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On Minimum-Fuel Control of Affine Nonlinear Systems 

JING-SIN LIU, KING YUAN, AND WEI-SONG LIN 

Abstract-The minimum-fuel control problem is investigated for a 
class of multiinput affine nonlinear systems whose associated Lie algebra 
is nilpotent. Interesting consequences of the maximum principle are 
deduced for such systems. 

I. INTRODUCTION 

Optimal control theory [7] provides a systematic design method for 
modern control systems and thus plays an important role in linear control 
theory (more specifically, the linear quadratic regulator and linear 
quadratic Gaussian control theories). Roughly speaking, the success of 
optimal control theory in the context of linear systems is due to the ease of 
computation of the optimal control law. On the other hand, until now 
there has been a lack of systematic and reliable procedures for solving 
nonlinear optimal control problems. This is unfortunate, but some 
attempts have been made to resolve these difficulties; in [ 2 ]  a Lie 
algebraic approach has been used to derive a set of quasi-linear partial 
differential equations which the optimal feedback law must satisfy. 
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Application of this new computing method for the optimal control of 
regulation of satellite angular momentum has been reported in [8] 
recently. The Lie brackets of vector fields have become a main 
mathematical tool in nonlinear control theory [9] and optimal control 
theory [lo]. In this note we consider the following optimal control 
problem: 

the performance index to be minimized is: 

(1) 
l T  
2 0  

J(xo, U)=- uru d f + K ( x ( T ) )  

subject to the smooth affine system dynamics 

m 

x = f ( x ) + C  g,(x)u,, x(O)=xo 
, = I  

=for )  +&)U (2) 

where T > 0 is the fixed end time, the system’s vector fieldsf, g,, and K 
are all smooth, x i s  a real n-vector, U, is a scalar control, i = 1, . . e ,  m. 
Since in most cases the cost integrand uTu of (1) can be identified as the 
energy expended, we call the optimal control problem (l), (2) a 
minimum-fuel control problem for (2). Associated with the nonlinear 
system (2) we define the Lie algebra L 

L : = the Lie algebra generated by the system vector fields 

{ f ,  8,  ... 9 g m )  (3) 

i.e., L is the set consisting off, g,, . . . , g, and all possible Lie brackets 
generated by f, g, , . . . , g, and their linear combinations. The following 
notations are also used in this note: 

ad: := L 

adLL = [ L ,  L ]  

= { [ X ,  Y ]  : x E L ,  Y E  L )  

ad:+ I L = adLad*,L 

where [., * ]  is the Lie bracket. 
The minimum-fuel control problem of a scalar input bilinear system 

was studied in [I], assuming that the Lie algebra L is nilpotent. The 
purpose of this note is to generalize results of [ 11 to a more general class 
of multiinput systems described by (2) with nilpotent Lie algebra L. The 
organization of this note is as follows. In the next section, some 
preliminary notions and definitions will be given; then the motivations of 
our work on the problem ( l ) ,  (2) will be explained. Then we will 
concentrate on the solution to the optimal control problem if (3) is 
nilpotent. It will be seen that some results of [I] are due not only to the 
nilpotent property of L but also to the fact that the systems considered are 
single-input in which case the solution is greatly simplified. In the last 
section we make several conclusions. 

11. PRELIMINARIES AND MOTIVATION 

In this note, we are especially interested in system (2) with special 
structure: the Lie algebra L is nilpotent. Recall [5] that a Lie algebra L is 
nilpotent if there exists a positive integer k such that 

ad:L=O. (4) 

Note that other equivalent definitions are available [SI and the one adopted 
here is the same as that used in [I]. A system of the form (2) can be very 
complex to allow for the application of existing control theory, e.g., 
optimal control theory. A possible first step to overcome the difficulties 
arising from the system’s complex structure is to approximate system (2) 
locally by a system with simpler structure. A system with simpler 
structure must be more mathematically tractable to facilitate the subse- 
quent control design problem. It has been shown [3], 141 that under some 
nonrestrictive conditions, a system of the affine form (2) ,  with or without 

the drift termf(x), can be locally approximated by a nilpotent one with 
the same form of state equations as (2). Therefore, it is useful to study the 
control problem of an affine smooth nonlinear control system with 
nilpotent Lie algebra L before we thoroughly investigate the general 
control problem. For brevity, the nonlinear system described by the state 
equations (2) is called a nilpotent nonlinear control system if its associated 
system’s Lie algebra L is nilpotent. 

