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Abstract: The autonomous navigation wheeled robots (WR) requires integrated kinematic and
dynamic control to perform trajectory tracking, path following and stabilisation. Considering a WR
is a nonholonomic dynamic system with intrinsic nonlinearity, unmodelled disturbance and
unstructured unmodelled dynamics, fuzzy logic system based control is appropriate and practical.
However, the multivariable control structure of the WR results in the curse of dimensionality of the
fuzzy design and prevents a domain expert from building the linguistic rules for autonomous
navigation. Hierarchical fuzzy design decomposes the controller into three low-dimensionality
fuzzy systems: fuzzy steering, fuzzy linear velocity control and fuzzy angular velocity control, so
that manual construction of each rule base becomes feasible and easy. The proposed design enables
a WR to perform position control in trajectory tracking and velocity profile tracking in continuous
drive. The coupling effect between linear and angular motion dynamics is considered in the fuzzy
steering by building appropriate linguistic rules. To facilitate the autonomous navigation design and
verification, a prototype and the model of a kind ofWR have been developed, and equipped with the
hierarchical fuzzy control system. The simulation and experimental results are shown and
compared.

1 Introduction

Except when sensing its environment, a wheeled robot (WR)
necessarily requires an automatic control system to perform
trajectory tracking, path following and stabilisationwithin its
autonomous navigation design. For a light WR, autonomous
navigation can neglect the dynamics and simply consider the
steering [1]. However, if a WR has great mass, its dynamic
behaviour has to be taken into consideration [2, 3]. [4–7] has
shown that aWR is a kind of nonholonomic dynamic system
with intrinsic non-linearity, and commonly with unmodelled
disturbance and unstructured unmodelled dynamics.
Autonomous navigation design for systems with such
properties requires integrated kinematic and dynamic
control. In nonlinear control, the feedback or feed-forward
linearisation approachwas adopted assuming the availability
of the perfect model [5, 6, 8]. But generally, the nonlinear
feedback design assumes perfect velocity tracking, ignores
disturbances, and needs complete knowledge of the
dynamics that are usually infeasible in WR cases. Using
conventional linear control methods, such as PID control [9],
state feedback control [10, 11], or optimal control [12] for
systems with slightly unmodelled nonlinearity is possible at
the expense of sacrificing performance to obtain robustness.
However, using the adaptive control method, which assumes
a linear model structure with uncertain parameters does
not ensure a sufficient solution to ill-defined nonlinear
systems [13, 14].

A nonholonomic WR has constraints imposed on the
motion that are not integrable and, as a result, cannot be
stabilised by smooth, static feedback controls. Therefore,
the techniques of discontinuous feedback control [15],
dynamic feedback linearisation [16], sliding mode control
[17] and fuzzy=neural control [7, 12, 18, 19, 20] have been
studied to solve stabilisation, trajectory tracking and the
robust control problems of WRs. Fuzzy control is
distinguished by its friendly human interface and ability to
control nonlinear and unmodelled dynamic systems.
However, the integrated kinematic and dynamic control of
a WR for autonomous navigation is a multivariable case.
For a multivariable control structure, manual construction of
the rule base becomes difficult or even impossible. To solve
this difficulty, adaptive=self-organized fuzzy design has
potential due to its capability to build a complicated fuzzy
system automatically through an off- or on-line learning
procedure [21–24]. But learning stability becomes a
problem of system reliability in practical applications.
Fuzzy control design based on manual construction of the
linguistic rules is simple and practical only for low-
dimensionality systems. To obtain low-dimensional fuzzy
controllers, the 4-to-2 (input-to-output) position controller
of a light WR was divided into two 2-to-1 fuzzy controllers
by assuming linear (tangential) and angular motion
dynamics being decoupled [25]. Representing the WR
dynamics as a TS (Takagi-Sugeno) fuzzy plant model was
shown to be a possible way to obtain low-dimensional fuzzy
controllers [26]. Hierarchical fuzzy control, considered in
this work, attempts to decompose an overall controller into a
combination of several sub-controllers so that each sub-
controller can be realised with a low-dimensional fuzzy
system and as a result, manual construction of each rule base
becomes easy. Using hierarchical fuzzy control in the
autonomous navigation system of a WR has the apparent
advantages of low dimensionality and easy implementation.
Our control objective is to perform position control in
trajectory tracking and velocity profile tracking in
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continuous drive. The linear and angular motion dynamics
of a WR is assumed to be a coupling system so that stability
in tracking curved trajectories will be considered in the
design for automatic steering. The WR controller is
decomposed into three subsystems: fuzzy steering, fuzzy
linear velocity control and fuzzy angular velocity control.
The fuzzy steering consists of two 2-to-1 fuzzy mappings to
generate desired linear and angular velocities and, in
addition, considers the coupling effect between the linear
and angular motion dynamics. The fuzzy linear and angular
velocity control are each composed of a 2-to-1 fuzzy
mapping to produce signals for driving the motors. Each of
the fuzzy mappings takes input and output quantities with
physical meaning so that a skilled expert can easily extract
linguistic rules from his experience. To facilitate the
autonomous navigation design and verification, a prototype
and the model of a kind of WR have been developed and
equipped with the hierarchical fuzzy control system. The
simulation and experimental results in performing auton-
omous navigation are shown and compared.

