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Decentralized Control of Interconnected 
Systems with Unmodelled Nonlinearity 

and Interaction* 

CHENG-JYI MAO~" and WEI-SONG LIN~-, 

A proposed completely decentralized controller for interconnected systems 
with unmodelled nonlinearity and interaction gives each subsystem a 
near-optimal performance close to the decomposed, linearized optimal 
response. 
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Almtract--This paper presents a completely decentralized 
control scheme for the control of interconnected systems 
with unmodelled nonlinearity and interaction. The interac- 
tions due to the intereonneetion and the intrinsic 
nonlinearities associated with each subsystem are repre- 
sented by aggregative deviations of state derivatives from 
their linearized nominal values of the decomposed 
subsystems. Then, based on a model following technique, 
the aggrcgative deviations are tracked by on-line 
improvement. The solution involves the design of the 
decentralized control giving each subsystem a near-optimal 
performance dose to the decomposed, lincarizcd optimal 
response and the generation of corrective signals for the 
aggregative deviations of state derivatives. This approach is 
completely decentralized and all the operations arc 
subsystem based, therefore the burden of computations is 
reduced significantly. Moreover, the proposed control 
method is robust to modelling errors and is initial state 
independent. By the Lyapunov's direct method, a sut~icicnt 
condition for the stability of the global system even under 
any structural perturbations is established. Computer 
simulations for the decentralized control of a two-link, ~- r  
manipulator are conducted. 

1. INTRODUCTION 

THE DECENTRALIZED control schemes, different 
from the classical centralized information struc- 
tures, have been considered with significant 
interests for the control of linear or nonlinear 
interconnected systems in recent years. When a 
large-scale system is concerned, the centralized 
pattern often fails to hold due to either lack of 
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the overall information or lack of the centralized 
computing capability. Although much of the 
early work dealing with linear interconnected 
systems by multilevel approaches have been 
made (~iljak and Sundareshan, 1976; Sund- 
areshan, 1977; Singh et al., 1979), these 
controllers still require information transfer 
among subsystems. With the constraint that only 
local information is observed by the local control 
station, some studies concerning this problem 
have been proposed. For example, the suppres- 
sion of information transfer was achieved by 
calculating the block diagonal gain matrices 
using hierarchical structures (Hassan and Singh, 
1978a; Hassan et al., 1979). Besides, Hassan and 
Singh (1978b, 1980) have shown two on-line 
completely decentralized control methods for 
linear interconnected systems: one by improving 
the interaction model and the other by 
improving the estimated interactions. For the 
problem of nonlinear interconnected systems, 
control methods by using high-gain feedback 
(Khalil and Saberi, 1982) and by solving a set of 
appropriate local optimal problems (Saberi, 
1988) have also been derived. 

Practically, physical systems possess unmod- 
elled nonlinearities to some extent, and the 
interactions among subsystems of interconnected 
systems are poorly known or  not known at all 
after the subsystems being integrated. How to 
deal with these problems becomes more 
interesting in this area. The model reference 
adaptive control technique has been applied to 
the decentralized control of interconnected 
systems (Bundeli, 1985; Gavel and ~iljak, 1985; 
Ioannou and Kokotovic, 1985; Ioannou, 1986), 
where these methods considered the subsystems 
as if they were decoupled and accommodated 
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with the unknown interactions. Other ap- 
proaches for the decentralized control of linear 
unknown systems by the technique of so-called 
"multivariable tuning regulators" (Davison, 
1978) and by nonlinear dynamic compensation 
(Hmamed and Radouane, 1982) have been 
proposed. 

