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Robust Filtering for 2-D State-Delayed
Systems With NFT Uncertainties

Shyh-Feng Chen and I-Kong Fong, Member, IEEE

Abstract—This paper is concerned with the robust filtering
problem for two-dimensional (2-D) state-delayed systems with
uncertainties represented by nonlinear fraction transformation.
The authors first establish the stability performance and
generalized 2 performance criteria for the system. Based on the
results, the authors propose efficient methods to solve the robust

filtering, generalized 2 filtering, and mixed generalized
2 filtering problems by using a parameter-dependent

Lyapunov function approach. The methods involve solving linear
matrix inequalities. Two examples are given to show the effective-
ness of the proposed approach.

Index Terms—Linear matrix inequality (LMI), nonlinear frac-
tion transformation, robust filter, time-delay systems, two-dimen-
sional (2-D) systems.

I. INTRODUCTION

THE filtering problem of two-dimensional (2-D) systems
has attracted increasing attentions due to its application as

well as theoretical importance in the fields such as multidimen-
sional digital filtering, linear image processing, and so on [6],
[12]. In these applications, it is usually desirable to estimate the
values of state variables from the system measurement data. Var-
ious schemes, such as the Kalman filter, the filter, and the
mixed filter have been addressed in the literature (see,
e.g., [5], [6], [19], and [21], and references cited therein).

For the Kalman filtering scheme [19], it requires a priori
information about the statistical properties of external noise.
Without such a priori information, the Kalman filtering scheme
is not applicable. To handle problems with unknown noise prop-
erties, an filtering scheme is proposed in [5] and [6]. Re-
cently, the robust mixed filtering for 2-D systems with
polytopic uncertainties is also reported in [21] by using a much
less conservative parameter-dependent Lyapunov function ap-
proach [4]. In practical applications, however, the uncertain pa-
rameters may affect the system in a nonlinear fashion. To handle
this class of uncertainties, a general uncertainty model, the non-
linear fraction transformation (NFT), is first proposed by Tuan
et al. [22]. The NFT model can be transformed into a linear
fraction transformation (LFT) model. However, by comparing
the NFT model with other types of uncertainty model, such as
the LFT and norm-bounded models, an advantage of the NFT
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model is that it can result in less conservative designs than other
models.

As is well known, time delays of signal transmissions are fre-
quently encountered in engineering and biological systems. Ex-
amples of 2-D systems with time delays include the material
rolling process [20] and models described by the delayed lat-
tice differential equation [11] and partial difference equations
[23], [24]. In addition, certain 2-D systems containing digital
processors that need finite numerical computation time [2], [18]
display the delay phenomenon. Delays are often a source of in-
stability and poor performance. Therefore, for the one-dimen-
sional (1-D) state-delayed systems, there have been much lit-
erature on the robust filtering that offer various schemes (see,
e.g., [8], [9], [13], and [16], and the references cited therein).
In contrast, most results for the 2-D filtering problem focus on
systems without delays, though for specific stability and con-
trol problems of uncertain 2-D discrete state-delayed systems
research results [17], [18] start to appear.

In this paper, we propose a complete methodology of robust
filter synthesis for 2-D state-delayed systems with uncertainties
described by the NFT model. In the systems, it is assumed that
time delays appear in both the horizontal and vertical directions.
The achievements are summarized as follows. First, we present
a computationally tractable sufficient linear matrix inequality
(LMI) [1] condition for the stability of 2-D state-delayed sys-
tems. This LMI condition plays a crucial role throughout the
paper. Second, we develop a less conservative LMI formulation
for the and generalized performance of the uncertain
2-D state-delayed systems. Finally, we provide an efficient way
to solve the robust , generalized , and mixed general-
ized filtering problems by using a parameter-depen-
dent Lyapunov function approach, which enables us to obtain
less conservative design results.

