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H∞ FILTER DESIGN FOR

UNCERTAIN DISCRETE-TIME

SINGULAR SYSTEMS VIA

NORMAL TRANSFORMATION*

Ching-Min Lee1 and I-Kong Fong1,2

Abstract. This paper concerns the robust H∞ filtering problem for discrete-time singular
systems with norm-bounded uncertainties. Based on the admissibility assumption of sin-
gular systems, a set of necessary and sufficient conditions for the existence of the desired
filters is established, and a normal filter design method under the linear matrix inequality
framework is developed. A numerical example is given to illustrate the application of the
proposed method.
Key words: Singular system, restricted system equivalence, admissibility, robust filter,
LMI.

1. Introduction

In the past decades, the H∞ filtering problem for singular systems has been an
important research topic. This is due not only to the theoretical interests but also
to the relevance of the topic in various engineering applications. Many works
[10], [17], [23], [26] consider robust filters for continuous-time singular systems,
in which the filter design criteria are mainly based on the generalized Lyapunov
theorem [12], [18] for singular systems, and the formulations are under the linear
matrix inequality (LMI) framework for easier applications. Unlike the discrete-
time singular system stabilization problem [20]–[22], [27], in the filtering problem
for discrete-time singular systems, applications of the approaches parallel to those
for the continuous-time systems are not often adopted. One possible reason is the
difficulty in managing the resultant constraints related to the singular matrix in
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the difference term of the state-space model, especially when the constraints need
to be represented as LMIs.

In this paper, the robust H∞ filtering problem is discussed for discrete-time
singular systems with norm-bounded uncertainties. The goal of the filter is to
satisfy the H∞ performance level requirement on the filtering error dynamics. The
proposed filter design method is formulated under the LMI framework. Unlike
[10], [23], [26], which directly handle singular systems by using the generalized
Lyapunov theorem, here a “normal transformation” to obtain normal system mod-
els (i.e., those with the system matrix for the difference term being the identity
matrix) [3] from singular system models is applied first, and normal filters are
found directly. Then, instead of using criteria such those in [20]–[22], [27], an
easier-to-use criterion based on the direct Lyapunov theorem for normal systems
is applied. It is believed that the consideration of normal filters is beneficial,
because sometimes the physical realizations of singular filters are not easy [3],
[4]. In order to realize a singular system, one often needs special algorithms [15]
to convert a singular system model into a normal state-space form.

Some of the notation to be used subsequently is introduced here. The inequality
X ≥ 0 means that the matrix X is symmetric and positive semi-definite, and
X ≥ Y means X−Y ≥ 0. Similar definitions apply to symmetric positive/negative
definite matrices. For a matrix M, ‖M‖ denotes its spectral norm, and for a stable
discrete-time transfer function matrix G(z), ‖G‖∞ = supω∈[0,2π) ‖G(e jω)‖ is its
H∞ norm. Ir is the identity matrix with dimension r , the superscript T represents
the transpose of a matrix, and diag(X, Y, . . . , Z) is the block diagonal matrix
with diagonal elements X, Y, . . . , Z. Finally, ∗ is used to simplify the presentation
of symmetric matrices.

2. Preliminaries and problem formulation

2.1. Preliminaries

First, consider the following nominal singular system:

�0 :
{

E0x(k + 1) = A0x(k) + B0u(k)

z(k) = L0x(k),
(1)

where x(k) ∈ Rn and rank E0 = r < n. The unforced singular system pair
(E0, A0) of (1) with u(k) ≡ 0 is regular, if det(zE0 − A0) is not identically zero.
If deg(det(zE0 − A0)) = rank E0, then (E0, A0) is said to be causal. The pair
(E0, A0) is stable if all the roots of det(zE0 − A0) = 0 have magnitudes less than
unity. Finally, (E0, A0) is admissible if it is regular, causal, and stable. For �0, its
transfer function matrix from u(k) to z(k) is G(z) = L0(zE0 − A0)

−1B0.