Especially, the two on-line approaches (Has- 
san and Singh, 1978b, 1980) mentioned above 
have shown a possible way to design the 
decentralized controllers for linear intercon- 
nected systems by giving the interaction a model. 
However, if the interaction is unmodelled, the 
procedure as in those for choosing the 
interaction model parameters from the global 
system matrix is not possible. In the present 
paper, with the advantages of simple computa- 
tion and easy implementation, a completely 
decentralized control scheme for the control of 
interconnected systems with unmodelled non- 
linearity and interaction is proposed. The 
nonlinearities and interactions associated with 
each subsystem are represented by aggregative 
deviations of state derivatives. Consequently, by 
using a model following technique, the devia- 
tions are tracked by the on-line improving 
technique. Therefore exact modelling of the 
deviations is not required. Based on improving 
the deviation model, the well-known optimal 
control technique is applied to obtain a 
completely decentralized control scheme. This 
eliminates the redesign procedure of subsystem 
controllers after the decomposed subsystems 
being integrated. Moreover, this method is 
robust to modelling errors and is initial state 
independent. The proposed decentralized con- 
troller yields a near-optimal performance which 
is close to the decomposed optimal response 
where no deviations are considered. Besides, 
since the calculation of the controller gains is 
subsystem based, it is simple to compute and the 
controllers are easy to be implemented. The rest 
of the paper is divided into five sections. 
Sections 2 and 3 give the formulation of the 
problem and the derivations of the new 
approach, respectively. In Section 4, the 
sufficient condition to guarantee the stability of 
the global system is established. It is seen that 
the satisfaction of this condition provides a 
robust design which is insensitive to any 
structural perturbations in the sense of ~iljak 
(~iljak, 1973). In Section 5, computer simula- 
tions for the decentralized control of a two-link, 
O-r  manipulator are given and responses by the 
decomposed optimal control, local optimal 
control without any compensation and proposed 
decentralized control are compared. Section 6 is 
a brief conclusion. 

2. PROBLEM FORMULATION 
Consider a composite system which is an 

interconnection of s subsystems as 

.~i(t) =f i (x i ,  u,) + ~ gij(t, xj) i = i, 2 . . . .  , s 
j = l  

~*~ (1) 

where x ~ ( t )  is the n~-dimensional state vector, 
ui(t) is the miodimensional control vector, 
f~(xi, u~) is continuous in time with f~(O, O)= O, 
gii(t, xi)  is the interconnection term for the ith 
subsystem from the jth subsystem and g~j(t, O) -- 
0. The interconnection terms are assumed to 
satisfy 

sup IIg~s(t, xj)ll <- cr~ Ilxs(/)l I (2) 
t>O 

where cri~ is a non-negative constant number, 
and the norms hereafter are all Euclidean and 
induced Euclidean norms for vectors and 
matrices, respectively. From the linearization of 
system (1) about the equilibrium point and the 
aggregation of the instant deviations of state 
derivatives due to the nonlinearities and 
interactions, equation (1) can be rewritten as 

;~i(t) = A ix i ( t  ) q- Biui( t  ) + zi(t  ) i = 1, 2 . . . . .  s 

(3) 

where Ai, B~ are constant matrices with ap- 
propriate dimensions, (Ai, Bi) is assumed to be a 
completely controllable pair and z~(t) is the 
n,.-dimensional deviation vector which is an 
aggregation of the nonlinearities and inter- 
actions. 

With the presence of the unmodelled aggrega- 
tive deviations, the goal of the decentralized 
controller is to give each subsystem a 
near-optimal performance close to the decom- 
posed optimal response with respect to the 
following quadratic performance index 

min Ji = ~ [x~(t)Q,xi(t)  + uI( t )R,  ui(t)] dt (4) 

subject to (3) with zi(t)  being neglected, where 
Q~ =D~D~ is positive semidefinite, (A~, D~) is 
completely observable, Ri is a positive definite 
matrix, and the superscript, t hereafter means 
the transpose of a vector or matrix. 

3. THE DECENTRALIZED CONTROLLER 
Based on a model following technique, the 

reference model for the ith subsystem can be 
constructed as 

,~i(t) = Ai~, ( t )  + Bi {ui( t )  + Ki[xi(t)  - ~i(t)]} + 2,(t) 

(5) 
~i(t) = A~,ei(t)  + vi( t)  (6) 
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where ~(t) is the tracked aggregative deviation, 
A,,. is an arbitrary stable matrix, (A,~,/~) is a 
controllable pair, where /~ is the n~-dimensional 
identity matrix and v~(t) is the improving signal 
left to be determined. The gain, Ki is chosen 
such that ( A ~ -  B~Ki) is asymptotically stable. 
Let 

$i(t) = xi(t) - .~,(t) (7) 

ei(t) = z,(t) - ~,(t) (8) 

then we have 

:~,(t) = A.*, g~(t) + ~i(t) (9) 

where A7 = ( A i  - BiKi). 
Since the aggregative deviation, z~(t) is 

unmeasurable and unmodelled, one way to make 
(5) a good model is to improve the crude 
interaction model (6) on-line such that the errors 
(7) (8), are as small as possible. This can be 
done by minimizing the following performance 
index: 

z1£'* min Jzi = : [£~(t)Qzi£i(t) + ~(t)R,iS.,(t)] dt 

(10) 

subject to the constraint (9), where Q=~ = D,,D',i 
is positive semidefinite, (AT, D,~) is completely 
observable and R,~ is a positive definite matrix. 