2 Kinematic and dynamic model of a kind
of wheeled robot

Figure 1 shows the schematic top view of the kind of WR
considered in this work. The WR has a symmetrical
structure and consists of a vehicle with two rear wheels
mounted on the same axis and driven independently to
produce translation and orientation control. The front
wheels are free-to-rotate passive wheels. Such a WR is a
typical nonholonomic mechanical system [4] and literature
[5–8] has shown the dynamics of a nonholonomic system
with n-dimension generalised coordinates q 2 <n�1 subject
to m constraints can generally be described by

MðqÞ €qqþ Cðq; _qqÞ _qqþ Fð _qqÞ þGðqÞ þ td

¼ BðqÞtþ ATðbfqÞbflambda ð1Þ
AðqÞ _qq ¼ 0 ð2Þ

whereMðqÞ 2 <n�n is a symmetric, positive definite inertia
matrix, Cðq; qÞ 2 <n�n is the centripetal and Coriolis
matrix, Fð _qqÞ 2 <n�1 denotes the surface friction, GðqÞ 2
<n�1 is the gravitational vector, td 2 <n�1 denotes the
bounded unknown disturbance including unstructured,
unmodelled dynamics, BðqÞ 2 <n�r represents the input

transformation matrix, t 2 <r�1 denotes the input vector,
AðqÞ 2 <m�n is a full rank matrix associated with the
constraints and l 2 <m�1 is the Lagrange multiplier or
the vector of constraint forces.

Equation (2) represents the kinematic equality constraints
that are independent of time and _qq must be restricted to the
null space of A(q). Assume ZðqÞ 2 <n�ðn�mÞ is a set of
smooth and linearly independent vector fields spanning the
null space of A(q). Then there exists an auxiliary vector
time function uðtÞ 2 <ðn�mÞ�1 such that, for all t

_qq ¼ ZðqÞu ð3Þ
where u has forms depending on the choices of Z(q) and not
necessarily with any physical meaning. Substituting (3) into
(1) and left-multiplying each term by ZTðqÞ; we obtain the
following first-order dynamic model:

MðqÞ _uuþ Cðq; _qqÞuþ Fð _qqÞ þGðqÞ þ td ¼ BðqÞt ð4Þ
where MðqÞ¼ZTðqÞMðqÞZðqÞ;Cðq; _qqÞ¼ZTðqÞðMðqÞ _ZZðqÞ
þCðq; _qqÞZðqÞÞ;Fð _qqÞ¼ZTðqÞFð _qqÞ;GðqÞ¼ZTðqÞGðqÞ and

td¼ZTðqÞtd: Equations (3) and (4) describe generally the
kinematics and dynamics of the WR system, and hold the
following properties [6]: MðqÞ is a symmetric, positive
definite, bounded matrix or there exists positive constants bn
and bm such that bn�MðqÞ�bm; and

_MMðqÞ�2Cðq; _qqÞ is a
skew-symmetric matrix such that _MMðqÞ�2Cðq; _qqÞ¼ _ZZ

T
MZ

�ð _ZZT
MZÞTþZTð _MMZ�2CÞZ:

2.1 The kinematic parameter matrices

As shown in Fig. 1, an inertial Cartesian frame {O, X, Y}
and a body frame fP;Xc;Ycg with origin at the middle of
the axle of the driving wheels are attached; p ¼ ½x y y�T
denotes a posture vector completely specifying the position
and orientation of the WR; b is the half width of the axle of
the driving wheels; d is the displacement from point P along
the Xc axis to the centre of mass; r is the radius of the
driving wheels; mc is the weight of the body, i.e. exclude the
driving wheels and their associated rotors; mw is the weight
of a single driving wheel, i.e. take the associated rotor into
account; Ic is the moment of inertia of the body; Iw is the
moment of inertia of each driving wheel about the axle; and
Im is the moment of inertia of each driving wheel about a
wheel diameter. The nonholonomic constraint (2) states that
the WR can only move in the direction normal to the axis of
the driving wheels. The constraint for the WR cannot move
in the lateral direction giving:

_yy cos y� _xx sin y ¼ 0 ð5Þ
The constraints for the two driving wheels are pure rolling
and non-slipping obtaining:

_yy cos y� _xx sin y ¼ 0 ð6Þ

_xx cos yþ _yy sin yþ b_yy ¼ r _jjr ð7Þ
Taking the generalised coordinate vector as q ¼ ½x; y; y;jl;
jr�T ; then (5), (6) and (7) can be organised to obtain the
following matrix:

AðqÞ ¼
sin y � cos y 0 0 0

cos y sin y �b �r 0

cos y sin y b 0 �r

24 35 ð8Þ

To find Z(q) in (3), we need to derive the velocity equations
_qq:Choose u ¼ ½ v o �T ; i.e. linear and angular velocities, so
that the hierarchical fuzzy controller may command the WR
and measure feedback through physical signals. SinceFig. 1 Schematic top view of a kind of wheeled robot
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v ¼ _xx cos yþ _yy sin y; and o ¼ _yy ð9Þ

and by substituting (9) into (6) and (7)

r _jjl ¼ v� bo; and r _jjr ¼ vþ bo ð10Þ

we obtain

ZðqÞ ¼

cos y 0

sin y 0

0 1
1
r

� b
r

1
r

b
r

266664
377775 ð11Þ

2.2 The dynamic parameter matrices

Consider theWR being composed of three rigid components
as the body, right driving wheel, and left driving wheel.
Then using the Lagrange formalism [4, 6], we can obtain the
parameters in (1) as follows:

MðqÞ ¼

m 0 �mcd sin y 0 0

0 m mcd cos y 0 0

�mcd sin y mcd cos y I 0 0

0 0 0 Iw 0

0 0 0 0 Iw

266666664

377777775

Cðq; _qqÞ ¼

0 0 �mcd
_yy cos y 0 0

0 0 �mcd
_yy cos y 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

266664
377775BðqÞ

¼ 1

r

cos y cos y
sin y sin y
�b b

r 0

0 r

266664
377775

ð12Þ

The unmodelled dynamics and disturbance are represented
by hðq; _qqÞ ¼ Fð _qqÞ þGðqÞ þ td:Without loss of generality,
this work assumes that the bounded condition khðq; _qqÞk<
eh ¼ constant holds. Ideally, the constraint of no vertical
motion obtainsGðqÞ ¼ 0: But actually a practical trajectory
may not be perfectly horizontal. Small vertical motion is
possible and considered as a part of the disturbance. Using
(11) and (12), the parametric matrices appearing in (4) are
obtained as follows:

openup� 3ptMðqÞ ¼ ZTðqÞMðqÞZðqÞ

¼
mr2þ2Iw

r2
0

0 I þ 2b2Iw
r2

" #
ð13Þ

Cðq; _qqÞ ¼ ZTðqÞðMðqÞ _ZZðqÞ þ Cðq; _qqÞZðqÞÞ

¼ 0 �_yymcd

_yymcd 0

" #
ð14Þ

BðqÞ ¼ ZTðqÞBðqÞ ¼
2
r

2
r

� 2b
r

2b
r

� �
ð15Þ

and

hðq; _qqÞ ¼ ZThðq; _qqÞ ¼ ZT ½Fð _qqÞ þGðqÞ þ td� ð16Þ

is unknown but bounded as khðq; _qqÞk< eh ¼ constant:

2.3 Torque equations of the driving wheels

To verify the hierarchical fuzzy design of autonomous
navigation, a prototypeWR has been developed in this work.
The two driving wheels of the prototype WR are each
actuated by a permanent magnet (PM) DC motor. Since all
torque-velocity control of the PM DC motor is achieved by
adjustment of the armature voltage, the field of the permanent
magnet is not affected by armature reaction [27]. The torque
and voltage equations of the driving wheels are

tl
tr

� �
¼ ktl 0

0 ktr

� �
il
ir

� �
ð17Þ

ul

ur

" #
¼

Lal 0

0 Lar

" #
dil
dt

dir
dt

" #
þ

Ral 0

0 Rar

" #
il

ir

" #

þ
Kel 0

0 Ker

" #
rg _jjl

rg _jjr

" #
ð18Þ

where sub-indexes l and r denote the left and right driving
wheels, respectively, t is the output torque, kt is the torque
constant, i is the armature current, u is the applied voltage, La
denotes the armature inductance, Ra is the armature
resistance, ke is the black electromotive force constant, _jj is
the wheel’s angular velocity, rg is the gear ratio between the
wheel and the associated rotor, and rg _jj is the angular velocity
of the rotor.