III. OPTIMAL CONTROL PROBLEM 

In this section, we solve the optimal control problem (I), (2) under the 
assumption that L is nilpotent, i.e., we consider the minimum-fuel control 
problem for nilpotent control system (2). For such an optimal control 
problem, we formulate the associated Hamiltonian 

1 
2 

H = p r ( f + g u ) - -  U ~ U  

=H@, P .  U) ( 5 )  

wherep is the n x I real costate vector. For the Hamiltonian given by (5) 
we have the Hamiltonian system given below 

X;=f(x)+g(x)u, x(O)=xo 

aH 
P= -- (x, p ,  U )  ax 

and an m x 1 output is also added to (6) 

aH y = -  
au 

(7) 

Note that the system (6), (7) forms a Hamiltonian system in the canonical 
coordinate system (x ,  p). The optimal control problem (I), (2) with 
Hamiltonian (5) is regular (or nondegenerate) since 

is nonsingular for any (x ,  p, U). The optimal control U* satisfies the 
necessary condition 

y = o  

or equivalently, 

From this equation (8) we get explicitly 

u,*=prg,(x), i = l ,  2 ,  ..., m. 

Let 

(9) 

H*(x, p )  : = H(x,  p ,  U*) 

denote the optimal Hamiltonian, then the resulting Hamiltonian system (6) 
after replacing H(x,  p ,  U) by H*(x, p) will be called an optimal 
Hamiltonian. 

From (7), the ith (i = 1, 2, * , m )  output is 
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then the first time derivative of y ,  is 

or 

where 

F : =  f + g u .  (11) 

The following simple Lemma is of use in the subsequent derivations. 
Lemma: Let Y be a vector and p the optimal costate vector. Then 

where F is as defined in (1 1) and the time derivative is calculated along 
the system's trajectory. 

Proof: The time derivative of the function p Y along the system's 
trajectory is 

d 
dt 
- (pTY)=pTY+pTY 

aF a y  - - - p 7 -  ax Y + p T - F  ax 

=pTadFY 

From this Lemma, we easily obtain the second time derivative of U, by 
differentiating (10): 

u,=pTadig , -y , .  (12) 

In general, we have for each i = 1 ,  2, . . . , m 

u!*)=pradSg,-yjk), k=O, 1, 2, .... (13) 

Thus, the necessary condition y ! k )  = 0, k = 0 ,  1 ,  2, . . . , for optimality 
of U: is equivalent to 

u*(k)=prad;g,Iu*, k=O, 1, 2,  .... 
The above derivations give the following. 

along the flow of the optimal Hamiltonian H* 
Proposition: The necessary conditions for optimality of U: are that 

~ : ( ~ ) = p ~ a d ; g , I . * ,  k=O, 1 ,  2, ..., i = l ,  2, ..., m. (14) 

Remark: The hierarchy of conditions (13) are also given in [2] for a 
more general class of criterions and systems, written for a slightly 
different problem (Mayer problem) in a less explicit form. The conditions 

U: = P Tg,(x) (15) 

U:=PT[f+gu*,  g,l (16) 

were also derived in [6] in which (16) was obtained from direct 
differentiation (with respect to time) of (15). The derivation of [6, eq. 
(15)] was from the trivial symmetry (or trivial (energy) conservation law) 

{ H*, H*} = 0 

where {.  , . } is the Poisson bracket of smooth functions, since H* is a 
first integral of optimal Hamiltonian system. In this regard, we can view 
the conditions given in the Proposition as representations of energy 
conservation law. 

From the Lemma, the following Corollary is clear. 

Corollary: If L satisfies the nilpotence condition 

adL=O 

for some positive integer k ,  then for any vector field X E adi-'L, 
p T X ( x )  is a constant. 

There are three special cases of interest to be considered. 
Case 1 (Commutative Case or k = I ) :  In this case, for each i ,  j = 1, 

2, ..., m 
I f ,  &I = 0, 

[g , ,  g , l=O.  

Since from (14) 

U:=p7adFg,I.* 

by the Corollary, we have 
1': = 0, 

i.e., the minimum-fuel control for a nilpotent control system with adL = 
0 is a constant vector: U* = C. The computation of this constant U* can 
proceed as follows. In this case, the minimum cost is 

J*(xo) : = J(x0, U *) 

=i ~ ' U * ~ U *  d t+K(x(T))  
2 0  

_ m  

=f C ; + K ( x ( T ) )  
, = I  

and the system dynamics become 

x= f ( x ) + g ( x ) C ,  x(O)=xo. (18) 

From (18) we can (numerically or analytically) solve for x ( t )  and thus 
x ( T ) ,  then (17) is a function of Ci only. For optimality of C,, we must 
require that 

aK 
- TC, + - (x( T ) )  

dJ* _- 
d c ,  act 

=0, i = l ,  2, ..., m. 
These constitute a set of m algebraic equations in m unknowns: C,, . . . , 
C,,,; C can then be solved by standard methods. 

Remark: For the present Case 1, the result is the same as that of [I] for 
a single input bilinear system. 

Case 2 (k = 2 or ad; = 0): In particular, adig,  = 0, i = 1, 2, . . . , 
m. In view of (14): we have, by the Corollary, 

ii:=pradig, 

= 0. 