Definition 1 [3]. Suppose �0 in (1) is regular. Let P0 and Q0 be two n × n non-
singular matrices, and E0r = P0E0Q0, A0r = P0A0Q0, B0r = P0B0, L0r =
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L0Q0. The system

�0r :
{

E0r xr (k + 1) = A0r xr (k) + B0r u(k)

z(k) = L0r xr (k),
(2)

with xr (k)=Q−1
0 x(k) is restricted system equivalent (r.s.e.) to �0.

For any given regular �0, there exist [3] nonsingular matrices P0 and Q0 such
that

E0r =
[

Ir 0
0 0

]
, A0r =

[
A1 A2
A3 A4

]
,

B0r =
[

B1
B2

]
, L0r =

[
L1 L2

]
. (3)

Lemma 1 [24]. Suppose �0r in (2) is regular and has the system matrices in (3).
Then the pair (E0r , A0r ) is causal and stable if and only if A4 ∈ R(n−r)×(n−r)

is invertible, and all the roots of det(zE0r − A0r ) = 0 have magnitudes less than
unity.

Lemma 1 is the discrete-time version of the corresponding Lemma in [24], and
can be proved similarly [3].

Lemma 2. Suppose �0r in (2) is r.s.e. to �0 in (1). The pair (E0, A0) in (1) is
admissible if and only if the pair (E0r , A0r ) in (2) is admissible.

Proof. The pair (E0, A0) is admissible if and only if [20] there exists a nonsin-
gular matrix X such that

ET
0 XE0 ≥ 0, AT

0 XA0 − ET
0 XE0 < 0. (4)

Since �0 and �0r are r.s.e., there exist nonsingular matrices P0 and Q0 such that
E0 = P−1

0 E0r Q−1
0 and A0 = P−1

0 A0r Q−1
0 . Thus (4) is equivalent to

ET
0r Xr E0r ≥ 0, AT

0r Xr A0r − ET
0r Xr E0r < 0, (5)

with Xr = P−T
0 XP−1

0 , which means exactly that (E0r , A0r ) is admissible. �

2.2. System transformation

The uncertain singular system to be discussed is

� :



Ex(k + 1) = (A + δA)x(k) + (B + δB)u(k)

y(k) = (C + δC)x(k) + (D + δD)u(k)

z(k) = (L + δL)x(k) + (J + δJ)u(k),

(6)

where x(k) ∈ Rn is the state vector, y(k) ∈ Rp is the measured output vector,
z(k) ∈ Rq is the vector to be estimated, and u(k) ∈ Rm is the disturbance input
vector. The matrix E ∈ Rn×n is singular with rank E = r < n, and the matrices A,
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B, C, D, L, and J are known real constant matrices with appropriate dimensions.
The constant uncertainty matrices satisfy

 δA δB
δC δD
δL δJ


 =


 Hx

Hy

Hz


∆

[
Ex Eu

]
(7)

with ∆T∆ ≤ I and ∆ ∈ Rd1×d2 . Assume that the pair (E, A+δA) is admissible,
so there exist [3] nonsingular matrices P and Q such that � in (6) is r.s.e. to the
system

�r :



Er x̃(k + 1) = (Ar + δAr )x̃(k) + (Br + δBr )u(k)

y(k) = (Cr + δCr )x̃(k) + (D + δD)u(k)

z(k) = (Lr + δLr )x̃(k) + (J + δJ)u(k),

(8)

where x̃(k) = Q−1x(k) = [
x̃T

1 (k) x̃T
2 (k)

]T, x̃1(k) ∈ Rr , x̃2(k) ∈ Rn−r , and the
constant uncertainty matrices satisfy

 δAr δBr

δCr δD
δLr δJ


 =


 Hxr

Hy

Hz


∆

[
Exr Eu

]
(9)

with ∆T∆ ≤ I. The matrices

Er = PEQ =
[

Ir 0
0 0

]
, Ar = PAQ =

[
A11 A12
A21 A22

]
,

Br = PB =
[

B1
B2

]
, Cr = CQ =

[
C1 C2

]
,

Lr = LQ =
[

L1 L2

]
, Hxr = PHx =

[
Hx1
Hx2

]
,

Exr = Ex Q =
[

Ex1 Ex2

]
.

