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Adaptive variable structure 
control 

C.-J. Chien and L.-C. Fu 

3.1 Introduction 

In the past two decades, model reference adaptive control (MRAC) using only 
input/output measurements has evolved as one of the most soundly developed 
adaptive control techniques. Not only has the stability property been rigor- 
ously established [17], [19] but also the robustness issue due to unmodelled 
dynamics and input/output disturbance has been successfully solved [15], [18]. 
However, several limitations on MRAC remain to be relaxed, especially the 
problem of unpredictable transient response and tracking performance which 
has recently become one of the challenging research topics in the field of 
MRAC. A considerable amount of effort has been made to improve these 
schemes to obtain better control effects [6], [9], [11], [22]. One effort out of 
several is to try to incorporate the variable structure design (VSD) [9], [11] 
concept into the traditional model reference adaptive controller structure. 
Notably, Hsu and Costa [11] have first successfully proposed a plausible 
scheme in this line, which was then followed by a series of more general results 
[12], [13], [14]. Aside from those, Fu [9], [10] has taken up a different approach 
in placing the variable structure design in the overall resulting adaptive 
controller. An offspring of the work [9] and part of the work [12] include 
various versions of results respectively applied to SISO [20], [23], MIMO [2], 
[5], time-varying [4], decentralized [24] and affine nonlinear [3] systems. 

It is well known that a main difficulty for the design of the variable structure 
MRAC system is the so-called general case when relative degree of the plant is 
greater than one. In this chapter, we present a new algorithm to solve the 
variable structure model reference adaptive control for a single input single 
output system with unmodelled dynamics and output disturbances. The design 
concept will be first introduced for relative degree-one plants and then be 
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extended to the general ease. Compared with the previous works, which used 
adaptive variable structure design or traditional robust adaptive approaches 
for the MRAC problem, this algorithm has the following special features: 

(1) This control algorithm successfully applies the variable structure adaptive 
controller for the general ease under robustness consideration. 

(2) The control strategy using the concept of 'average control' rather than that 
of 'equivalent contror is thoroughly analysed. 

(3) A systematic design approach is proposed and a new adaptation mechan- 
ism is developed so that the prior upper bounds on some appropriately 
defined but unavailable system parameters are not needed. It is shown that 
without any persistent excitation the global stability and robustness with 
asymptotic tracking performance can be guaranteed. The output tracking 
error can be driven to zero for relative degree-one plants and to a small 
residual set (whose size depends on the level of magnitude of some design 
parameter) for plants with any higher relative degree. Both results are 
achieved even when the unmodelled dynamic and output disturbance are 
present. 

(4) If the aforementioned bounds on the system parameters are available by 
some means before controller design, then with a suitable choice of initial 
control parameters, the output tracking error can even be driven to zero in 
finite time for relative degree-one plants and to a small residual set 
exponentially for plants with any higher relative degree. It is noted that 
these bounds are usually assumed to be known before the construction of 
the variable structure controller or the robust adaptation law. 

In order to make a comparison between the proposed adaptive variable 
structure scheme and the traditional approaches, some computer simulations 
are made to illustrate the differences of the tracking performance. The 
simulations will clearly demonstrate the excellent transient responses as well 
as tracking performance, which are almost never possible to achieve when 
traditional MRAC schemes are employed [19]. 

The theoretical framework in this chapter is developed based on Filippov's 
solution concept for a differential equation with discontinuous fight-hand side 
[8]. In the subsequent discussions, the following notations will be used: 

(1) P(s)[u](t): denotes the filtered version of u(t) with any proper or strictly 
proper transfer function P(s). 

(2) I" l: denotes the absolute value of any scalar or the Euclidean norm of any 
vector or matrix. 

(3) II('),lio~ = supr__.t I(')(r)l: denotes the truncated Loo norm of the argument 
function or vector. 

(4) Ile(s)lloo " denotes the Hoo norm of the transfer function P(s). 
The chapter is organized as follows. In Section 3.2, we give the plant 
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description, control objective and then derive the MRAC based error model. In 
Section 3.3, the adaptive variable structure controller for relative degree-one 
plants is proposed with stability and performance analysis. The extension to 
plants with relative degree greater than one is presented in Section 3.4. Section 
3.5 gives simulation results to demonstrate the effectiveness of the adaptive 
variable structure controller. Finally, a conclusion is made in Section 3.6. 

3.2 Problem formulation 

3.2.1 Plant description and control objective 
In this chapter, we consider the following SISO linear time-invariant plant 
described by the equation: 

yp(t) = P(s)(1 + #Pu(s))[up](t) + do(t) (3.1) 

where up(t) and yp(t) are plant input and plant output respectively, #Pu(s) is 
the multiplicative unmodelled dynamics with some # E R +, and do is the 
output disturbance. Here, P(s) represents the strictly proper rational transfer 
function of the nominal plant which is described by 

rip(s) (3.2) 
P(s) = kp dp(s) 

where np(s) and dp(s) are some monic coprime polynomials and kp is the high 
frequency gain. Now suppose that the plant (3.1) is not precisely known but 
some prior knowledge about the transfer function may be available. The 
control objective is to design an adaptive variable structure control scheme 
such that the output yp(t) of the plant will track the output ym(t) of a linear 
time-invariant reference model described by 

~m(~) 
ym(t) = M(s)[rm](t) =km dm(si [rm](t) (3.3) 

where M(s) is a stable transfer function and rm(t) is a uniformly bounded 
reference input. In order to achieve such an objective, we need some 
assumptions on the modelled part of the plant and the reference model as 
well as the unmodelled part of the plant. These assumptions are made in the 
following. 