The notation used throughout the paper is quite standard.
is the set of nonnegative integers, is the -dimensional

Euclidean space, and is the set of real matrices.
stands for the transpose of a matrix , and

means that the symmetric matrix is positive definite (neg-
ative definite). The boldface characters represent matrix vari-
ables, and is the Kronecker product. In symmetric block ma-
trices, we use as an ellipsis for the terms that are implied by
symmetry, and for block-diagonal matrices. The
norm of a 2-D signal is defined and denoted by

, where
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and is the Euclidean vector norm. We say a 2-D signal
if it has a bounded norm. Finally, we shall need

the following definitions:

II. PRELIMINARIES

Consider the uncertain 2-D state-delayed system described by
the Fornasini–Marchesini second model [12]

(1)

where is the state vector, is the disturbance
input vector, is the measured output vector,
is the signal vector to be estimated, and
are introduced to handle the nonlinear parameter dependence of
the system, and are positive integers denoting time delays
along vertical and horizontal directions, respectively, and

(2)

It is assumed that

(3)

where is unknown in the unit simplex

(4)

Note that the equations of system (1) may be expressed by the
NFT model

(5)

where

(6)

Remark 1: When , the NFT model
(5) reduces to a polytopic uncertain system with only linear un-
certain parameters. On the other hand, when only depends
on in (5), it reduces to an LFT model.

In this paper, the basic objective is to find a filter of the form

(7)

for the system (1). Define the augmented state vector
and the filtering error output signal

. Then we have the error equations

(8)
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where

(9)

III. ROBUST STABILITY AND PERFORMANCE CRITERIA

The main purpose of this section is to develop some robust
stability and performance criteria for 2-D state-delayed systems.
These criteria play important roles in solving the robust filtering
problems to be discussed in the next section.

A. Stability Analysis

Consider the autonomous nominal 2-D state-delayed system
described by

(10)

where and .
Definition 1: The 2-D state-delayed system (10) is asymp-

totically stable if for every initial condition
, where

(11)

It is known [12] that the system (10) is asymptotically stable if
and only if

(12)

for all , where

(13)

The above condition is necessary and sufficient for the asymp-
totic stability of system (10). Unfortunately, the condition
is frequency-dependent and must be checked on infinitely
many points in . In the following theorem, a computationally
tractable sufficient condition will be given to guarantee the
asymptotic stability of the system (10).

Theorem 1: The 2-D state-delayed system (10) is asymptoti-
cally stable if there exist positive definite matrices , , ,
and such that

(14)
where .

Proof: Suppose the condition (14) is satisfied but (10) is
unstable. Then

(15)

for some , and there exists a nonzero vector such
that

(16)

Thus, from (14) and (16)

(17)

where denotes the complex conjugate transpose of , and

It follows from (17) that

(18)

However , , , , ,
and imply that the right-hand side and the left-
hand side of (18) are negative and nonnegative, respectively.
This leads to a contradiction and concludes the proof.

Remark 2: With the notational change
and , Theorem 1 coincides with Theorem 3 of [18].

Here, the proof is different, and the formulation is arranged for
the easy integration with the subsequent performance
criteria. In addition, when in (10), the stability condition
in Theorem 1 reduces to the well-established stability conditions
[14], [15] for 2-D systems without delays.

Remark 3: Clearly, Theorem 1 is a delay-independent
stability condition, which in general is more conservative
than delay-dependent results. For stability judgment and state
feedback stabilization problems of 2-D state-delayed systems,
some delay-dependent results have been derived [3], and the
corresponding filter synthesis problems are currently under
investigations.

B. Robust Performance

Definition 2: The -norm of the 2-D state-delayed system
(8) is defined as

(19)

By the above definition, the -norm of the 2-D delay system
(8) is less than or equal to if and only if

(20)
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for all , , satisfying (4), and . In the
following theorem, a sufficient performance condition for
the filtering error dynamics (8) is derived.

Theorem 2: Given a scalar , the performance
constraint (20) holds for (8) if there exist matrices

, ,
, and

such that

(21)

and (22), shown at the bottom of the page, for all in the unit
simplex (4), where .