(10)

The r.s.e. system �r in (8) may be more explicitly written as

x̃1(k + 1) = (A11 + Hx1∆Ex1)x̃1(k) + (A12 + Hx1∆Ex2)x̃2(k)

+(B1 + Hx1∆Eu)u(k), (11)

0 = (A21 + Hx2�Ex1)x̃1(k) + (A22 + Hx2∆Ex2)x̃2(k)

+(B2 + Hx2∆Eu)u(k), (12)

y(k) = (C1 + Hy∆Ex1)x̃1(k) + (C2 + Hy∆Ex2)x̃2(k)

+(D + Hy∆Eu)u(k), (13)

z(k) = (L1 + Hz∆Ex1)x̃1(k) + (L2 + Hz�Ex2)x̃2(k)

+(J + Hz∆Eu)u(k). (14)

By Lemma 2, the pair (Er , Ar +δAr ) of �r with parameter matrices in (9) and
(10) is admissible. In addition, by Lemma 1, the term (A22 + Hx2∆Ex2) in (12)
is nonsingular for all ∆T∆ ≤ I, including ∆ = 0, which implies that A22 is
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nonsingular. Let the nonsingular matrices P̄ = diag(Ir , A−1
22 ) and Q̄ = In . Then

�r in (11)–(14) is, via P̄ and Q̄, r.s.e. to

�̃r :



Er x̃(k + 1) = P̄(Ar + δAr )x̃(k) + P̄(Br + δBr )u(k)

y(k) = (Cr + δCr )x̃(k) + (D + δD)u(k)

z(k) = (Lr + δLr )x̃(k) + (J + δJ)u(k),

(15)

which can be represented more explicitly by (11), (13), (14), and

0 = (Ā21 + H̄x2�Ex1)x̃1(k) + (In−r +H̄x2�Ex2)x̃2(k)

+(B̄2 + H̄x2∆Eu)u(k) (16)

with Ā21 = A−1
22 A21, B̄2 = A−1

22 B2, and H̄x2 = A−1
22 Hx2.

By Lemma 1, the term (In−r + H̄x2∆Ex2) in (16) is also nonsingular, because
of the admissibility of �̃r maintained by Lemma 2. Using the identity

(I + MN)−1 = I − M(I + NM)−1N (17)

for any real matrices M and N with appropriate dimensions, one has

(In−r + H̄x2∆Ex2)
−1 = In−r − H̄x2∆̂Ex2, (18)

where ∆̂ = ∆(Id2 + Ex2H̄x2∆)−1. Therefore, (16) may be rearranged as

x̃2(k) = −(Ā21 + H̄x2∆̂Ēx1)x̃1(k) − (B̄2 + H̄x2∆̂Ēu)u(k), (19)

where Ēx1 = Ex1 − Ex2Ā21 and Ēu = Eu − Ex2B̄2. By substituting (19) into
(11), (13), and (14), the system �̃r is reduced to

�̃r :




x̃1(k + 1) = (Ā11 + H̄x1∆̂Ēx1)x̃1(k) + (B̄1 + H̄x1∆̂Ēu)u(k)

y(k) = (C̄1 + H̄y∆̂Ēx1)x̃1(k) + (D̄ + H̄y∆̂Ēu)u(k)

z(k) = (L̄1 + H̄z∆̂Ēx1)x̃1(k) + (J̄ + H̄z∆̂Ēu)u(k),

(20)

where

Ā11 = A11 − A12Ā21, B̄1 = B1 − A12B̄2, C̄1 = C1 − C2Ā21,

D̄ = D − C2B̄2, L̄1 = L1 − L2Ā21, J̄ = J − L2B̄2,

H̄x1 = Hx1 − A12H̄x2, H̄y = Hy − C2H̄x2, H̄z = Hz − L2H̄x2,

Ēx1 = Ex1 − Ex2Ā21, Ēu = Eu − Ex2B̄2.