For the modelled part of the plant and reference model: 

(A1) All the coefficients of np(s) and dp(s) are unknown a priori, but the order 
of P(s) and its relative degree are known to be n and p, respectively. 
Without loss of generality, we will assume that the order of M(s) and its 
relative degree are also n and p, respectively. 
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(A2) The value of high frequency gain k v is unknown, but its sign should be 
known. Without loss of generality, we will assume k v, and hence kin, are 
positive. 

(A3) P(s) is minimum phase, i.e. all its zeros lie in the open left half complex 
plane. 

For the unmodelled part of the plant: 

(A4) The unmodelled dynamics Pu(s-kl)  is a strictly proper and stable 
transfer matrix such that IOl < al, II(eu(s - k t ) s -  D)(s + a2)[Ioo < al, 
for some constants al, a2 > 0, where D = lim,__,oo Pu(s)s and 
IIX(s)lloo - sup. R IXfjw)l [lS]. 

(A5) The output disturbance is differentiable and the upper bounds on 

Ido(t)l, l-~do(t ) exist. 

Remark 3.1 
�9 Minimum-phase assumption (A3) on the nominal plant P(s) is to guarantee 

the internal stability since the model reference control involves the cancella- 
tion of the plant zeros. However, as commented by [15], this assumption 
does not imply that the overall plant (3.1) possesses the minimum-phase 
property. 

�9 The latter part of assumption (A4) is simply to emphasize the fact that Pu(s) 
are uncorrelated with # in any case [16]. The reasons for assumption (A5) 
will be clear in the proof of Theorem 3.1 and that of Theorem 4.1. 

3.2.2 MRAC based error model 
Since the plant parameters are assumed to be unknown, a basic strategy from 
the traditional MRAC [17], [19] is now used to construct the error model 
between yv(t) and ym(t). Instead of applying the traditional MRAC technique, 
a new adaptive variable structure control will be given here in order to pursue 
better robustness and tracking performance. Let (3.1) be rewritten as 

yp(t) - do(t) = V(s) [up +/zPu(s)[up]] (t) P(s)[up + fi](t) (3.4) 

then from the traditional model reference control strategy [19], it can be shown 
that there exists O* = [0~,..., 0~n] r E R z~ such that if 

, a ( s )  
= [o;, o , , . . . ,  o*_,1 

a(s) 
OTe(s ) = [O*, e~,+l,..., O~,_=] ~ -~  + O~,_, 

where a(s) = [1, s , . . . ,  an-2] r and ,k(s) is an nth order rnonic Hurwitz 
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polynomial,  we have 

1 - D*b(S ) -- D~(s)P(s) = ~2,,M -l  (s)P(s) 

Applying both sides of (3.5) on u~ + ~, we have 

up( t )+~( t ) -D;(s )[up  + ~]( t ) -D~(s )[yp-do l ( t )=O~nM- ' ( s ) [yp-do]( t  ) 

so that 

M(~)O~.-' [u~ + ,  - D;(~)t .v  + ,] - D;(~)ty~ - do]] (t) yp(t) do(t) 

Since 

D;(s)[up + ill(t) + D~(s)[yp - dol(t) + O~nrm(t ) 

(3.5) 

(3.6) 

(3.7) 

- _  o * T  

D a(3) 
[up + ~](t) " 

~(s) [Yp - ao](t) 

yp(t) -ao(O 
. rm(t) . 

--- 0 *T 

-.(~) 
~(s) [UP](t) 

a(s) 

yp(t) 

. rm(t) . 

0 

a(s) 
_ o , T  ~(S) [d~ 

do(t) 

0 

A O,Tw(t)  _ O,TWdo (t) + D*b(s)[ff](t ) 

+ D; (~)[a] (t) 

(3.8) 

we have 

yp(t) - do(t) = M(s)O~n-l[up - O 'Tw + O*TWdo Jr (1 -- D;(S))[~] q- O~nrm](t ) 

�9 T , -- g(s)O*2~l[up - o*Tw "t- 19 Wdo d-/~A(s)[upl h- 02nrm](t ) (3.9) 

where A(s) = (1 - D*b(s))Pu(s ) = (1 0~ + . . .  +O~,_lsn-2~pu(s)" If we define 
- 2 x ,  

the tracking error eo(t) as y r ( t ) - y m ( t ) ,  then the error model due to the 
unknown parameters, unmodelled dynamics and output  disturbances can be 
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readily found from (3.3) and (3.9) as follows: 

eo(t) = M(s)O~n -1 [up - O*rw + O*TWao 4- #A(s)tue] ] (t) + do(t) (3.10) 

In the following sections, the new adaptive variable structure scheme is 
proposed for plants with arbitrary relative degree. However, the control 
structure is much simpler for relative degree-one plant, and hence in Section 
3.3 we will first give a discussion for this class of plants. Based on the analysis 
for relative degree-one plants, the general case can then be presented in a more 
straightforward manner in Section 3.4. 