Proof: See Appendix I.
Remark 4: Theorem 2 provides a new robust perfor-

mance criterion for 2-D state-delayed systems with NFT un-
certainties. In the simpler case where there are no uncertain-
ties in the system, Theorem 2 reduces to Theorem 5 of [17].
In another simpler case [21] where the 2-D system has only
polytopic uncertainties and no state delays, i.e.,
and , Theorem 2 with and

reduces to Theorem 1 of [21] with .

C. Robust Generalized Performance

Definition 3: The generalized -norm of the 2-D state-de-
layed system (8) is defined as

(23)

By the above definition, the generalized -norm of the 2-D
delay system (8) is less than or equal to if and only if

(24)

for all , , satisfying (4), and . In the
following theorem, a sufficient performance condition for
the filtering error dynamics (8) is derived.

Theorem 3: Given a scalar , the generalized
performance constraint (24) holds for (8) if there exist
a scalar and matrices ,

, , ,
, and

such that

(25)

(26)

(27)

and (28), shown at the bottom of the page, for all in the unit
simplex (4), where .

Proof: See Appendix II.
Remark 5: Theorem 3 provides a new robust generalized

performance criteria for 2-D state-delayed systems with
NFT uncertainties. In the simpler case in which
and , Theorem 3 with and

reduces to Theorem 2 of [21] with .

(22)

(28)
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IV. SYNTHESIS OF ROBUST FILTERS

In this section, the LMI approach is adopted to develop
convex optimization methods for synthesizing robust filters.
First, some shorthand notations are brought in as follows:

(29)

With these shorthand notations, system matrices of the filtering
error dynamics (8) can be rewritten as

(30)

where

(31)

It is noted that , , , and are affine functions of
the filter system matrix variables and , respectively. This
fact is useful in our subsequent development.

A. Robust Filter Synthesis

The robust filtering problem addressed in this paper is as
follows. Given a scalar , find a filter (7) such that the fil-
tering error dynamics (8) is asymptotically stable and the
performance constraint (20) is satisfied for all admissible un-
certainties. In order to reduce the conservatism of the resultant
filter synthesis method, a parameter-dependent Lyapunov func-
tion, which is quadratic in the uncertain parameters [10], will
be utilized implicitly. At this point, it is noted that (21) and (22)
are not LMIs with respect to the variable matrices but can be
converted into ones in the following Lemma.

Lemma 1: If there exist matrices ,
, ,

, ,
, and such that

(32)

and (33), shown at the bottom of the page, for
, where ,

then , ,

, and sat-
isfy (21) and (22) of Theorem 2 for all in the unit simplex (4).

Proof: Note first that in (32)
and in (33) together ensure that is nonsingular.
With and , (32)
implies

(34)

for all in the unit simplex (4). Performing the congruence
transformation to (34) yields

(35)

Since , one has

(36)

Thus, (21) holds for all in the unit simplex (4), pro-
vided the conditions of this Lemma are satisfied. The
proof of (22) is similar, with the relevant congruence
transformation and inequal-
ities and

. The detail
steps are omitted for the sake of brevity.

(33)
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Although (32) and (33) in the above lemma are LMIs with re-
spect to the variable matrices, further transformations are nec-
essary to get LMIs from which filter system matrices can be
conveniently obtained. This is accomplished in the following
Theorem.

Theorem 4: For the system (1), if there exist matrices

and , such that (32) and the LMI (37), shown

at bottom of the page, hold for , where

(38)

then the robust filtering problem stated at the begin-
ning of this subsection is solvable, and the filter system
matrices in (7) can be obtained from any feasible and

as
and .

Proof: From the negative definiteness of , , and
in (37), it is seen that is nonsingular. Applying the

congruence transformation to
(37), where and , one can
obtain (33) with

(39)

by using the identities

(40)

In addition, from (31) and (40), it is easy to check that

and (41)

Thus, the proof is complete.
Remark 6: In Theorem 4, is regarded as given. However,

(37) is still an LMI when is also a variable. Thus, it is possible
to formulate the following convex optimization problem to find
a filter with the smallest norm:

subject to and for (42)

with respect to and the variables stated in Theorem 4.