(21)

Note that �̃r in (20) is a normal system [3], and its stability is guaranteed by
Lemma 2 with the r.s.e. relationship.

The transformation from singular to normal system models enables one to
handle the robust filtering problem for uncertain singular systems more easily,
because many existing filter design methods for normal systems can be applied.
Besides, filters designed this way have fewer states than singular filters designed
directly from the singular system models. Finally, sometimes the physical realiza-
tions of singular filters are not easy [3], [4]. In order to realize singular filters, one
often needs special algorithms [15] to convert to a normal state-space form.
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However, it must be pointed out that in general the transformation is not unique,
and for � in (6), there may be more than one pair of nonsingular matrices {P, Q}
capable of making PEQ = diag(Ir , 0). Among the various methods to find a
feasible pair {P, Q}, one is stated here. Let a singular value decomposition [9]
of a given E in (6) be E = Ū diag(Σ, 0)V̄T, where Ū, V̄ ∈ Rn×n are uni-
tary, Σ = diag(σ1, . . . , σr ), and σi > 0, i = 1, . . . , r , are the singular values
of E. Thus, diag(Σ−1, In−r )ŪTEV̄ = diag(Ir , 0), and a feasible pair {P, Q} is
{diag(Σ−1, In−r )ŪT, V̄}.

2.3. Problem statement

Consider the normal stable system �̃r in (20) subject to ∆̂ = ∆(Id2 +
Ex2H̄x2∆)−1 and ∆T∆ ≤ I. To estimate z(k), the following filter:

�f :
{

x f (k + 1) = A f x f (k) + B f y(k)

z f (k) = C f x f (k) + D f y(k)
(22)

is adopted, where x f (k) ∈ Rr and z f (k) ∈ Rq . The matrices A f , B f , C f ,
and D f are to be determined. From �̃r in (20) and �f in (22), the filtering error
dynamics may be written as

�e :
{

xe(k + 1) = Aexe(k) + Beu(k)

e(k) = Cexe(k) + Deu(k),
(23)

where e(k) = z(k) − z f (k), xT
e (k) = [ x̃T

1 (k) xT
f (k) ],

Ae =
[

Â 0
B f Ĉ A f

]
, Be =

[
B̂

B f D̂

]
,

Ce =
[

L̂ − D f Ĉ −C f

]
, De = Ĵ − D f D̂, (24)

and

Â = Ā11 + H̄x1∆̂Ēx1, B̂ = B̄1 + H̄x1∆̂Ēu, Ĉ = C̄1 + H̄y∆̂Ēx1,

D̂ = D̄ + H̄y∆̂Ēu, L̂ = L̄1 + H̄z∆̂Ēx1, Ĵ = J̄ + H̄z∆̂Ēu .
(25)

The purpose here is to design a stable filter �f such that

sup
∆

‖Ce(zI2r −Ae)
−1Be + De‖∞ < µe (26)

for a prescribed H∞-norm bound µe > 0.
At this point an extra assumption ‖Ex2H̄x2‖ < 1 is added, which is solely for

enabling the LMI formulation in Theorem 2 to be developed in Section 3. Though
this extra assumption limits the systems that may be handled, its validity is not
affected by the choice of the transformation matrices P and Q, as can be proved
in the following lemma.
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Lemma 3. Consider the uncertain singular system � in (6)–(7) with the admissi-
ble pair (E, A+δA). The value of ‖Ex2H̄x2‖ is independent of the transformation
matrix pair {P, Q}, making PEQ = diag(Ir , 0) in (10).

Proof. Suppose the nonsingular matrix pair {P̃, Q̃} makes P̃EQ̃ = diag(Ir , 0)

and

P̃AQ̃=
[

A11 A12

A−1
22 A21 In−r

]
, P̃Hx =

[
Hx1

A−1
22 Hx2

]
, Ex Q̃=

[
Ex1 Ex2

]
.