3.3 The case of relative degree one 

When P(s) is relative degree one, the reference model M(s) can be chosen to be 
strictly positive real (SPR) (Narendra and Annaswamy, 1988). The error model 
(3.10) can now be rewritten as 

eo(t) = M(s)O[n I [u e - O*Tw + o*-rwdo + O~nM-' (s)[do] + #A(s)[u,]] (t) 

(3.11) 

In the error model (3.11), the terms O*rw, O*-rWao +O~nM-l(s)[do] and 
#A(s)[up] are the uncertainties due to the unknown plant parameters, output 
disturbance, and unmodelled dynamics, respectively. Let (Am, Bin, Cm) be any 
minimal realization of M(s)O~, -l which is SPR, then we can get the following 
state space representation of (3.1 I) as: 

~(t) = Ame(t)+Bm(u~(t)--O*rw(t)+O*-rWdo (t)+O~n M-l (s)[do](t)+#A(s)[up](t)) 

eo(t) = Cme(t) (3.12) 

where the triplet (Am, Bm, Cm) satisfies 
T emAm + Amem "- -2Qm; emBm = CTm (3.13) 

for some Pm= Pm r > 0 and Qm -- Qrm > O. 
The adaptive variable structure controller for relative degree-one plants is 

now summarized as follows: 

(1) Define the regressor signal 

w(t) = ra(s)t~(~) [uel(t), a(s) _] 
T 

~(-~ [yp](t), yp(t), rm(t) = [wl(t),w2(t),...,w2n(t)] T 

(3.14) 
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and construct the normalization signal m(t)  [15] as the state of the 
following system: 

(3.15) a,(t) = - om(t) + 6, + 1), m(0) > 

where 6o, 6n > 0 and 6o + 62 < rain (kl, k2) for some 62 > 0. The parameter 
k2 > 0 is selected such that the roots of A(s -  k2) lie in the open left half 
complex plane, which is always achievable. 

(2) Design the control signal up (t) as 

2n 
up(t) = ~ ( - s g n  (eowj)Oj(t)wj(t)) - sgn (eo)31(t) - sgn ( e o ) ~ ( t ) m ( t )  (3.16) 

j=l 

1 if eo > 0 

sgn(eo)= 0 if e 0 = 0  

- 1  if eo < 0 

(3) The adaptation law for the control parameters is given as 

Oj(t)='Tjleo(t)wj(t) l  , j =  1 , . . . ,2n  

~l (t) ~--- gl]eo(t)] 

~(t) = 02[eo(t)]m(t) (3.17) 

where ~0,gl,g2 > 0 are the adaptation gains and 07(0), 31 (0),/32(0) > 0 (in 
general, as large as possible)j - I,..., 2n. 

The design concept of the adaptive variable structure controller (3.15) and 
(3.16) is simply to construct some feedback signals to compensate for the 
uncertainties because of the following reasons: 

�9 By assumption (A5), it can be easily found that [O*Twc,(t)+ 
O~,M(s)-l[ao](t)l  < 3~ for some ~ > 0. 

�9 With the construction of m, it can be shown [15] that #A(s)[ur]( t  ) < ~m(t) ,  
Vt >_ 0 and for some constant/3~ > 0. 

Now, we are ready to state our results concerning the properties of global 
stability, robust property, and tracking performance of our new adaptive 
variable structure scheme with relative degree-one system. 

Theorem 3.1 (Global Stability, Robustness and Asymptotic Zero Tracking 
Performance) Consider the system (3.1) satisfying assumptions (AI)-(A5) with 
relative degree being one. If the control input is designed as in (3.15), (3.16) and 
the adaptation law is chosen as in (3.17), then there exists #* > 0 such that for 

E [0,#*] all signals inside the closed loop system are bounded and the 
tracking error will converge to zero asymptotically. 
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Proof: Consider the Lyapunov function 

2 1 
1 (oj -Iql)  = + ~ ~ (~j - ~;)' Va "-" l eT pme "-l- ~ ~Tj 

j = l  '= 

where I'm satisfies (3.13). Then, the time derivative of Va along the trajectory 
(3.12) (3.17) will be 

,T  Va = - e rQme  + eo(up - o*rw+ 0 Wdo + 8~nM-'(s)[do] + IzA(s)[up]) 

2 1 
- 

j=l 
2n 

<_ - e  "r Qme - ~_~ leowyl(oy -I021) -leol(:~ -/~;) - l eo l (~  - / ~ ) m  
1=1 

2. 1 2 1 

<__ -qmlel 2 

for some constant qm > 0. This implies that e E L2 fq Loo and Oj,j = 
1,. . . ,  2n, ~l, ~ ,  e0 E Loo and, hence, all signals inside the dosed loop system 
are bounded owing to Lemma A in the Appendix. On the other hand, it can be 
concluded that d E Loo by (3.12). Hence, e E L2 N Loo and d E Loo readily imply 
that e and e0 will at least converge to zero asymptotically by Barbalat's lemma 
[191. Q.E.D. 

