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1 Introduction

1 .1 Importance of Camera Calibration
Camera calibration in the context of 3-D machine vision,
as defined by is the process of determining the internal
camera geometric and optical characteristics (intrinsic pa-
rameters) and/or the 3-D position and orientation of the
camera frame relative to a certain world coordinate system
(extrinsic parameters) . To infer 3 -D objects using two or
more images, it is essential to know the relationship between
the 2-D image coordinate system and the 3-D object co-
ordinate system. This relationship can be described by the
following two transformations:

1 Perspective projection of a 3-D object point onto a 2-D
image point: Given an estimate of a 3-D object point
and its error covariance, we can predict its projection
(mean and covariance) on the 2-D image. This is useful
for reducing the searching space in matching features
between two images or for hypothesis verification in
scene analysis.

2. Back projection of a 2-D image point to a 3-D ray:
Given a 2-D image point, there is a ray in the 3-D
space within which the corresponding 3-D object point
must lie on. If we have two (or more) views available,
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an estimate of the 3-D point location can be obtained
by using triangulation. This is useful for inferring 3-D
information from 2-D image features.

For applications that require these two transformations,
e.g. , automatic assembling, 3-D metrology, robot calibra-
tion, tracking, trajectory analysis, and vehicle guidance, it
is essential to calibrate the camera either on-line or off-line.
In many cases, the overall system performance strongly
depends on the accuracy of camera calibration. In general,
the calibration method that achieves higher accuracy re-
quires more computations, and the trade-offs between ac-
curacy and computational cost depends on the requirements
of the application. Our objective is to develop a camera
calibration method that is accurate enough to meet most
application requirements while maintaining a computational
cost low enough to fulfill the real-time requirement.

1 .2 Existing Techniques for Camera Calibration

Many techniques have been developed for camera calibra-
tion because of the strong demand of applications . These
techniques can be classified into two categories: one that
considers lens distortion,15 and one that neglects lens dis-
tortion .6-9

A typical linear technique that does not consider lens
distortion is the one that estimates the perspective transfor-
mation matrix8 H. The estimated H can be used directly for
forward and backward 3-D to 2-D projection. If necessary,
given the estimated H, the geometric (or physical) camera
parameters 13 can be easily determined.7'10'11 The precise
definition of 13 is given in Sec. 2. For those techniques that
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2 Camera Model

XC = r1x0 + r2yo+ r3z0+ t1

yc=r4xo+r5yo+r6zo+t2
zC = r7x0+ r8yo + r9z0+ t3

or i'c =Tfo with
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Optical Axis

- - Optical

vy OCS —— Object Coordinate System (3D)
CCS —— Camera Coordinate System (3D)
ICS —— computer Image Coordinate System (2D)

Fig. 1 Pinhole camera model with lens distortion, where P is a 3-D
object point and Q and Q' are its undistorted and distorted image
points, respectively.

is used. Section 2 introduces the camera model adopted in
this paper. Section 3 describes the details of the proposed
camera calibration method. Results of computer simulations
and real experiments shown in Sec. 4 demonstrate the per-
formance of our method compared to others.

estimate the perspective transformation matrix, note that the
homogeneous projection matrix H is not unique. The pro-
jection matrix is undetermined up to a scale factor, thus one
constraint must be imposed to ensure a unique solution.
Usually, the constraint is to set one of the entries of H to
a constant. Faugeras and Toscani6 showed that by imposing
a physical constraint, the estimation problem remains linear.

Grosky and Tamburino5 regard the camera calibration as
having two independent phases; the first is to remove geo-
metric camera distortion so that rectangular calibration grids
are straightened in the image plane, and the second is to
use a calibration method similar to the described linear one.
Grosky and Tamburino5 have found some physical con-
straints and try to unify the approach to the linear camera
calibration problem; both coplanar and noncoplanar cali-
bration points can be used, however, the former case re-
quires three user-supplied constraints. Although the lens
distortion is assumed compensated at phase 1 , the phase-2
calibration method also can be applied directly to an un-
compensated image.

Martins et 12 developed a two-plane method that does
not use an explicit camera model. The back-projection prob-
lem is solved by computing the vector that passes through
the interpolated points on each calibration plane. However,
the projection problem is not solved in their paper.

Faig's method2 is a good example of those that consider
lens distortion. For methods of this type, equations are es-
tablished that relate the camera parameters to the 3-D object
coordinates and 2-D image coordinates of the calibration
points . Nonlinear optimization techniques are then used to
search for the camera parameters with an objective to mm-
imize residual errors of these equations. Disadvantages of
this kind of method include the fact that a good initial guess
is required to start the nonlinear search and that it is com-
putationally expensive.