(27)

By (16) and (27), the concerned norm is ‖Ex2A−1
22 Hx2‖. Let P̂, Q̂ ∈ Rn×n be any

two nonsingular matrices satisfying P̂P̃EQ̃Q̂ = diag(Ir , 0). Partition P̂ and Q̂ as

P̂ =
[

P̂11 P̂12

P̂21 P̂22

]
, Q̂ =

[
Q̂11 Q̂12

Q̂21 Q̂22

]
, (28)

where P̂11, Q̂11 ∈ Rr×r , and P̂22, Q̂22 ∈ R(n−r)×(n−r). Then P̂11Q̂11 = Ir ,
P̂21 = 0, and Q̂12 = 0. From (27), the (2, 2) block of P̂P̃(A + Hx∆Ex )Q̃Q̂
is P̂22Q̂22 + P̂22A−1

22 Hx2∆Ex2Q̂22. By Lemma 1, P̂22Q̂22 is nonsingular, which

implies that both P̂22 and Q̂22 are also nonsingular. Therefore, when {P̂P̃, Q̃Q̂}
is regarded as another transformation matrix pair, the corresponding new Ex2
and H̄x2 are Ex2Q̂22 and (P̂22Q̂22)

−1P̂22A−1
22 Hx2, respectively, and the concerned

norm is ‖Ex2Q̂22(P̂22Q̂22)
−1P̂22A−1

22 Hx2‖ = ‖Ex2A−1
22 Hx2‖. �

2.4. Three useful lemmas

The following is a well-known lemma extended from the Bounded Real Lemma
[7] for characterizing the H∞-norm constraint.

Lemma 4 [8], [25]. The error dynamic system �e in (23) is quadratically stable
[1] and satisfies (26) for a given µe > 0, if and only if there exists a Pe > 0 such
that 


−Pe 0 AT

e Pe CT
e

0 −µ2
eI BT

e Pe DT
e

PeAe PeBe −Pe 0

Ce De 0 −I


 < 0. (29)

It is known [1] that the quadratic stability of a system implies its asymptotic
stability. Because �̃r in (20) is stable, the quadratic stability of �e in (23) implies
that the filter �f in (22) is asymptotically stable.

The next two lemmas are useful for formulating the problem within the LMI
framework.
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Lemma 5 [19]. Let I − ΓTΓ > 0, and define the set

ϒ ={∆(I − Γ∆)−1, ∆T∆ ≤ I}.
Then, ϒ = {ΓT(I − ΓΓT)−1 + ΠT(I − ΓΓT)−1/2, ΠTΠ ≤ (I − ΓTΓ)−1}.
Lemma 6 [11]. Let Ω, M̄, N̄, and R > 0 be real matrices with appropriate

dimensions, and let the matrix Π̄ satisfy Π̄
T
Π̄ ≤ R. Then for all Π̄

T
Π̄ ≤ R

the matrix inequality

Ω + M̄Π̄N̄ + N̄TΠ̄
T

M̄T < 0

holds if and only if there exists a scalar ε > 0 such that[
Ω M̄
M̄T 0

]
+ ε

[
N̄TRN̄ 0

0 −I

]
< 0.

3. Robust filter design

In the literature, many authors [6], [13], [14], [25] have discussed normal robust
filtering problems with various specifications, mainly based on Lemma 4. Here
the method for proving Theorem 1 of [13] is modified to treat a different kind
of uncertainty, and to derive the following preliminary theorem, which is the first
step toward developing an LMI solution to the problem stated in Section 2.

Theorem 1. The filtering error dynamics �e in (23) is quadratically stable and
satisfies (26) for all admissible uncertainties, if and only if there exist Φ ∈ Rr×r ,
X ∈ Rr×r , Y ∈ Rq×r , Z ∈ Rr×q , W ∈ Rr×r , and D f ∈ Rq×p such that



−Φ ∗ ∗ ∗ ∗ ∗
−Φ −X ∗ ∗ ∗ ∗

0 0 −µ2
eI ∗ ∗ ∗

ΦÂ ΦÂ ΦB̂ −Φ ∗ ∗
XÂ + ZĈ + W XÂ + ZĈ XB̂ + ZD̂ −Φ −X ∗
L̂ − D f Ĉ − Y L̂ − D f Ĉ Ĵ − D f D̂ 0 0 −I




< 0, (30)