In Theorem 3.1, suitable integral adaptation laws are given to compensate 
for the unavailable knowledge of the bounds on 10;[ and ~*. Theoretically, the 
adaptive variable structure controller will stabilize the closed loop system with 
guaranteed robustness and asymptotic zero tracking performance no matter 
what 0j(0)'s and/3j(0)'s are. However, according to the following Theorem 3.2, 
we will expect that positive and large values of 0j(0),~(0) should result in 
better transient response and tracking performance, especially when 
0j(0) > 1031, ~j(0) > ~ .  

Theorem 3.2 (Finite-Time Zero Tracking Performance with High Gain 
Design) Consider the system set-up in Theorem 3.1. If 0i(0)> 
[0;I,~j(0) _ ~ ,  then the output tracking error will converge to zero in finite 
time with all signals inside the closed loop system remaining bounded. 

Proof Consider the Lyapunov function Vb = �89 where Pm satisfies 
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(3.13). The time derivative of Vb along the trajectory (3.12) becomes 

2n 
Vb = -e-rQme- ~_, leowjlCOj- 10;I)- le01(~l - ~ ; ) -  le01(~2-/~)m 

j=l  

<_ --e T Qme 

<__ - k 3  Vb 

for some k3 > 0 since Oj(t)> 1OTl,~(t)> ~*,vt >_ 0. This implies that e 
approaches zero at least exponentially fast. Furthermore, by the fact that 

,T eoeo = eo{CmAme + Cmem(up - o*l-w -}" 0 Wdo -I- O~nM-l(s)[do] + pA(s)[ue])} 
2n. 

<_ k41eollel - ~_, leowjl(Oj -10;I) -le01(~ - /~)  -le0l(~ - ~)m 
j=l  

< k41eollel- le01 ~ Iwjl(0j -10;I) + (/~l - ~;) + (~2 - N)m 

where k4 = ICmAml, and that lel approaches zero at least exponentially fast, 
there exists a finite time Tl > 0 such that eobo < -ksleol for all t > TI and for 
some k5 > 0. This implies that the sliding surface eo = 0 is guaranteed to be 
reached in some finite time T2 > Tl > 0. Q.E.D. 

Remark 3.2: Although theoretically only asymptotic zero tracking perform- 
ante is achieved when the initial control parameters are arbitrarily chosen, it is 
encouraged to set the adaptation gains "b" and gj in (3.17) as large as possible. 
This is because the large adaptation gains will provide high adaptation speed 
and, hence, increase the control parameters to a suitable level of magnitude so 
as to achieve a satisfactory performance as quickly as possible. These expected 
results can be observed in the simulation examples. 

3.4 The case of arbitrary relative degree 

When the relative degree of (3.1) is greater than one, the controller design 
becomes more complicated than that given in Section 3.3. The main difference 
between the controller design of a relative degree-one system and a system with 
relative degree greater than one can be described as follows. When (3.1) is 
relative degree-one, the reference model can be chosen to be strictly positive 
real (SPR) [19]. Moreover, the control structure and its subsequent analysis of 
global stability, robustness and tracking performance are much simpler. On the 
contrary, when the relative degree of (3.1) is greater than one, the reference 
model M(s) is no longer SPR so that the controller and the analysis technique 
in relative degree-one systems cannot be directly applied. In order to use the 
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similar techniques given in Section 3.3, the adaptive variable structure 
controller is now designed systematically as follows: 

(1) Choose an operator L l ( s )  = : l ( s )  . . . : p - l ( s )  = (s + a l )  ..  . (s + Otp-l) such 
that M ( s ) L ~ ( s )  is SPR and denote Li(s)  = : / ( s ) . . . f p - l ( s ) , i =  
2, . . . , p - 1, Lp(s)  = 1. 

(2) Define augmented signal 

[ 1 ] 
ya( t )  = M ( s ) L I ( S )  Ul -- LI  (s) [up] (t) 

and auxiliary errors 

eal (t) = eo(t) + ya( t )  

1 1 
ea2(t) -" ~ - ~  [U2](t) -- F(rs)[Ul](t) 

1 l 
ea3(t) = ~ - ~  [u3l(t) -- F - - ~  [u2l(t) 

(3.18) 

(3.19) 

(3.20) 

I I 
eap(t) = l'p-I (S)[ue](t) -- F(rs)[Up_l] ( t )  (3.21) 

1 
where ~ [ui](t) is the average control of ut(t) with F ( r s )  = (rs  + 1) 2, r 

being small enough. In fact, F ( r s )  can be any Hurwitz polynomial in rs  
1 

with degree at least two and F(0) = 1. In the literature, F ( r s i  is referred to 

as an averaging f i l ter ,  which is obviously a low-pass filter whose bandwidth 
can be arbitrarily enlarged as r ~ 0. In other words, if r is smaller and 

1 
smaller, the filter F ( r s )  is flatter and flatter. 