B. Robust Generalized Filter Synthesis

The robust generalized filtering problem addressed in this
paper is as follows. Given a scalar , find a filter (7) such
that the filtering error dynamics (8) is asymptotically stable and
the generalized performance constraint (24) is satisfied for
all admissible uncertainties. Because the ideas and procedures
involved in proving the following Lemma 2 and Theorem 5 are
similar to the above arguments for Lemma 1 and Theorem 4,
respectively, Lemma 2 and Theorem 5 are stated without proof
for the sake of brevity.

Lemma 2: If there exist a scalar and matrices
, , , , ,

(37)
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, , ,
, , and such that

(43)

(44)

and (45) and (46), shown at the bottom of the page, for
, where ,

then , , ,

, ,

, and satisfy (25)–(28) of
Theorem 3 for all in the unit simplex (4).

Theorem 5: For the system (1), if there exist a scalar and
matrices ,

, , , ,
, , ,

, , and

such that the LMIs (43) and (44) (see (47) and (48), shown at
bottom of the page) hold for , where

(49)
then the robust generalized filtering problem stated at the
beginning of this subsection is solvable, and the filter system
matrices in (7) can be obtained from any feasible and

as and
.

Remark 7: Similar to that explained in Remark 6, it is pos-
sible to formulate the following convex optimization problem to
find a filter with the smallest norm, as follows:

subject to (43), (44), (47), and (48) for
(50)

with respect to and the variables stated in Theorem 5.

(45)

(46)

(47)

(48)
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C. Robust Mixed Generalized Filter Synthesis

By integrating the above results, a robust mixed generalized
filtering problem can be addressed as follows. Find a

filter (7) for (1) to

subject to

and

(51)

for all , , and , where is
a preselected weighting constant for the tradeoff between the

and generalized performances. An upper bound for the
optimal objective function value of this problem may be found
by applying the following Theorem, which is a combination of
Theorems 4 and 5.

Theorem 6: An upper bound for the objective function (51)
in the robust mixed generalized filtering problem
can be obtained by solving the following convex optimization
problem:

subject to (32), (37), (43), (44), (47), and (48) (52)

with respect to ,

, , and for . The filter system ma-
trices in (7) can be obtained from the optimal and

as and
.

V. TWO EXAMPLES

Example 1: Consider the uncertain 2-D state-delayed system

(53)

where

(54)

(55)

and

(56)

It is noted that the system can be represented by the NFT and
LFT models as follows:

• NFT model:

(57)

(58)

and

(59)
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• LFT model:

(60)

(61)

and

(62)

By using the MATLAB LMI Control Toolbox [7], the opti-
mization problems (42), (50), and (52) are solved for the system
(53)–(56) in both NFT and LFT models. The results are shown
in Table I, where it is seen that better performances are obtained
for the NFT model than the LFT model. In fact for the opti-
mization problem (52) with the LFT model, no feasible results
exist. It is also worthy noting that for every problem, the com-
putation time for the NFT model is much shorter than that for
the LFT model. For instance, the problem (42) can be computed
in less than 12 min for the NFT model using a Pentium IV PC,
and in about one and half hours for the LFT model. In Table II,
the tradeoff between the and generalized performances
is displayed with three different weighting values of . Clearly,
larger results in smaller optimal and larger optimal .

Note that when and ,
Theorems 2 and 3 with and reduce,
respectively, to Theorems 1 and 2 of [21] with . For

and in the problem (42) of
this example, it is found that the minimum ’s from the above
method and the method given by [21] are 2.588 and 2.586, re-
spectively. Similarly, the minimum ’s for the problem (50) are
5.090 and 5.088, respectively. It is seen that due to the absence
of the variable , the proposed method gives a slightly larger

and .