[
Φ Φ
Φ X

]
> 0, (31)

where Â, B̂, Ĉ, D̂, L̂, and Ĵ are defined in (25). When the preceeding inequalities
hold, the filter �f in (22) with filter gains

A f = −U−1WU−T, B f = U−1Z, C f = −YU−T, D f (32)

is a solution to the considered robust filtering problem, where U is nonsingular
and satisfies UUT = X − Φ.
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Proof. (Sufficiency) By the Schur complement [2] and the inequality (31), Φ > 0
and X − Φ > 0. Thus, I − XΦ−1 is nonsingular and there exist nonsingular
matrices U and V such that I − XΦ−1 = UVT. Let

T̂ =
[

Φ−1 I
VT 0

]
, Ť =

[
I X
0 UT

]
, (33)

where T̂ is nonsingular as T̂−1 =
[

0 V−T

I −Φ−1V−T

]
. Define Pe = ŤT̂−1 =[

X U
UT I

]
by letting U = −ΦV. Under this arrangement Pe > 0 because

X − UUT = X + UVTΦ = Φ > 0. Next, pre- and post-multiply (30)
by diag(Φ−1, I, I,Φ−1, I, I) at the same time. Substituting (24), (32), (33),
U = −ΦV, and Pe = ŤT̂−1 into the resulting inequality, as well as pre- and
post-multiplying by diag(T̂−T, I, T̂−T, I) and diag(T̂−1, I, T̂−1, I), respectively,
give (29). By Lemma 4, the error dynamics in (23) is quadratically stable, which
implies the filter in (22) with gains in (32) is asymptotically stable, and the H∞
performance requirement (26) is satisfied for all admissible uncertainties.

(Necessity) If the filtering error dynamics �e is quadratically stable and has
the H∞-norm bound µe, then by Lemma 4 there exists a Pe > 0 such that (29) is
satisfied. Let Pe and its inverse P−1

e be partitioned as

Pe =
[

X U
UT Ψ

]
, P−1

e =
[

Φ−1 V
VT 	

]
, (34)

where X > 0, Φ > 0, and 	 denotes the submatrix which is insignificant in
this proof. From PeP−1

e = I, it is seen that I − XΦ−1 = UVT with U, V
nonsingular [16], and U = −ΦVΨT. Form a nonsingular matrix T̂ as in (33).
Substitute Pe in (34) into (29), and pre- and post-multiply the resultant inequal-
ity by diag(T̂T, I, T̂T, I) and diag(T̂, I, T̂, I), respectively. Then (30) is obtained
when

A f = U−1WΦ−1V−TΨ−1, B f = U−1Z, C f = YΦ−1V−TΨ−1(35)

are substituted, and the resultant inequality is pre- and post-multiplied by
diag(Φ, I, I,Φ, I, I) at the same time. A similar but much simpler procedure
applied to Pe in (34) produces the inequality in (31). �

Note that in addition to the filter gain matrices shown in the sufficiency part of
Theorem 1, the following filter gains:

A f = (Φ − X)−1W, B f = (X − Φ)−1Z, C f = −Y, D f (36)
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are also usable, because the transfer function matrix G f (z) of the filter from y(k)

to z f (k) satisfies

G f (z) = −YU−T(zI + U−1WU−T)−1U−1Z + D f

= −Y[zI + (UUT)W]−1(UUT)−1Z + D f

= −Y[zI − (Φ − X)−1W]−1(X − Φ)−1Z + D f . (37)

Next, in order to put the results of Theorem 1 under the LMI framework, the
uncertainty ∆̂ is reformulated by the equivalent description

