

Anamitra Makur, Arigovindan Muthuvel, and P. Viswanadha Reddy

Abstract—The eigenstructure based characterization of -channel fi-
nite impulse response perfect reconstruction (FIR PR) filterbanks in a pre-
vious paper by the authors is extended here to the linear-phase case. Some
results relating to linear-phase filterbanks is derived by finding appropriate
restrictions on the eigenstructure of the analysis polyphase matrix. Conse-
quently, a complete and minimal characterization for such filterbanks with
all analysis length 2 and any synthesis length is developed. Parameteri-
zation and design examples are also presented.

Index Terms—Eigenstructure, FIR filterbank, linear phase.

I. INTRODUCTION

In [1], we used the eigenstructure representation of the polyphase
matrix to propose complete characterizations of finite impulse response
perfect reconstruction (FIR PR)M -channel filterbanks with first-order
analysis polyphasematrix. Linear-phase FIR perfect reconstruction fil-
terbanks (LPFBs) find application inmany signal and image processing
fields. In this correspondence, we extend the eigenstructure represen-
tation to obtain a complete characterization of linear-phase FIR perfect
reconstruction M -channel filterbanks with all analysis filter lengths
being 2M (hence first-order analysis polyphase matrix), which are re-
ferred to henceforth as FOLPFBs. The synthesis filter length in this
characterization is not restricted to 2M as is conventionally done but
may take a value up toM2.

Characterization of a subclass of LPFBs, such as orthogonal,
M = 2, or M = 3, has been reported on several occasions. The de-
sign of FOLPFBs with a multistage structure using the discrete cosine
transform (DCT) such that a fast implementation exists is reported in
[2], where it is called the lapped biorthogonal transform. Design of
an LPFB of any order is reported in [3], whenK filters are given such
that the part polyphase matrix has rankK for all z�1 except z�1 = 0,
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and the remaining filters are designed. In [4], symbolic computation
is used to characterize an LPFB of any order. However, none of the
above characterizations are complete. In [5], a lattice structure is
used to characterize the LPFB so that the analysis polyphase matrix

of the FOLPFB becomes (1=2
p
2)

(1 + z�1)U (1� z�1)U
(1� z�1)V (1 + z�1)V

�
U0 U0JM=2

V0JM=2 �V0

, where U, V, U0, and V0 are nonsingular

M=2�M=2 matrices, and Jk is a k � k counter identity matrix. It is
shown to be complete for FOLPFBs with synthesis length 2M [6].
We briefly describe below the characterization of [1]. Replacing z�1

by �, the lth-order analysis polyphase matrix E(z) is seen as a matrix
polynomial El(�). Any matrix polynomial may be characterized by
the Jordan pair (or decomposable pair or spectral data) (Y;T(�))with
Y = [XF XR ] andT(�) = diag(I���JF ;JR��IMl��), where
diag() represents a block diagonal matrix with the arguments as the
blocks in sequence, Ik is the k� k identity matrix, and � is the degree
of jEl(�)j. XF is theM �� canonical set of Jordan chains, and JF is
the ��� Jordan form ofEl(�) (finite Jordan pair or finite spectrum).
JF is block diagonal with Jordan blocks of size b0; . . . ; bn such that
bi are nonincreasing positive integers summing up to �. Each Jordan
block’s diagonal elements are eigenvalues ofEl(�), upper off-diagonal
elements are 1, and the remaining elements are 0.1 XR and JR are the
corresponding M � (Ml � �) and (Ml � �)� (Ml � �) matrices
of the reversed matrix polynomial �lEl(��1) for the zero eigenvalue
(infinite Jordan pair or infinite spectrum). It follows that [7]

El(�) = A(IMl �P)T(�)S�1l�1Q(�) (1)

where

Sk =

XF XRJ
k
R

XFJF XRJ
k�1
R

...
...

XFJ
k
F XR

; Q(�) =

IM

�IM
...

�l�1IM

: (2)

A is an M �Ml matrix such that [STl�2 AT ]T is nonsingular, and
P = diag(I�;JR)S�1l�1[ IMl�M 0 ]TSl�2.
For the FIR inverse to exist, El(�) has to be a matrix polynomial

with a monomial determinant. This is equivalent to all eigenvalues of
El(�) being zero. Thus, JF (as also JR) should have a zero diagonal.
Further, for the first-order (l = 1) case, (1) simplifies to the block
diagonal characterization [1]

E1(�) = AT(�)Y�1 (3)

where A and Y are any M � M nonsingular matrices. Note
that JF , JR are nilpotent matrices with indices of nilpotency
nF and nR (nF = b0, size of the largest Jordan block of
JF , etc.). Then, the synthesis polyphase becomes E�1

1
(�) =

Ydiag(I���1 + n
i=2 J

i�1
F ��i;�IM�� � n �1

i=1 �iJ i
R)A

�1.
It follows that the maximum length of the synthesis filters is
(nF + nR)M , and reconstruction delay is (nF +1)M � 1. The char-
acterization allows unconstrained parameter optimization and provides
control over the length of the synthesis filters and reconstruction delay.

1For example, for � = 4, = 3 1 and zero eigenvalue =

0 1 0 0

0 0 1 0

0 0 0 0

0 0 0 0
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