(3) Design the control signals up, ui, and the bounding function m as follows: 

2n 
Ul(t) = ~ ( - s g n  (eal f4)Oj( t )~( t ) )  - sgn (eal)t31(t) - sgn (eal)152(t)m(t) 

j=l 

u,(t) = -sgn (ea,) (]ei-I (,$') [Ui_l](t ) 
\I r(rs) 

up(t) = u (t) 

(3.22) 

+ r / ) ,  i =  2 , . . . , p  (3.23) 

(3.24) 
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with r/> 0 and 

1 1 1 
~(t) = d l (S)" 'd : - i  (s) [w](t) = Ll (S)  [wl(t) 

The bounding function m(t) is designed as the state of the system 

(3.25) rh(t) = -~5om(t) + 8t(lup(t)[ + 1), m(0) > ~0 

with/f0,Sl > 0 and 80 +82 < min(kl,k2,cq,...,C~p_l) for some 82 > 0. 
(4) Finally, the adaptation law for the control parameters Oj,j = 1, . . . ,  2n and 

/31,/32 are given as follows" 

0j(t) = 7j[eol(t)~(t)l, j = l , . . . , 2n  (3.26) 

/~1 (t) -- glleal(t)l (3.27) 

/~2(t) = g21eal (t)lm(t) (3.28) 

with 0j(0) > 0, 3i(0) > 0 and 7j > 0, #j > 0. 

In the following discussions, the construction of feedback signals ~(t), re(t) and 
the controller (3.22) (3.23) will be clear. 

In order to analyse the proposed adaptive variable structure controller, we 
first rewrite the error model (3.10) as follows: 

eo(t) M(s)[up 0~-lO.-rw+0zl  .1- 0~-I = - * -  o Wdo + 

q- (0"~ 1 -- 1)uel( t  ) q- do(t) 

0,_1 
1 _O~-I o,-r 2. [O,-rWdo+O;.M-~(s)[ao]] = M(s)LI  (s) Ll (s) [up]- ~J+Li (s) 

] + Ll (s) [#A (s) [up] + (1 -O~)ue] (t) (3.29) 

Now, according to the design of the above auxiliary error (3.18) and error 
model (3.29), we can readily find that eal always satisfies 

0~n_lO.T r 0~; l [O.'rWao + O~nM-l(s)[do]] eal (t) = M(s)LI  (s) ul - + LI (s) 

] + Li (s) [/~A (s) [up] + (1 -O~,)up] (t) (3.30) 

It is noted that the auxiliary error eal is now explicitly expressed as the output 
term of a linear system with SPR transfer function M(s)Ll  (s) driven by some 
uncertain signals due to unknown parameters, output disturbances, un- 
modelled dynamics and unknown high frequency gain sign. 
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Remark 4.1 The construction of the adaptive variable structure controller 
(3.22) is now clear since the following facts hold: 

�9 Since Li(s) 0~'-1 [ O*vwd~ + O~M-' (s)[do]] (t) is uniformly bounded due to (A5), 

we have 

0~=! [O.TWd ~ + O;M_l(s)[do] ] (t) < ~; (3.31 / 
z,(s) 

fo~ s9me ~ .  
�9 With the design of the bounding function m(t) (3.25), it can be shown that 

0~.~,' [#A(s)[up] + (1 -O~n)up] (t) LI(S) <_/~m(t) (3.32) 

for some/3~ > O. 

The results described in Remark 4.1 show that the similar techniques for the 
controller design of a relative degree-one system can now be used for auxiliary 
error eal. But what happens to the other auxiliary errors ea2,..., eop, especially 
the real output error eo as concerned? In Theorem 4. l, we summarize the main 
results of the systematically designed adaptive variable structure controller for 
plants with relative degree greater than one. 

Theorem 4.1 (Global Stability, Robustness and Asymptotic Tracking 
Performance) Consider the nonlinear time-varying system (3.1) with relative 
degree p > 1 satisfying (A1)-(A5). If the controller is designed as in (3.18)- 
(3.25) and parameter update laws are chosen as in (3.26)-(3.28), then there 
exists r * >  0 and #*> 0 such that for all r E (0,r*) and # E (0,#*), the 
following facts hold: 

(i) all signals inside the closed-loop system remain uniformly bounded; 
(ii) the auxiliary error e~l converges to zero asymptotically; 

(iii) the auxiliary errors eai, i = 2 , . . . ,  p, converge to zero at some finite time; 
(iv) the output tracking error e0 will converge to a residual set asymptotically 

whose size is a class K function of the design parameter r. 

Proof The proof consists of three parts. 

Part I Prove the boundedness of e~i and 01,. . . ,  0~,/~l, ~2. 