∆̂ = ΘT(Id2 − ΘΘT)−1 + ΠT(Id2 − ΘΘT)−1/2, (38)

by Lemma 5 and the assumption ‖Ex2H̄x2‖ < 1, where ΠTΠ ≤ (Id1 −ΘTΘ)−1

and Θ = −Ex2H̄x2. Correspondingly, the matrices in (25) may be represented as

Â = Ã + H̄x1ΠTẼx1, B̂ = B̃ + H̄x1ΠTẼu, Ĉ = C̃ + H̄yΠTẼx1,

D̂ = D̃ + H̄yΠTẼu, L̂ = L̃ + H̄zΠTẼx1, Ĵ = J̃ + H̄zΠTẼu,
(39)

where

Ã = Ā11 + H̄x1ΘT(I − ΘΘT)−1Ēx1, B̃ = B̄1 + H̄x1ΘT(I − ΘΘT)−1Ēu,

C̃ = C̄1 + H̄yΘT(I − ΘΘT)−1Ēx1, D̃ = D̄ + H̄yΘT(I − ΘΘT)−1Ēu,

L̃ = L̄1 + H̄zΘT(I − ΘΘT)−1Ēx1, J̃ = J̄ + H̄zΘT(I − ΘΘT)−1Ēu,

Ẽx1 = (I − ΘΘT)−1/2Ēx1, Ẽu = (I − ΘΘT)−1/2Ēu .

(40)

Then Theorem 2 below is an LMI version of Theorem 1.

Theorem 2. Under the assumption of ‖Ex2H̄x2‖ < 1, the filtering error dynam-
ics �e in (23) is quadratically stable and satisfies (26) for a given µe > 0 with
all considered uncertainties, if and only if there exist Φ ∈ Rr×r , X ∈ Rr×r ,
Y ∈ Rq×r , Z ∈ Rr×q , W ∈ Rr×r , D f ∈ Rq×p, and ε−1 > 0 such that the
LMIs in (31) and


−Φ ∗ ∗ ∗ ∗ ∗ ∗ ∗
−Φ −X ∗ ∗ ∗ ∗ ∗ ∗

0 0 −µ2
eIm ∗ ∗ ∗ ∗ ∗

ΦÃ ΦÃ ΦB̃ −Φ ∗ ∗ ∗ ∗
M51 M52 M53 −Φ −X ∗ ∗ ∗
M61 M62 M63 0 0 −Iq ∗ ∗

ε−1Ẽx1 ε−1Ẽx1 ε−1Ẽu 0 0 0 −ε−1Id2 ∗
0 0 0 H̄T

x1Φ M85 M86 0 M88




< 0,

(41)

are satisfied, where

M51 = XÃ+ZC̃+W, M52 = XÃ+ZC̃, M53 = XB̃+ZD̃,

M61 = L̃−D f C̃−Y, M62 = L̃−D f C̃, M63 = J̃−D f D̃,

M85 = H̄T
x1X+H̄T

y ZT, M86 = H̄T
z −H̄T

y DT
f , M88 = −ε−1(Id1 −ΘTΘ).

(42)
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When the above inequalities hold, the filter �f in (22) with filter gains (32) or (36)
is a solution to the considered robust filtering problem.

Proof. It is enough to establish the equivalence of (30) and (41) with an ε−1 > 0.
By (38), (30) may be rewritten as

Ω̃ + M̃ΠÑ + ÑTΠTM̃T < 0, (43)

with ΠTΠ ≤ (Id1 − ΘTΘ)−1, where

Ω̃ =




−Φ ∗ ∗ ∗ ∗ ∗
−Φ −X ∗ ∗ ∗ ∗

0 0 −µ2
eIm ∗ ∗ ∗

ΦÃ ΦÃ ΦB̃ −Φ ∗ ∗
XÃ+ZC̃+W XÃ+ZC̃ XB̃+ZD̃ −Φ −X ∗
L̃−D f C̃−Y L̃−D f C̃ J̃−D f D̃ 0 0 −Iq




,

(44)

M̃T =
[

Ẽx1 Ẽx1 Ẽu 0 0 0
]
, (45)

Ñ =
[

0 0 0 H̄T
x1Φ H̄T

x1X+H̄T
y ZT H̄T

z −H̄T
y DT

f

]
. (46)

By Lemma 6 and the Schur complement, it is seen that (43) is equivalent to (41)
with an ε−1 > 0. �

Remark 1. Based on Theorem 2, the following convex optimization problem
may be formulated with respect to a chosen pair {P, Q} in (10) to find the H∞
optimal filter of the form (22) such that (26) is satisfied with the minimal µe:

min
µ2

e , ε−1,Φ, W, X, Y, Z, D f

µ2
e, (47)

subject to the LMIs (31), (41), ε−1 > 0, and µ2
e > 0.