Therefore the open-loop optimal control is 

u:( t )=C,+d, t ,  i = l ,  2 ,  ..., m 

for some constants C, and d,.  Note that the result obtained here is also 
analogous to that of [I] for single input bilinear systems. Consequently, 
the two cases just considered are natural extensions of [ l ]  to the more 
general problem (l) ,  (2) considered. 

Case 3 (k = 3 or ad; = 0): In particular, adig, = 0. It can be seen 
from (14) that 

U ; ( ~ ) = O ,  i = l ,  2, ..., m 

and by the Corollary and (12): 

m m " 

u : = a i + x  b ; u , ? + x  C ; u : + Z  d;,u,?u: 
j =  1 k = l  ) = I  k = I  

i = l ,  2, ..., m (19) 
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where the constants are defined by 

Q ’ = P ‘ [ f *  [f, Sill. 

q = P 7 [ f ,  [g,, S,ll> 

c;=PT[Sk, [f, g,ll, 

q , = P r [ S , ,  [Sk, S,ll. 

This set of m nonlinear coupled second-order differential equations given 
by (19) may be solved for U:. However, usually analytic closed-form 
solution to uF( t )  is not possible and we must accept a numerical solution 
using numerical integration techniques. Note that the second and final 
terms on the right-hand side of (19) are due to the multiinput nature of the 
system in addition to the nilpotence structure imposed on the system (cf. 
the first equation in [ l ,  p. 8971). 

For single input systems (i.e., m = 1) b; = d;! = 0, (19) is then 
reduced to a linear constant second-order ordinary differential equation 

U * = c, t c2u * (20) 

where 

C,=p‘[f, U-, Sll, 

The general solution of (20) is 

where C,’s and k,’s are constants; k2 satisfies the characteristic equation of 
(20) 

k: = C2. 

Remark: For the single-input nilpotent control system with ad: = 0, 
the minimum-fuel control is given by (20) which is a generalization of [ 11. 
For the multiinput system, the situation is far more complicated as can be 
seen from (19). The solution of u* ( f )  from (19) is not a simple task and 
numerical integration is helpful in the present case. We can then safely say 
that the result of [l] is not only due to the nilpotent structure of the 
system’s Lie algebra L but also due to the fact that the systems considered 
are single input. Although it is well known [5] that every finite- 
dimensional nilpotent Lie algebra has a matrix representation, it is not 
convenient to analyze the problem in the matrix setting. This is different 
from the bilinear case in which the matrix representation is provided in the 
problem. 

IV. CONCLUSION 

We have considered the optimal control problem (l), ( 2 )  when the 
system ( 2 )  under investigation is such that its Lie algebra L defined in (3) 
is nilpotent, i.e., ad2L = 0 for some positive integer k. The key equations 
for optimal control U* are (14) whch constitute a hierarchy of necessary 
conditions for U*. These equations play a crucial role in obtaining the 
open-loop optimal control u*(t)  at least for k = 1, 2 ,  3 which were 
studied in this note. The result of [ I ]  for single input bilinear system was 
then naturally generalized to system ( 2 ) ;  and it was also stressed that their 
results are due to two properties of systems considered by them: single 
input and nilpotent L.  Since those systems ( 2 )  with nilpotent L are of 
special interest as mentioned in the second section, other control aspects 
of such systems need extensive and intensive research in the future. 
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Optimal Control Via Fourier Series of Operational 
Matrix of Integration 

Y. ENDOW 

Abstract-The state equations of an optimal regulator problem are 
given in terms of the truncated Fourier series and the associated 
operational matrix of integration. An effective computational algorithm 
is developed to calculate the expansion coefficients of the derivatives of 
state variables for saving computer storage and time and minimizing the 
computational error. An illustrative example is also given, and satisfac- 
tory computational results are obtained. 

I. INTRODUCTION 

In recent years orthogonal functions have been used by a number of 
researchers to solve control problems. The objective is to obtain efficient 
algorithms, and hence to use the computational capacity of computers. 
The main characteristic of this technique is that it reduces the differential 
equation involved in the problem to an algebraic equation in terms of the 
orthogonal functions and the operational matrix of integration associated 
with these functions. Typical examples of the orthogonal functions are the 
Walsh [l], block-pulse [2], Laguerre (31, Legendre [4], Chebyshev [5 ] ,  
[6], Fourier [7], [8], and polynomial [9] functions. 

In this note the Fourier series operational matrix of integration is used 
to determine an optimal control for a linear regulator problem. This 
approach has advantages due mainly to the use of sinusoidal functions 
since they are widely used in engineering fields and their properties are 
well known. In addition, the algorithm is comparatively simple and does 
not require excessive memories so it is suitable for microprocessors. 
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