Step 1 First, consider the auxiliary error eal which satisfies (3.30). Since 



Adaptive Control Systems 53 

M(s)Lz (s) is SPR, we have the following realization of (3.20) 

0~n-I o*T~ 0~.n -I ,T 

~ ) 
+ t,t (,) [uzx(~)[~A + (1 - 0~,)~A 

eal = Clei (3.33) 

with PIAl  -t- A-~PI = - 2 Q l ,  PIBI = C-~ for some Pl = P~ > 0 and Ql = 
Q~ > 0. Given a Lyapunov function as follows: 

V, = �89 + ~ ~  Oj - + __(~. _ ~)2 (3.34) 
j=l IO~1 2o: j=l 

it can be shown by using (3.32) and (3.31) that 

V, = -e~Q,e, + eal --(Ul -- 0~n-lo*Tr -~- Li(s )0~n-I [o*Twdo Jr- O~M-l(s)[do]] 

o~-' ) 
+ L - ~  [/zA(s)[up] + (1 - O~,,)ut, ] 

+ y . ] l  ~ 1 
j=i ~JJ Oj -- Oj -I- "= ~jj ( ~j -- ~;  ) ~j 

(,o:f) 
<_ -e~Qlel - Z le,,~l 0: - -le=ll(/~, - / ~ )  -leo~l(/~2 - N)m 

:=l 10~,1 

j .,,. 

= -e-~Qlel 

< -qllell  2 

for some ql > 0 if the controller in (3.22) and update laws in (3.26)--(3.28) are 
given. This implies that ej, 01, . . . ,  02n, /31, /32 E Loo and eal E L2 Iq Loo. 

Step 2 From (3.19)--(3.21), we can find that ea2,... ,eap satisfy 

el(~) 
Ca2 --" --Otlea2 -I- ZI2 F(TS)  [ul] 

eap "-- --~p- I Cap -~- Up 
:~-~(~) 



54 Adaptive variable structure control 

Now by the following facts that for i = 2 , . . . ,  p: 

d 
"dr (1 e2ai) = eaieai 

-- eai ( - -o t i -  l eai + Ui 

J 

\ 
:~-l(,) ) 
F(rs) [Ui-l] 

= -ce,_,e2a, + ea,{-sgnCea,)kl ([g~''F(7"s)cs) [u,_,] 
Ei-I (S) } 

+ rl F(rs) [Ui-I ] 

or 

,4 
--" leail < - a i - l  leail - rl 
dt - 

(3.35) 

when leo~l # o. This implies that eai will converge to zero after some finite time 
T > 0 .  

Part H Prove the boundedness of all signals inside the closed loop system. 
Define e-ai = M(s)Li - l  (s)[eai], i = 2, . . . , p and Ea = eal + ea2 + " "  + eat, 

which is uniformly bounded due to the boundedness of eai. Then, from 
(3.18)--(3.21), we can derive that 

[ ' ] Ea = eo + M(s)LI  (s) ul - L - ~  [up] 

[, , ]  
+ M(s)L ,  (s) el (s)[u2]- F(rs)  [u'l 

[ ,  , ] 
+ M(s)Lz(s) d2(s)[u3l - ~ [u2l 

I1  , ] + M(,)L,_,(,) :,~(s)[u,]-F-(~[u,-,] 

(1 ~) [ 1 , l l M(s)L~(~) Ul + [u21 + . . .  + [uo-~] 
= eo + F~s :i (S) el (s)... dp_2(s) 

~= e0 + R (3.36) 

Now, since II(u~),ll~ ~ k611(e0),ll~ + k6, i =  1 , . . . ,  p -  1 for some k6 > 0 by 
Lemma A in the appendix, it can be easily found that 

I1( ' , ) "~ + :i(s)[u,] +... + :l(~).. :o-2(S)[u,_,] , 
I _ k711(eo),lloo + k7 

O0 
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for some k7 > 0. Furthermore, since the H~ norm of II ~ (1 - F--~)lloo = 2r and 
[[sM(s)LI (s)ll~ = k8 for some ks > 0, we can conclude that 

'l(R)"l~176 1 F< s))l I[ sM(s)LI(s) (kTll(eo)tll~+ k7) 
o o  o o  

_< r(k9ll(eo),lloo + k9) 

for some k9 > 0. Now from (3.36) we have 

II(eo),ll~o ___ II(Ea),ll~ + II(R),iI~ --- II(Ea),lloo + r(k91l(eo)tll~ + k9) 

which implies that there exists a r* > 0 such that 1 -  "r'k9 > 0 and for all 

r ~ (0, r*)" II(Ea),II~ q- "rk9 
II(e0),lloo -< 1 - rk9 (3.37) 

Combining Lemma A and (3.37), we readily conclude that all signals inside the 
closed loop system remain uniformly bounded. 