A few years ago, Tsai proposed an efficient two-stage
technique using the ' 'radial alignment constraint.' ' His
method involves a direct solution for most of the calibration
parameters and some iterative solutions for the remaining
parameters. Some drawbacks of Tsai's method have been
mentioned by Weng et al.3 Our experience has also shown'3
that Tsai's method can be worse than the simple linear
method8 if lens distortion is relatively small.

Recently, Weng et al.3 presented some experimental re-
sults using a two-step method. The first step involves a
closed-form solution based on a distortion-free camera model,
and the second step improves the camera parameters esti-
mated in the first step by taking the lens distortion into
account. This method solves the initial guess problem in
the nonlinear optimization, and is more accurate than Tsai's
method, according to our experiments.

In this paper, we develop a camera calibration method
which is fast and accurate. With this method, the camera
parameters to be estimated are divided into two parts: the
radial lens distortion coefficient K and a composite param-
eter vector C composed of all the geometric camera param-
eters other than K. Instead of using nonlinear optimization
techniques, the estimation of K is transformed into an ei-
genvalue problem of an 8 x 8 matrix . Our method is fast
because it requires only linear computation. It is accurate
because the effect of the lens distortion is considered and
because all the information contained in the calibration points

Consider the pinhole camera model with lens distortion, as
shown in Fig. 1 . LetP be an object point in the 3-D space,
and ro = [XO yo ZOI be its coordinates, in millimeters, with
respect to a fixed object coordinate system (OCS). Let the
camera coordinate system (CCS), also in millimeters, have
its x-y plane parallel to the image plane (such that the x axis
is parallel with the horizontal direction of the image and the
y axis is parallel with the vertical one), with its origin located
at the optical center and its z axis aligned with the optical
axis of the lens (see Fig. 1). Let rC = [XC YC zCIt be the
coordinates of the 3-D point P with respect to the CCS . If
there is no lens distortion, the corresponding image point
of P on the image plane would be Q (see Fig. 1). However,
because of the effect of lens distortion, the actual image
point is Q' . Let Sj = [uj vj] denote the 2-D coordinates (in
pixels) with respect to the computer image coordinate sys-
tem (ICS) of the actual image point Q', where the origin
of ICS is located at the center of the frame memory coor-
dinate [e.g. , the origin of the ICS is right at (256,256) for
a 512 by 512 image].

As shown in Fig. 2, the 3-D to 2-D transformation from
ro to Sj can be divided into the four steps described next.

2.1 Rotation and Translation from the OCS to the
ccs

The transformation from r to rC can be expressed as

(1)
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rn r2 r3 ti'1

T [R
t1 I r4 r5 r6 t2 1=

0 iii r7r8r9t3 I

Lo 0 0 1]

XC YCUFf, VFf
ZC ZC

[1 0 0 0
SF =Hc with H= 0 1 0 0

Lo 0 1/fO

2.3 Lens Distortion from Q to Q'

2.4 Scaling and Translation of 2-D Image
Coordinates

J u =(u! — uo)ili
VF= Vj —

VO)Ov

[1/au 0 uo
or j =T1 with Tc= I 0 1/ v

Lo o 1

(1 — Kp2)(uj —uo) fxori +yor2 + zor3 + ti

Xor7+yor8+zor9+t3

(1 — kp2)(vj— vo) =jXor4
+yor5 + zor6 + t2

XQr7 + yor8 + zQr9 + t3

2½where p = [(uj—
UO) + (vj —v) I
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Fig. 2 Relation between different transformation matrices.

(8)

where and are the horizontal and vertical pixel spacing
(millimeters/pixel) and uo and vO are the coordinates (in
pixels) of the origin of the CCS in the computer image
coordinate system.

Using this notation for camera parameters , the geometric
camera parameters 3 = [ti t2 t3 4 0 tji f K u vo]. The
vertical scaling factor iv is not included here because it is
a known parameter when we use a solid state camera—

(2) otherwise, only the ratios f/ andf/ can be determined.
Combining Eqs. ( 1), (3), (5), and (7), we have

where tilde () denotes homogeneous14 coordinates, t = (t1 (9)
t2 t3)t is a translation vector, and R is a 3 X 3 rotation
matrix determined by the three Euler angles, , 0, ii, ro-
tating about the z, y, and zaxes sequentially. (10)

2.2 Perspective Projection from a 3-D Object Point
in the CCS to a 2-D Image Point on the Image
Plane

Let f be the effective focal length, and let SF = UF VFI be
the 2-D coordinates (in millimeters) of the undistorted image New Camera Calibration Technique
point Q lying on the image plane. Then, we have

Given a set of 3-D calibration points and their corresponding
2-D image coordinates, the problem is to estimate 3, the

. (3) parameters of the camera model. Instead of estimating 3
directly, we first estimate the coefficient K and the composite

Also, we can express this perspective projection in the ho- parameters c [as described following Eq. (16)1, then de-
mogeneous coordinates as compose them into 3 . Two camera calibration algorithms

are described in this paper; one requires a set of noncoplanar
calibration points, and the other only needs coplanar cali-

(4) bration points. Although the former requires noncoplanar
calibration points, it is more accurate than the latter.