4. A numerical example

In this section, an example is worked out to illustrate the proposed filter design
method. Suppose that the system matrices of the system � in (6) are as follows:

E =

 1 2 1

0 2 1
1 0 0


 , A =


 0.1530 0.0450 0.0690

0.1560 0.2520 0.1560
0.1350 −0.1710 −0.6360


 ,

B =

 1

1
0.2


 , C =

[
0.1 0 0.5

]
, D = −0.5,

L =
[

−1 0.3 −0.5
]
, J = 0.

(48)
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The uncertainty matrices in (7) are assumed to be

HT
x =

[
1.5 3 1.5

]
, Hy = −1, Hz = 2,

Ex =
[
0.05 0 0.1

]
, Eu = 1,

(49)

and |�| ≤ 1. The prescribed H∞-norm bound µe in (26) is 2. It is easy to verify
that (E, A + Hx�Ex ) is an admissible pair, and rank E = 2. By applying singular
value decomposition to E, one may choose

P =

 0.2283 0.2045 0.0238

0.2850 −0.3977 0.6827
−0.5774 0.5774 0.5774


 ,

Q =

 0.2521 0.9677 0

0.8655 −0.2255 0.4472
0.4328 −0.1128 −0.8944


 .

(50)

Because ‖Ex2H̄x2‖ = 0.5291 < 1, the assumption of Theorem 2 is satisfied. The
filter �f in (22) is designed by solving the LMIs of Theorem 2, and the filter gains
(36) are found to be

A f =
[

0.0236 −0.0619
−0.1601 0.2558

]
, B f =

[ −0.7226
1.1036

]
,

C f =
[

−0.0535 0.9527
]
, D f = −0.9518,

(51)

which is a second-order normal stable filter as desired. With respect to the chosen
{P, Q} in (50), the corresponding H∞ optimal filter is also designed by solving
the convex optimization problem mentioned in Remark 1, which is implemented
by the MATLAB LMI Control Toolbox [5]. The resulting optimal µe is 1.1761,
and the filter gains (36) are found to be

A f =
[

0.0251 −0.0740
−0.1564 0.2626

]
, B f =

[ −0.6156
1.0481

]
,

C f =
[

−0.0667 1.0134
]
, D f = −0.8753.

(52)

Of course, for the E in (48) there are other choices of {P, Q} capable of making
PEQ = diag(I2, 0), and an example is

P =

 1 −1 0

0 1 0
−1 1 1


 , Q =


 1 0 0

0 0.5 1
0 0 −2


 . (53)

Corresponding to this choice, the concerned norm ‖Ex2H̄x2‖ is still 0.5291 < 1.
When Theorem 2 is applied again with µe = 2, the corresponding filter gains (36)
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are found to be

A f =
[

0.1874 −0.0883
−0.2544 0.0968

]
, B f =

[
0.8676

−1.9944

]
,

C f =
[

0.9448 −0.1419
]
, D f = −0.9202,

(54)

which are clearly different from those in (51). Similarly, resolving the convex
optimization problem mentioned in Remark 1 gives a different optimal µe =
1.8531 from the previous one.

5. Conclusion

The H∞ filter design problem has been considered for discrete-time singular
systems with norm-bounded uncertainties. The algebraic equations in the singular
system model are eliminated, and a normal dynamic system model is constructed
with uncertainties in the linear fractional transformation form. For the H∞ filter
design problem, the normal system model allows one to utilize many existing
methods to design normal filters directly, but the question of how to utilize the
degrees of freedom in the choices of normal system models is worthy of further
investigations. In this paper, a set of necessary and sufficient conditions is pro-
vided in terms of LMIs for a normal filter design.
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