Part IIl: Investigate the tracking performance of eal and e0. 
Since all signals inside the closed loop system are uniformly bounded, we 

have 
eal E L2 CI Loo, eal E Loo 

Hence, by Barbalat's lemma, e~l approaches zero asymptotically and 
Ea = eal + ~a2 + " "  + e.ap also approaches zero asymptotically. Now, from 
the fact of (3.37) and E~ approaching zero, it is clear that e0 will converge to 
a small residual set whose size depends on the design parameter r. Q.E.D. 

As discussed in Theorem 3.2, if the initial choices of control parameters 

Oj(O) ~(0) satisfy the high gain conditions Oj(O) > 0~ and ~j(0) > /~;, then, 

by using the same argument given in the proof of Theorem 3.2, we can 
guarantee the exponential convergent behaviour and finite-time tracking 
performance of all the auxiliary errors ea~. Since eai reaches zero in some 
finite time and Ea = eal + P.a2 + " "  + ~ap, it can be concluded that Ea converges 
to zero exponentially and e0 converges to a small residual set whose size 
depends on the design parameter r. We now summarize the results in the 
following Theorem 4.2. 

Theorem 4.2: (Exponential Tracking Performance with High Gain Design) 
Consider the system set-up in Theorem 4.1. If the initial value of control 

parameters satisfy the high gain conditions 0y(0) > 0~ and/~y(0) > ~ ,  then 
- e ~ ,  

there exists a r* and #* such that for all r E (0,r*] and # E (0,#*], the 
following facts hold: 

(i) all signals inside the closed loop system remain bounded; 
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(ii) the auxiliary errors eai, i = 1 , . . . ,  p, converge to zero in finite time; 
(iii) the output tracking errors e0 will converge to a residual set exponentially 

whose size depends on the design parameter r. 

Remark 4.2: It is well known that the chattering behaviour will be observed in 
the input channel due to variable structure control, which causes the 
implementation problem in practical design. A remedy to the undesirable 
phenomenon is to introduce the boundary layer concept. Take the case of 
relative degree one, for example, the practical redesign of the proposed 
adaptive variable structure controller by using boundary layer design is now 
stated as follows: 

up(t) = ~ -Ir(eowj)Oy(t)wy(t )  - lr(eo)/~l (t) - lr(eo)/~2(t)m(t) (3.38) 

sgn (eo) if le01 > e 

It(e0) = e0 if le0] <_e 

for some small ~ > 0. Note that ~r(e0) is now a continuous function. However, 
one can expect that the boundary layer design will result in bounded tracking 
error, i.e. e0 cannot be guaranteed to converge to zero. This causes the 
parameter drift in parameter adaptation law. Hence, a leakage term is added 
into the adaptation law as follows: 

Oj(t) = "~j[eo(t)wj(t)[ - tzOj(t), j = 1 , . . .  , 2n 

/~1 (t) = gl le0(t)l - a/~l (t) 

~ ( t )  -- g2leo( t ) lm( t )  - a/~2(t) (3.39) 

for some cr > 0. 

3.5 Computer simulations 

The adaptive variable structure scheme is now applied to the following 
unstable plant with unmodelled dynamics and output disturbances: 

8 (l+O.O1 1 ) yp( t )  = s3 + s2 + s - 2 s + 10 [up](t) + 0.05 sin(5t) 

Since the nominal plant is relative degree three, we choose the following steps 
to design the adaptive variable structure controller: 



�9 reference model and reference input: 

M(~) = - - - - -  
(s + 2) 3 
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r m ( t ) = {  2 
--2 

if t < 5  

i f 5 < t < l O  

�9 design parameters: 

Ll (s) = el (s)d2(s), el (s) = s + 1, ~2(s) = s + 2 

A(s) = (s + 1) 2 

F(rs)  = ( I s +  1) 2 

�9 augmented signal and auxiliary errors: 

[ l ] 
ya(t) = M(s)LI (s) Ul -- Ll  (s) [Up] (t) 

eal (t) "- eo(t) + ya(t) 

1 1 

ea2(t) =/ '1 (s)[u2](t) - F('rs)[Ul](t) 

1 1 
ea3(t) =/ '2(s)  [u3](t) - F(~'S)[u2](t) 

�9 controller: 

u~(t) = ~ - sgn  (e.~)oj(t)~(t) -sgn (eal)~l(t) - -sgn (e.~)~2(t)m(t) 

u,(t) = - sgn  (e.,) ]F(rs) [U,_l](t) + 1 , i =  2,3 

Up(t) -- Up(t) 

rh(t) = -m( t )  + O.O05([up(t)] + 1), m(O) -- 0.2 

�9 adaptation law: 

Oj(t) = 7jleal(t)~(t)l, j = 1, . . . ,  6 

/31(t) = glleal(t)[ 

/32(t) - -  g2ieal (t)lm(t) 

Three simulation cases are studied extensively in this example in order to verify 
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Figure 3.2 yp ( - ) ,ym ( - - ) ,  time (sec) 

all the theoretical results and corresponding claims. All the cases will assume 
that there are initial output error yp(0) -ym(O) = 4. 