Our method requires initial guess for UO, VO, and ,
which can be easily set as follows. Let fcamera denote the
pixel scanning rate of the camera (e .g. , fcamera 14.31818

For practical reasons, we consider only the first term of the MHz for PULNiX TM-745E), and fdigitizer denote the pixel
radial lens distortion, i.e. ,

scanning rate of the digitizer or frame grabber (e.g. , fciigi-
tizer 10 MHz for ITI Series 15 1). Let denote the hori-

IUF(1Kp)U' F

1 VF (1 — Kp2)v
where p — UF + VF (5)

zontal pixel spacing of the solid state imager (e.g. , = 112_ 2 2
pm for PULNiX TM-745E). Then a good estimate of
can be obtained by the following equation:

or sF=(1—KIIsFII)sF , (6)
= , fcamera

(11)where s =(u v )t are the coordinates of the distorted 2-D
U

Ufdigitizer
image (in millimeters). In this paper, K is given in inverse
square millimeters. The other two parameters (uio,o) can be temporally set1 to

(0,0) if no other reliable information about them is available.
More accurate estimates of the three parameters can be
obtained with our calibration procedure, which can then be

The transformation from s (in millimeters) to Sj (in pixels) used as a better initial guess iteratively. If the amount of

involves (1) scaling from millimeters to pixels and radial lens distortion is not unreasonably large, say IKI
0.0008 mm 2 and the computational speed is not the main(2) translation due to the misalignment of the sensor array

with the optical axis of the lens. Hence, concern, then another two or three iterations can give even
higher accuracy according to our experience (see Fig. 9 in
Sec. 4.1).

(7) Hereafter, for simplicity, we will use u, v, x, y, and z
to denote Uj, Vj, X, yO, and zo, respectively.
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3.1 New Camera Calibration Technique Using
Noncoplanar Calibration Points

Rewrite Eqs. (9) and (10) as

rifl
(1— Kp2)(u—uØ)[x y z 1] = [x y z

r2f/
r9 r3fl

tifl

r4f/
(1— Kp2)(v—vO)[x y z 1] = [x y z 11

r5f/
. (13)

r9 r6f/&

t2fli
From Eq. (12) we have

r7

(u—uO)[x y z 1]
r8 —

Kp2(U — UO)[x
r9

t3

which leads to

[

rifl + r7uo1 [r71
r2f/+r8uo I

r8 I

uz—uII I[x y z j r3fl +
r9uoj

+ [— — —
r9

t1fl+t3uo [t3J

[r71

+Kp2(u—uo)[xyz ii

r8J=0

. (15)
T9

Similarly, from Eq. (13), we have

[

r4flv+r7vo1 rr7l
r5f/+r8vo I

r8

T6fli+ r9vØ r9 I
[xyzl]

J+[—vx—vy—vz—v1I

I

t2f/+t3vo [t3j

[r71

+Kp2(v—vo)[xyz ii
r8J=0 .

(16)
r9
t3

rifl +r7uo r4f/+r7vo
r2fl+ r8uo r5fl + r8V0

r3fli + r9uo T6fliv +T9VØ

t1fl + t3U0 t2fl +t3v0

[r71

[p11
P3 r8I , and c I p2 I

r9

(12)
L3i

Then using Eqs. (15) and (16), for all 2-D to 3-D pairs, we
have

(u — UO)PXJ+K
(v — vo)pXj

(u
(v3

— UO)pyj

—vO)pyj

(u3

(v

— UO)PZJ

—
VO)PZJ

(u

(v3

— uo)p

—vo)p
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XJYJZJ10000 11
0000XJy3ZJ1 LP2