The optimal solution is 

~i(t) = -£ ,£ i ( t )  (11) 

where 

and P,~ is a 

£, = R~.lpzi (12) 

steady state solution of an 
appropriate Riccati equation. 

From (8) and (11), we have 

zT(t) = ~i(t) - £,$,(t). (13) 

Consider that zT(t) is a good estimation of the 
unknown deviation and accept it as a substitu- 
tion of z~(t) in the design. The substitutions of 
(13) into (3) and (11) into (9) give the following 
approximate state equations: 

:~;(t) = Aix;(t)  + Biui(t) + ~i(t) - [,i$;(t) (14) 

.~;(t) = fi, i$;(t) (15) 

where x~(t), £~(t) are approximate states and 
~,  = ( A T  - [,,). 

Define the extended vectors, f(i(t) and Oi(t ) as 

fc~(t) = [x~'(t)~(t)$;'(t)], O~(t) = [u~(t)v~(t)] 

(16) 

then we obtain the following extended system: 

f(i(t) = ,~tiff(i(t) + BiOi(t) (17) 

where 

I!:il f l i=  A=i 0 , [li= . (18) 
0 fi,~ 

The control variable ui(t) and the improving 
signal vi(t) can thus be determined by minimiz- 
ing the following performance index: 

1 [2I(t)O~2~(t) + OI(t)~O~(t)] dt m i n i / = ~  

(19) 
subject to the constraint (17). 

Since the pair (Ai, B~) is partially controllable 
and is stabilizable, we can choose 

[ I 
Qi 0 0 

0, .= 0 Q.i 0 ,  & =  ~ 0 (20) 
0 0 0 R,~ 

where Qi, R~ are chosen the same as those in (4), 
and Q~, R~ are respectively positive semidefin- 
ire a~d_ positive definite matrices such that 
O~ =DiD~ is positive semidefinite, (~i, b~) is 
detectable and ~, is a positive definite matrix. 

~ e  solution of (19) is 

~.(~) = - d , 2 ~ ( t )  (20  
where 

(22) 
kH~l N.z HM 

and ~ is a steady state solution of an appropriate 
Ri¢cati equation. 

~ o u g h  (21) is only a result of approximate 
state equations, it can still be accepted as the 
desired control and improving laws. From (21) 
and (22), u~(t) and v~(t) can be described by 

u,(t) = - a ~ , x ~ ( t )  - a,~ , ( t )  - a , ~ , ( t )  (2~) 

v~(t) = -Hnx~(t )  - H~zfi(t) - ~.3Yi(t). (24) 

The block diagram of the proposed decentral- 
~ed controller is depicted in Fig. 1. 

z,(t) 
~ ' ~  ~(~) ~ 

u,(~j ~ ~ 

I ; ~  - - ~  
~ ~ ( ~  

Fro. 1. ~ e  decentralized ¢~ntroiler. 

1~, ~ J 
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4. STABILITY 

For the sake of incorporating structural 
perturbations during the operation period, the 
on-off connective parameter eq(t) is introduced 
(~iljak, 1973). The state equation (3) can then 
be rewritten as 

.~i(t) = Aixi( t )  + Biui(t)  + ~ eq(t)g#(t, xj) 
j = l  

i = 1 , 2  . . . .  , s  (25) 

where g~(t, x~) represents the nonlinearities of 
the ith subsystem and is assumed to satisfy (2) 
where the corresponding Lipschitz constant 
(Vidyasagar, 1978) is denoted by ~ .  

The sufficient condition for the asymptotic 
stability of the decentralized control system is 
stated by the following theorem. 

Theorem 1. The nonlinear interconnected 
system when controlled by the decentralized 
controllers is asymptotically stable under any 
structural perturbations if the following sufficient 
condition is satisfied; 

max , ~  (fl,.) 
i 

+ 2X/--2s max ~.~(/~/) max a~ 0. < min ~.,~(w~) (26) 
i i , j  i 

where 

fl, = + 

aq is the same as that in (2) 
w, = - (  + 
Z,,( • ) = the minimum eigenvalue of the argu- 

ment 
Z~(.  ) = the maximum eigenvalue of the argu- 

ment. 