TABLE I
OPTIMAL OBJECTIVE FUNCTION VALUES FOR DIFFERENT SYSTEM MODELS

TABLE II
OPTIMAL RESULTS OF (52) WITH DIFFERENT � FOR THE NFT MODEL

Example 2: Consider a heat diffusion system along a line
described by the partial differential equation

(63)

where is the spatial variable, is the time
variable, is the temperature of the line at and ,
is the thermal diffusivity depending on an uncertain parameter
vector , is the control input, and is
the noise input. Suppose depends on nonlinearly as

(64)

and the system is controlled by a “mixed” state feedback law
, where .

Using the central and back difference approximations

(65)

(66)

we obtain a discretized approximation of (63)

(67)

where and is selected to be
equal to . For , (67) can be converted into the
Fornasini–Marchesini second model of the form (53) with

and
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The matrices and can be represented respectively
by

(68)

(69)

where

(70)

Note that (68) can be expressed by the NFT model

(71)

where

(72)

For simplicity, we only consider the robust filter design.
By solving the optimization problem (42) in this paper, we can
obtain the minimum noise attenuation level bound ,
and the corresponding filter matrices are

Fig. 1 shows the magnitude plot of the filtering error dy-
namics over grid frequencies in the range of for

and . It can be seen that the maximum
magnitude is below the guaranteed noise attenuation level
bound. This is also true for other checked uncertainties

.

Fig. 1. Magnitudes of the filtering error transfer dynamics at different
frequencies for � = 1 and � = 0.

VI. CONCLUSION

For 2-D systems with state delays and uncertainties described
by the NFT model, this paper proposes convex optimization
based filter synthesis methods. Sufficient conditions are devel-
oped in terms of LMI’s for the stability, performance, and
generalized performance of the considered 2-D systems.
Then, it is shown how to convert the LMIs so that filter gain ma-
trices can be obtained efficiently to satisfy the and/or gen-
eralized performance constraints. Two examples are given
to illustrate the usage of the proposed methods, as well as the
advantages of using the NFT model over the LFT model.

APPENDIX I
PROOF OF THEOREM 2

First, the asymptotic stability of system (8) is established. For
all in the unit simplex (4), (22) implies that

(73)

By the Schur’s complement, (73) is equivalent to

(74)

It follows from Theorem 1 that the system (8) is asymptotically
stable.

Next, the performance is considered. By the
Schur’s complement, (21) is equivalent to

, which implies

Authorized licensed use limited to: National Taiwan University. Downloaded on January 12, 2009 at 00:14 from IEEE Xplore.  Restrictions apply.



284 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 54, NO. 1, JANUARY 2006

for all , or

(75)

for all and satisfying the last equation of (8). Moreover,
(22) implies that

(76)

where ,
,

, , and
. It follows from (8) that

which, together with (75), implies

(77)

Now, for any integers , (77) leads to

...

(78)

Summing up the above inequalities gives

(79)

for . Then, summing up (79) for results in

(80)

Clearly, with

(81)

for all . Thus, the -norm of the system (8) is no greater
than . This completes the proof.

APPENDIX II
PROOF OF THEOREM 3

First, (28) implies

(82)

which can be used to establish the asymptotic stability of system
(8), just like how the stability is established from (73) in the
proof of Theorem 2. In addition, imitating the argument from
(22) to (77) in the proof of Theorem 2, one can show that (28)
leads to

(83)

For all and satisfying (8), the same reasoning showing
that (21) implies (75) also shows that (26) implies the nonnega-
tiveness of the sum of the fourth and fifth terms in (83). Hence,

(84)

which, with similar steps from (77) to (80), leads to

(85)
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for . By the Shur’s complement, (27) is equivalent to

(86)

Again, with procedures similar to those adopted above, one gets

(87)

from (86), and from
(25). Then

(88)

and

(89)

Together with (85), one finally obtains

(90)

and completes the proof.
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