+ UJXJ Ujj UJZJ

—VjX3 Vjj VjZjrrif/1

[r81

x

I=[xyz1'[T2

I , (14)
r9 r3fl I
t3j tiflJ

Uj r3

—Vj

I

xP3=[] (17)

with p=(uJ_uo)2+(vj_vo)2
Define

A

B —jXj j•yj —jZj —Uj
—

I:ixi l;iYi

_
:Jzi _vJLet
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CEE

(u3
—

UO)PXJ (u3 —UO)pyj (u3 —UO)PZj (u —uo)p
(vj — vo)pxj (vj —Vo)pyj (vj —vo)pzj (vj —vo)p

p
[1]/IIP3I

and qP3/IP3It

Because the 2-D observation noise always exists, Eq. (17)
will not be exactly zero, i.e.,

Ap+Bq+KCq=e*O.
In practice, the estimate of obtained by Eq. (1 1) is

usually quite accurate, and the image center (uo,vo) is rel-
atively small in comparison to almost all the image feature
points (u ,Vj )—when estimating K, we can use only those
calibration points that are relatively far away from the image
center. Therefore, we can use the initial estimates of uo,
V, and as if they were the true values of uO, VO, and
in the matrix C. The deviation of the matrix C caused by
the estimation error in Ilo, o, and is negligible in the
following estimation of p and q because K is usually very
small and the deviation of the matrix C times K in Eq. (17)
is even more trivial. In other words, larger lens distortion
should result in more calibration inaccuracy when using the
proposed algorithm, because of this approximation of uo,
V, and It is indeed the case, as shown in Fig. 8 in Sec.
4.1. However, a reasonable amount of lens distortion, as
in most practical cases, should not cause any difficulties in
using this approximation. Using this approximation, the
matrix C is treated as a known matrix in the following
computation.

Hence, the parameters to be estimated, K and c (or equiv-
alently, K, p, and q) can be computed by minimizing the
following criterion E with respect to K, p, and q:

EIIAp+Bq+KCqII2

subject to the constraint 1q112= 1.
To minimize E, we form the Lagrangian

LllAp + Bq + KCqII2 + X(1 —11q112)

and set 3L/8p =0, 3L/8q =0, 8L/3X =0, and 3L/8K= 0, which

= AtAp + AtBq+ KAtCq = 0,
2 3p

! BtBq+ K2ctcq+ BtAp2 3q

+ KCtAp+ KCtBq+ KBtCq — Xq = 0,

= qtCtAp + qtCtBq + KqtCtCq = 0
2 0K

From Eq. (21), we have

p = — [(AtA) 'AtB + K(AtA) - 1AtC}q
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1 3L

j—=[D—XIIq=O

qt[KT+s/2Iqo
(18) 2 OK

where

DEE[K2T+KS+RI

(19) RBtB—BtA(AtAy'AtB,
T CtC-CtA(AtA) -

and

Substituting Eq. (24) into Eqs. (20), (22), and (23), we have

L=qt[D—XI]q+X , (25)

(26)

(27)

(28)

(29)

S— CtB —CtA(AtA) 1kB + BtC — BtA(AtA) 1AtC .(30)

Notice that X is the eigenvalue of D, and that

EI = x subject to 11q112 = 1,
ap 'aq 'a,(

i.e. , the minimal residual error is Xmin min{eigenvalues of
D}. Given a K, D is uniquely determined and so is the
minimal residual error When there is no 2-D ob-
servation error and the initial estimates of uO, VO, and are
accurate, the minimal residual error Xmjfl S equal to zero.
Then from Eqs. (26), we have

T'[D—0I]q=[K21+KT1S+T'R]q=0 . (31)

It follows that

K(Kq)=[—T'R—T'S]f q T , (32)

and

(20) K(q)=[0 ii{} . (33)

It is now obvious that K is the real eigenvalue of an 8 x 8
matrix K, where

(21) _ 0 I

K=LT1R —T1S

since

(22) KI q KI q (34)
Kqj Kqj

(23) But in practice, no real K can be found by solving the
eigenvalues of K, i.e. , we will usually obtain a complex
(impractical) K that makes the residual error equal to zero.
In our experience, we can choose to use the real part of the

(24) eigenvalue with the smallest absolute imaginary part as an

yields
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estimate of K, denoted as k. Of course, we can use k as
the initial guess, and perform the one-dimensional nonlinear
search to find the optimal K. However, because the k is
accurate enough, further nonlinear search gains little ac-
cording to our experience. Therefore, we omit the nonlinear
search in the calibration procedure. Once k is determined,
the vector q can be obtained by selecting the eigenvector
corresponding to the smallest eigenvalue of the matrix
[k2T+ s+ RI.