(1) In the first case, we arbitrarily choose the initial control parameters as 

0j(0) = 0.1, j =  1 , . . . , 6  

B/(0) = 0.1, j = l , 2  

and set all the adaptation gains 7j = Oj = 0.1. As shown in Figure 3.1 (the 
time trajectories of yp and Ym), the global stability, robustness, and 
asymptotic tracking performance are achieved. 

(2) In the second ease, we want to demonstrate the effectiveness of a proper 
choice of Oj(O) and /3j(0) and repeat the previous simulation case by 
increasing the values of the controller parameters to be 

Oj(O)= l, j = l , . . . , 6  

/3 j (0)=l ,  j = 1 , 2  

The better transient and tracking performance between yp and Ym can now 
be observed in Figure 3.2. 
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(3) As commented in Remark 3.2, if there is no easy way to estimate the 
suitable initial control parameters 0j(0) and ~.(0) like those in the second 
simulation case, it is suggested to use large adaptation gains in order to 
increase the adaptation rate of control parameters such that the nice 
transient and tracking performance as described in case 2 can be retained 
to some extent. Hence, in this ease, we use the initial control parameters 
as in case 1 but set all the adaptation gains to 7 j = g j =  1. The 
expected results are now shown in Figure 3.3, where rapid increase of 
control parameters do lead to satisfactory transient and tracking 
performance. 

3.6 Conclusion 

In this chapter, a new adaptive variable structure scheme is proposed for model 
reference adaptive control problems for plants with unmodelled dynamic and 
output disturbance. The main contribution of the chapter is the complete 
version of adaptive variable structure design for solving the robustness and 
performance of the traditional MRAC problem with arbitrary relative degree. 
A detailed analysis of the closed-loop stability and tracking performance is 
given. It is shown that without any persistent excitation the output tracking 
error can be driven to zero for relative degree-one plants and driven to a small 
residual set asymptotically for plants with any higher relative degree. 
Furthermore, under suitable choice of initial conditions on control parameters, 
the tracking performance can be improved, which are hardly achievable by the 
traditional MRAC schemes, especially for plants with uncertainties. 
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Appendix 

Lemma A Consider the controller design in Theorem 3.1 or 4.1. If the control 
parameters Oj(t),j = 1, . . .  ,2n,/31(t) and/32(0 are uniformly bounded Vt, then 
there exists #* > 0 such that up(t) satisfies 

II(+)tlloo -< ~ll(e0)tlloo + ~ (A.1) 

with some positive constant ~ > 0. 

Proof Consider the plant (.3.1) which is rewritten as follows: 

y(t) - do(t) = P(s)(1 + #Pu(s))[up](t) (A.2) 

Let f (s)  be the Hurwitz polynomial with degree n - p  such that f (s)e(s)  is 
proper, and hence, f - l  (s)p-l (s) is proper stable since e(s) is minimum phase 
by assumption (A3). Then 

y(t) - do(t) = P(s)f(s)f-l(s)(1 + #Pu(s))[ur](t ) (A.3) 

which implies that 

f - l ( s )p- l ( s ) [y  - do](t) - #f-l(s)Pu(s)[up](t) = f-l(s)[up](t) ~u*(t) (A.4) 

Sincef- l (s)P-l(s)  andf-l(s)Pu(s) are proper or strictly proper stable, we can 
find by small gain theorem [7] that there exists/t* > 0 such that 

IlCu*)tlloo -< ~llCrp),lloo + ~ -< ~llCe0),lloo + ~ (A.5) 

for some suitably defined ~ > 0 and for all # E [0, #*]. Now if we can show that 

I1(+),11oo -<  ll(u*),lloo + (A.6) 

for some ~ > 0, then (A.1) is achieved. By using Lemma 2.8 in [19], the key 
point to show the boundedness between u e and u* in (A.6) is the growing 
behaviour of signal u e. The above statement can be stated more precisely as 
follows: if up satisfies the following requirement 

lup(tn)l > clup(tl + T)I (A.7) 

where tl and tl + T are the time instants defined as 

[ti, tl + T] C f~ = {t i I+1 = (m.8) 

and c is a constant E (0, 1), then up will be bounded by u*, i.e. (A.6) is achieved. 
Now in order to establish (A.7) and (A.8), let (Ap, B,, Cp) and (A,B) be the 

a(s) 
state space realizations of P(s)(l +#Pu(s)) and A-~ respectively. Also 
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define S = [x~, w~, w~,m] T. Then, using the augmented system 

~p ,4p 0 0 0 x~ B~up 
fvl 0 A 0 0 w] + Bup 
fr = BCp 0 A 0 w2 Bdo 

0 0 0 - 6 0  m 611upl+l 

Since do is uniformly bounded, we can easily show according to the control 
design (3.16) or (3.24) that there exists ~ such that 

ISI < ~ll(S),ll~ + 

This means that S is regular [21] so that xr, wl, w2,m, yp and up will grow at 
most exponentially fast (if unbounded), which in turn guarantees (A.7) and 
(A.8) by Lcmma 2.8 in [19]. This completes our proof. Q.E.D. 
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