Proof. When the system described by (25) is 
controlled by (23) and (24) and a simplified 
notation is introduced, we have 

~i(t) = MiXi(t) + ~i~(t) (27) 

where 

X~(t) = [x~(t)~(t)i~(t)] 

Ai - BiGil -B iGi2  -B iGi3  ] 

~d i = - Hi ~ A z~ - -  Hiz - H i 3  I 
0 --I  i A i -- BiKi..] 

0 t,l ' 

and @~(t) = E~-t eq(t)gq(t, xi). 
Choose the Lyapunov function V[X(t)] as 

V[X(t)] = ~ V~[X~(/)]-- ~ X~(t)~X~(t) (28) 
iffil i ~ l  

where #~ is the same as that in (22) and is 
symmetric, positive definite. 

The sufficient condition for this system to be 
asymptotically stable is l?[X(t)] <0 .  On using 
(27), we obtain 

9[X(t)] = ~ [ff~(t)~X~(t) + X~(t)['iJ~i(t)] 
i = l  

= ,..., [ X , ( t ) ( M , P ~  + ~M,)X,(t) 
i=1 

+ 2X~(t)fi~i@,(t)] 

<0.  

Let Mi = Mix + Mi2, 
where 

= - B , d ,  

I 
mi - BiGil I~ - BiGi2 - £ i  - BiGi3 7 

= -Hi~ A~i - Hi2 -Hi3  I 
i 

0 0 Ai J 

(29) 

From the substitution of M~ by M~ + Mi2, (28) 
becomes 

~ t t - [Xi(t)(M,tPi + #,.a,t)X,(t) + S,(t)(a,2P~t , - 
i ~ l  

+ ~M,2)Xi(t) + 2X~(t)~@~(t)] < 0. (30) 

Using ~., the solution of the Riccati equation, 
we have 

~ ~ t - X,(t)(Mn~ + ~M,~)X~(t)= ~ X~(t)(-w~)X~(t) 
i = l  i ~ l  

where w~ = - ( M ~ t ~  + ~M~) is a positive defin- 
ite, symmetric matrA. ~ e n  

~ [X~(t)(M~2~ + ~MI2)X~(t) + 2X~(t)~#i@~(t)] 
i ~ l  $ 

< ~  X~(t)(w~)Xi(t). (32) 
i ~ l  

Since 

~ XI(t)(~)X~(t) ~ rain X ~ ( ~ ) ~  II~(t)ll e 
~ l  ~ i ~ l  

~ XI(t)(~la~. + ~,~)X~(t)  
~ 1  

s 

~ m ~  Z~(~i)~ IIX~(t)ll z 
i i = l  

where 0, = (M~x~. + ~M,2), and 

~ ~ ( t ) ~ ( t )  
~ - I  

• • 

~ 2 ~  Z m ( ~ ) ~  IIX~(t)ll ~q IIX~(t)ll 
i ~ l  j = l  

~ 2 ~ s  m =  Zm(~) m ~  aq ~ IlX~(t)ll z. 
i i , j  i = l  
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F~o. 2. Schematic representat ion of the model. 

The result is 

m~ax ~.u(~,) + 2V~s  m,.ax ~.u(~) m~ x cr,.~ 

< min ~.,~(w~). 
i 

5. E X A M P L E  

Consider a two-link, O-r manipulator which 
is assumed to perform horizontally. Figure 2 
shows the model schematically. 

The mass of the rotary link is assumed at its 
center of mass, m~ at constant distance rt from 
the center of rotation. The prismatic arm and 
load are modelled as a mass m2 at distance r. By 
using the Lagrangian (Snyder, 1985), the model 
of this manipulator can be described by 

Tit) = m~r~( t )  + m~r2(t)~(t) + 2m2r(t)~'(t)~(t) 

+ BoO(t) (33) 