Substituting q into Eq. (24), we then have p. Using the
fact that the nine rs, in the definition of P1, P2, and P3,
are components of a rotation matrix, we can decompose the
vectors p and q, and obtain7" the parameters R, ti, t2,
t3,f, U, V, and & given

3.2 New Camera Calibration Technique Using
Coplanar Calibration Points

When only coplanar calibration points are available, the
derivation of the algorithm is quite similar to the one that
uses noncoplanar calibration points. But the decomposition
of the parameters should be done carefully because the es-
timated results are more sensitive to noise. Without loss of
generality, we can choose the x-y plane of the OCS to be
the plane where the calibration plane lies, and all z's in Eqs.
(12) and (13) vanish, thus

[r71 r4fRi
(1— Kp2Xv —vO)[x y ill r8 = [X y 11 r5f/

[t3J

Similar to Sec. 3.1, we define

[r71
PcIr8I (37)

[t3J

(u — UO)PXj+K
(v —

VO)pjXj

(38)

To estimate the composite camera parameters, we repeat
the derivation similar to that in Sec. 3.1, except that the
definitions of matrices A, B, and C are replaced by

and the decomposition procedure are modified as follows.
Suppose that the estimated composite parameters are

(36) P(=y[, a2 a3}t, P=ty[a4 a5 a6It and Pçty[a7 a8
1] where a, i = 1, ..., 8, are real numbers. Substituting•
these values into the definitions of Psi, P, and Pc, i.e.,
Eq. (37), we have the following eleven equations in eleven
unknowns: r, r2, r4, r5, r7, r8, t,, t2, t3, andf:

r = (a, — a7uo)&t3/f

r2= (a2 — a8uo)t3/f
= (a3 —UO)ut3/f

r4 = (a4 —a7vo)it3/f
r5 = (a5 —a8vo)t3/f
t2= (a6 — vo)t3/f (39)

r7=a7t3
T8= a8t3

r +r+r= 1
r+r+r= 1

rlr2+r4r5+r7r8=O

where the last three equations are the constraints of a rotation
matrix. Substituting the first eight equations into the last
three, we have
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(UJ—UO)PYJ (u

(vjvO)yj (v3
0
0

A' j• J•

? ?

BC
— jXj — j•Yj —Uj

—1J.xj

V3Yj

C= (u—Io)x (u—io)y (u—iio)
(35) —

(vj-o)xj (VjO)yj (o)
[r,flul

Er71
(1— Kp2)(u —uo)[x y 11 r8 I = [x y ill r2fl I

t3] [ti]

and then have

)1000 [c1 _:€
I Cl0 0 0 x )i 1 2 VJXJ

— U.

3

1/.

UJYJ

—
VjYj
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o
3D ANGULAR ERROR (in degrees)

Fig. 3 Definition of 3-D angular error.

(a 1 — a7uo)2 (a4 —a7vo)2 a
(a2—a8uo)2 (a5—a8vo)2

(al —a7uo)(a2 —a8uo) (a4 —a7vo)(a5 —a8vo) a7a8

ut3,f)2l [ii

XL

(t3/f)2 1=111
2 I LO]t3 J

(40)

By solving Eq. (40), t3, , and f can be found, because
they are known to be positive numbers. Knowing the values
of t3, , and f, we can easily obtain all the extrinsic pa-
rameters in Eq. (39). Finally, the last column of the rotation
matrix can be obtained by calculating the cross product of
the first two columns, i.e.,

1r31 [ru [r2
r6 = r4 X r5

Lr9i [r7] Lr8

4 Experimental Results

(41)

To evaluate the accuracy of the camera calibration for 3-D
vision applications, it is necessary to define certain types
of error measures. The measure used in this paper is the
3-D angular error, i.e. , the angle <) POP' shown in Fig.
3, where P is the 3-D test point, 0 is the estimated lens
center, and OP' is the 3-D ray back projected from the
observed 2-D image of P using the estimated camera pa-
rameters. A 3-D angular error of0.005 deg is roughly equiv-
alent to 1 part in 10,000, because tan(0.005 deg) 1/10,000.

For convenience, let 13LK, 13T, and 3N denote the estimate
of 3 obtained respectively by our algorithm, Tsai's1 two-
stage algorithm, and the Weng et al.3 two-step nonlinear
algorithm (only radial lens distortion is considered). To
compute I3LK and 3T, we require that uo and vo are known
apriori, or at least, we must have some initial guesses. In
the real experiments, the true parameter values are un-
known, and we set the initial values for uo and vo to zero
and the initial value for to be (fcamera/fdigitizer) for the
reasons explained in Sec . 3. In the simulations , the param-
eters of the synthetic camera is set (and known) to bef= 25.85
mm, = 15 .66 rim, and = 13 xm, whereas the initial
value for iu is chosen to be (fcamera/fdigitizer) 1 1
m(14.3 1818 MHz/10 MHz) =15.75 pm, which introduces
about 0.58% error for . The images used in the experi-
ments are 480 X 512 pixels in size. The data shown later in
Figs. 5 to 16 and Figs. 18 to 22 are an average of at least
10 random trials.

Fig. 4 A typical image of the calibration plate containing 25 calibra-
tion points used in the real experiment.

Finally, in Sec. 4.3, one of the most interesting appli-
cations, stereo vision, is used to test the performance of
different camera calibration techniques . Theaccuracy of the
estimate of a 3-D point position is strongly related to the
3-D angular error defined above. This experiment demon-
strates that our calibration method can be used to achieve
highly accurate 3-D measurements as expected.

4.1 Performance of Different Techniques Using
Noncoplanar Calibration Points

The first experiment is to determine a proper number of
calibration points to be used for camera calibration. The
image acquisition system we use includes a PULNiX
TM-745E CCD camera and an ITI Series 151 frame grabber.
The calibration object is a 300 by 300-mm white plate hay-
ing 25 black calibration circles on it. This calibration plate
was mounted rigidly on a translation stage, and was initially
about 1800 mm away from the camera. For this experiment
one image was taken each time the calibration plate was
moved toward the camera by 25 mm, and altogether 21
images of the calibration plate were taken when the cali-
bration plate was moved from the range of 1 800 mm to the
range of 1300 mm. A typical image is shown in Fig. 4. The
centers of the black circles (and the black doughnuts) are
used as the calibration points. The 2-D image coordinates
of those calibration points can be estimated with subpixel
accuracy. Because the calibration plate and the translation
stage are manufactured with very high accuracy, the 3-D
positions of those calibration points can be treated as known
values with respect to a fixed object coordinate system.
Thus, we have 25 X 21 =525 pairs of 2-D, 3-D coordinates
of control points. Here, we randomly choose Ncalib points
(Ncalib 10, 20, . . . , 200) from the 525 2-D, 3-D pairs to
calibrate the camera and use all remaining points to test the
calibrated parameters. The average of the results of 10 ran-
dom trials are plotted in Fig. 5, which shows the 3-D angular
error decreases as the number of calibration points increases,
no matter which of the three methods is used. When the
number of calibration points is greater than 60, increasing
Ncjb results in little gain in accuracy , for all the three
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Computer Simulation: Noncoplanar points

calibration methods. Therefore, we simply choose Nib 60
in the simulations shown in Figs. 6 through 16. Because
the positions of the 3-D calibration points can be controlled
with high accuracy, we assume that the 3-D coordinates of
the calibration points are known exactly, and the only source
of the measurement error is the error in estimating the 2-D
image coordinates of the 3-D calibration points, i.e. , the
2-D observation error. The standard deviation of the 2-D
observation error is denoted by o.

The purpose of the first simulation is to check the results
of these real experiments. In this simulation, the radial lens
distortion is chosen to be K= 0.0003 mm 2 (which is the
estimate of K in these real experiments, and corresponds to
roughly 2 to 3 pixels distortion near the four corners of a
480 x 512 image) and o is assumed to be 0. 1 pixel (which
is roughly the subpixel accuracy we can achieve using the
circular calibration patterns shown in Fig. 4). Figure 6 shows
similar decreasing of the 3-D angular error as Ncaljb fl
creases, except that the 3-D angular error can decrease fur-
ther as Ncalib increases when using the nonlinear method.
This is mainly because the 2-D and 3-D coordinates of the
test points used in the simulations are noiseless, whereas in
the real experiment, ground truth is never known and the
measurement error dominates.

The next simulation shows the deterioration of the three
calibration techniques as the 2-D observation errors increase

Fig. 7 3-D angular error versus the 2-D observation noise.

0.009- —_________

Fig. 8 3-D angular error versus the radial lens distortion coefficient.

(see Fig. 7). The 3-D angular error of Tsai's' technique is
always greater than the other two. This is partially because
each 2-D, 3-D pair of the calibration points contributes only
one equation when using the radial alignment
whereas the other two techniques use both the horizontal
and vertical components of the perspective projection re-
lation and each 2-D, 3-D pair contributes two equations in
the minimization. Another reason is that Tsai's1 algorithm
does not estimate the image center. Although the image
center could be estimated via a separate procedure,3 we did
not implement that image center estimation algorithm. In-
stead, we showed that, given the same guess for the image
center, our method performs better than Tsai's method.
When given a more accurate image center, both Tsai's and
our techniques obtain better results , but our method still
performs better than Tsai's does. Sometimes, our method
has even better performance than the Weng et al.3 method,
because their method can be trapped in a local minimum.