Fit) = m2[/:(t) - r(t)O2(t)] + Bfi'(t) (34) 

where Tit) is the input torque, Fit) is the input 
force, O(t) is the rotary variable, r(t) is the linear 
variable, Bo and B, are the rotary and linear 
viscous friction coefficients, respectively. 
Define x~(t) : [Xla(t)x~2(t)] = [O(t)~(t)], xt2(t) = 
[x:~(t)x22(t)] = [r(t)~(t)] and [u~(t)u2(t)] = 
[T(t)F(t)]. The nonlinear system (33) and (34) 
can be linearized about  the operating point to 
obtain the following state equations 

,~(t) = A~x~(t) + nlUl(t ) "]- Zl(/) (35) 

.~2(t) = A2x2(t) + B2u~(t) + z2(t) (36) 

where A~, B~ are the parameters of the resulting 
linearized model and z~(t), z2(t) are aggregative 
deviation vectors containing the interactions and 
nonlinearities. 

Assume that the manipulator performs a 
return motion from an initial condition. Our 
problem is to determine the decentralized 
control laws for u~(t) and u2(t) such that the 
robot can perform close to the decomposed 
optimal response with respect to the following 
optimization problem: 

rain J~ -- ~ [xI(t)Q~x,(t) + .I(t)R~u,(t)] dt (37) 

0 
O. 

~. 
~0 

r ~  
~- 

0 . 8  ~ \  - - . - - C a s e  I 
~ , \  . . . .  Case 2 

0.40"(S ' . \ i \ . ~  - -  C a s e 3  

O. o 
-0 . : : '  

- 0 . 4  ~./  

-0.~: . . . . . . . . .  
t 2 3 4 5 fi 7 B g 10 

Time (sac) 
FIG. 3. State trajectories of angular positions. 

subject to (35), (36) with zl(t), z2(t) being 
neglected, where Qi=DiD~ is positive semi- 
definite, (Ai, Di) is completely observable and Ri 
is positive definite. 

The numerical values are set as Bo = 2.2 N t -  
m s rad -1, B, = 2.8 Nt s m -~, r~ = 0.2 m, ml = 
10kg, m 2 = 8 k g ,  and the initial condition is 
[x~(0)x~(0)] = [1.0, 0, 0.6, 0]. The responses of 
the system are simulated on a digital computer 
for three different cases. The first case is the 
decomposed optimal control of the manipulator 
with single joint operation where no interactions 
and no nonlinearities are considered. The second 
one simply uses the local controllers without any 
compensation for the interactions and non- 
linearities. The third case uses the proposed 
decentralized controllers for the control of the 
manipulator with unmodelled interactions and 
nonlinearities between the links. In order to 
compare the results, the same weighting 
matrices, Qi = 1012 and R~ = I~ are applied to the 
performance indices, respectively. All of the 
state trajectories are plotted in Figs 3-6.  

The performance indices associated with each 
control method are J , o , -~ ,~o ,  = J~l + 
J~2 = 40.203, J~o~ = J~ + J~2 = 111.36 and 
• ~deeeatralized = ']dl q" Jd2 = 5 0 . 9 3 7 ,  respectively. The 
results have shown the attraction of the 
proposed decentralized controller in the control 
of interconnected systems. 

~ t 

: 0 . 5  ~0 
& 

~ O , ~  
, ~  
U 

~ - o . 5  

~- - I  
e ~  .,~ 
I ~  

,- - I  .~ , ~  

- - . ~ C a a e  t 
. . . .  Case 2 

Case 3 

~ ~ ~ ~ ~ ~ o  
T~ma (sac) 

FIG. 4. State trajectories of angular velocities. 
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FIG. 5. State trajectories of linear positions. 
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~ 0 . 1  

O 
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~ -Oo 1 
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I ~ f " ~ ' ; ' ~ "  " 
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FiG. 6. State trajectories of linear velocities. 

6. CONCLUSION 

In this paper we have proposed a completely 
decentralized control scheme for the control of 
interconnected systems with unmodelled interac- 
tion and nonlinearity. The aggregative deviations 
are tracked by using a model following technique 
with on-line improvement. The sufficient condi- 
tion for which the global system when controlled 
by the decentralized controllers is asymptotically 
stable even under structural perturbations in the 
sense of giljak has been established. Since 
the controller is completely decentralized, the 
subsystem autonomy results in better reliability 
and simplifies the design and implementation 
effectively. The decentralized control technique 
has been applied to a two-link, 0 - r  
manipulator which is a highly nonlinear, coupled 

system and responses by three different control 
methods are compared. 
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