In the third simulation, we set the 2-D observation error
€T 0. 1 and the number of calibration points Ncalib 60 and
observe that the 3-D angular error varies versus the radial
lens distortion coefficient (see Fig. 8). Notice that both
Tsai's2 method (3T) and our method (13LK) degrade when K
becomes larger. This is partially caused by being given a
wrong image center. Figure 8 also displays a phenomenon
that we predicted in Sec. 3, i.e., our technique should have
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Fig. 5 3-D angular error versus the number of calibration points.
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Fig. 6 3-D angular error versus the number of calibration points.
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Fig. 9 3-D angular error versus the radial lens distortion coefficient.

Radial lens distortion coefficient K

Fig. 10 3-0 angular error versus the radial lens distortion coefficient.

betterperformance when the radial lens distortion is smaller.
When the given image center is not accurate and K>0, our
technique tends to overestimate K. Thus, for a large positive
K, our technique may give a worse estimate than those given
by others if the initial estimate for the image center is not
good enough. However, in applications, we often choose
to use a standard lens (IKI 0) or a wide-angle lens (K<0),
rather than a lens with K' 0. Therefore, the proposed tech-
nique is suitable for most 3-D computer vision applications
requiring high accuracy. If for some reason, we need to
choose a lens with relatively large positive K,ourcalibration
procedure can be executed iteratively by substituting the
originally given image center (uØ,vO) and with the newly
estimated ones . Results of the first three iterations are shown
in Fig. 9. Notice that the performance of the nonlinear
method, which typically requires 40 to 100 iterations, is
sometimes even worse than that obtained after the second
(or the third) iteration of our method.

The fourth simulation shows how Tsai's1 method and
our method degrade as the error of the given image center
becomes large. In this simulation, the true image center is
[Rcenter cos(a), Rcenter sin(a)I, Rcenter =0, 5, 10, 15, and
the a priori given image center is set to (0,0). Each data
point shown in Figs. 10 and 11 is the average of the results
of 40 random trials, 10 for each angle of a = 45, 135
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Fig. 1 1 3-D angular error versus the radial lens distortion coefficient.

deg. Notice that when the given image center is less ac-
curate, both Tsai's method (3T) and our method (3LK) de-
grade more when K becomes larger. If we use the true image
center in the simulation, then the curves corresponding to
3T and 13LK are both quite flat.

4.2 Performance of Different Techniques Using
Coplanar Calibration Points

In Sec . 3.2 we proposed a method for calibrating a camera
using coplanar calibration points. Because the calibration
technique using coplanar calibration points (coplanar tech-
nique, for short) behaves somewhat differently compared
to using a noncoplanar one (noncoplanar technique, for short),
we discuss the experiments using coplanar techniques in this
section. We set the 2-D observation error a =0. 1 and the
number of calibration points Ncalib 60 for the following
experiments. Note that neither Tsai's' coplanar techniques
nor our coplanar techniques estimate the image center, but
ours gives an estimate of , whereas Tsai ' s does not.

We first show that Tsai's1 coplanar technique is less
sensitive to the error of the a priori given image center.
Similar to the fourth simulation described in Sec. 4. 1 , the
true image center is [Rcenter cos(a) , Rcenter sin(a)I , whereas
the image center given to the algorithm is (0,0). Figures 12
and 1 3 are the results obtained by using the true , whereas
Figs. 14 and 15 are obtained by using Eq. (11) as an estimate
of , which has a relative error of about 0.58% . Notice
that our coplanar technique is more robust when the given
estimate of the horizontal pixel spacing is not exactly
the true value, whereas Tsai's method is more robust to the
deviation of the given estimate of the image center (uo,vO).
The former is because the parameter is estimated in our
coplanar technique, and the latter is because what we obtain
from our linear calibration procedure are composite param-
eters. The composite parameters are the redundant combi-
nation of the real parameters, which means an erroneous
combination of these parameters can still make a good fit
between experimental observations and model prediction.1

Also, it is interesting to note that Tsai's1 coplanar tech-
nique performs almost equally to Tsai's noncoplanar tech-
nique, if the given is accurate (see Fig. 13). However,
the performance of Tsai's coplanar technique is sensitive to
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Fig. 13 3-D angular error versus the radial lens distortion coefficient
using Tsai's1 method with true .

the accuracy of the given (e.g. , referring to Fig. 15 , a
0.58% error of induced a large error on the calibration
result). For comparison, each curve in Fig. 16 is an average
of the four curves in each of the four graphs in Figs. 12 to
1 5 . Therefore, unless a very precise estimate of is avail-
able,4 our calibration technique is a better choice whether
the calibration points are coplanar or noncoplanar.

4.3 Performance of Different Techniques Tested
Using Stereo Vision

The following experiment demonstrates that our calibration
method can be used to achieve highly accurate 3-D mea-
surements , asexpected , and that the accuracy of the estimate
of a 3-D point position is strongly related to the 3-D angular
error used in Secs. 4. 1 and 4.2. In stereo vision, the 3-D
position of an object point seen in two images is estimated
by back projecting two straight lines corresponding to the
two image points and finding the midpoint of their common
normal line segment. The stereo vision setup is shown in
Fig. 17. The distance between two optical centers of the
cameras, i.e., the length of the base line, is approximately
300 mm.

.5 -d.4 -.3 -.2 -72O3 O4 O5 x iO (mm2)
Radial lens distortion coefficient K

Fig. 14 3-D angular error versus the radial lens distortion coefficient
using our method with an estimate of 5, having 0.58% of error.
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Fig. 15 3-D angular error versus the radial lens distortion coefficient
using Tsai's1 method with an estimate of 5, having 0.58% of error.

First, 525 points distributed in the depth range of 1300
to 1 800 mm are obtained for each camera by means of the
procedures described in Sec. 4. 1 . We randomly choose Ncalib
points (Ncaljb 10, 20, .. . , 200) from the 525 2-D, 3-D
pairs to calibrate the camera and use all remaining points
to test the calibrated parameters. Correspondences between
the two images of the test points can be determined easily
because of the specific arrangement of the 23 black circles
and two doughnuts. Figures 18 through 20 show the esti-
mation error of the 3-D position in the x, y, and zdirections,
respectively, using a stereo vision system with
Kleft 2.1 x iO—4 —2 and Knght= 1.3 x i0 —2
Combining the results in Figs. 18 to 20, the 3-D distance
errors for three different techniques are shown in Fig . 21.
Here, the 3-D distance error is defined as the Euclidean
norm of the estimation error of a 3-D point position. As
shown earlier in the simulation, the accuracy of a single
camera will be 1 part in 10,000 for our setup when more
than 60 calibration points are used. Having the test points
at the distance of approximately 1500 mm, the estimation
error in the x and y directions should be approximately 0.15
mm in each direction. However, the stereo accuracy may
be slightly worse than that we have predicted, because the
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estimation error may come from both of the stereo cameras.
Furthermore, because the length of the base line, 300 mm,
is much smaller than the depth, 1500 mm, the estimation
error in the z direction (0.6 mm) is much larger than that
in the x (0. 15 mm) or y (0. 1 1 mm) directions. Notice that,
if the lens distortion is relatively small, our method is much
better than Tsai 's, and its accuracy is close to that of the
nonlinear method (as in the above experiment) . However,
when the lens distortion coefficients are positive and rela-
tively large, our method is only slightly better than Tsai's
method, as shown in Fig. 22.

5 Conclusions
In this paper, we describe a new camera calibration tech-
nique that is computationally fast and can achieve very high
calibration accuracy for 3-D computer vision applications.
Our method is fast because it requires only linear compu-
tation and does not require any iterations. With a SPARC-
station, the computation for the calibration can be done
within a fraction of a second. Our method can achieve very
high accuracy for 3-D estimation (i.e., small 3-D angular
error) because the effect of the lens distortion is considered
and all the information contained in the calibration points
are used. We have shown that our new noncoplanar cali-
bration method can achieve the 3-D angular error of 0.005

Fig. 18 3-D error in the x direction versus the number of calibration
points with the distortion coefficient on the order of 1 O (barrel
distortion).

Real Experiment: Noncoplanar points
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Fig. 19 3-D error in the y direction versus the number of calibration
points with the distortion coefficient of the order of 10 (barrel dis-
tortion).

deg, or an accuracy of 1 part in 10,000 in 3-D measurement.
This means that we will make only 0. 1 mm of error in 3-D
position estimation along the plane parallel to the image
plane when the object is 1 m away from the camera. How-
ever, when the length of the base line is much smaller than
the depth, the estimation error in the zdirection (the depth)
is much larger than that in the x or y directions. When using
good quality off-the-shelf lenses, our linear method is good
enough for almost all 3-D applications, and further nonlinear
iteration is not necessary. Note also that it may not be worth
the effort to increase the calibration accuracy using nonlin-
ear minimization techniques unless we can increase the ac-
curacy of 2-D feature extraction accordingly.
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