3 Hierarchical fuzzy controller of the autonomous
navigation system

The complexity resulting from unmodelled nonlinear
dynamics and disturbance makes the autonomous naviga-
tion design of the WR a challenging task. Without the
availability of an accurate mathematical model, it is difficult
to obtain an appropriate controller for conventional model-
based designs. Instead, a fuzzy controller may use a set of
fuzzy rules and linguistic variables to capture domain
experts’ knowledge and experience in manoeuvring the
WR. However, (1) shows that a WR has a multivariable
structure. With an integrated fuzzy design using the five-
dimensional vector q ¼ ½x; y; y;jl;jr�T and its difference as
inputs it will be impossible for a skilled expert to build the
linguistic rules. Alternatively, referring to Fig. 2, we
decompose the WR controller into three sub-controllers: a
fuzzy steering (FS), a proportional fuzzy linear velocity
controller (PFLC), and a proportional fuzzy angular velocity
controller (PFAC). The FS consists of two 2-to-1 fuzzy
mappings. The PFLC and PFAC each have a 2-to-1 fuzzy
mapping. All the fuzzy mappings take input and output
quantities with physical meaning so that a skilled expert can
easily construct the rule bases.

A basic fuzzy system, which provides a systematic
procedure for transforming a set of linguistic rules into a
nonlinear mapping, comprises four principal components:
fuzzifier, fuzzy rule base, fuzzy inference engine and
defuzzifier [28, 29]. Let the fuzzy system perform a
mapping from X to F where X ¼ X1 � � � � � Xn � <n and
F ¼ F1 � � � � � Fm � <m: Then a kinematic or dynamic
system can be controlled by the following N linguistic rules:
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RðlÞ : IF x1 is Al
1 and � � � and xn is Al

n

THEN f1 is Bl
1 and � � � and fm is Bl

m

ð19Þ

where l ¼ 1; . . . ;N; xk and k ¼ 1; 2; . . . ; n; are the input
variables to the fuzzy system, fi; i ¼ 1; 2; . . . ;m; are the
output variables of fuzzy system, and the antecedent fuzzy
sets Al

k in Xk and the consequent fuzzy sets Bl
i in Fi are

linguistic terms characterised by the fuzzy membership
functions mAl

k
ðxkÞ and mBl

i
ðziÞ; respectively. The output of a

fuzzy system with centre-average defuzzifier and singleton
fuzzifier is defined as

fiðxÞ ¼
PN

l¼1 m
lðxÞ � cliPN

l¼1 mlðxÞ
ð20Þ

where x is the premise vector, mlðxÞ ¼ minfmAl
k
ðxkÞjk ¼

1 to ng for intersection inference, i.e. mlðxÞ ¼ Pn
k¼lmAl

k
ðxkÞ

for product inference, is the matching degree of the lth rule,
and cli is the centre of the consequent membership function
of the lth rule.
Figure 2 shows a block diagram of the fuzzy autonomous

navigation system of the prototype WR. The optical
encoders attached to each driving motor measure the linear
and angular velocities ðv;oÞ :

v

o

� �
¼

r
2

r
2

� r
2b

� r
2b

� �
ol

or

� �
ð21Þ

Dead reckoning estimate of the WR’s current posture is
obtained by numerical approximation to

_ppc ¼
_xx

_yy
_yy

24 35 ¼
cos y 0

sin y 0

0 1

24 35 v

o

� �
ð22Þ

xðnþ 1Þ ¼ xðnÞ þ TsvðnÞ cosðyðnÞÞ
yðnþ 1Þ ¼ yðnÞ þ TsvðnÞ sinðyðnÞÞ
yðnþ 1Þ ¼ yðnÞ þ TsoðnÞ

ð23Þ

where Ts is the sampling interval. The path-planning unit
attempts to accomplish tasks such as tracking or obstacle
avoidance, and generates a reference path represented by pr:
The reference posture generated by a path plan unit is
compared with WR’s current posture pc to produce the
posture error:

pe ¼
ex
ey
ey

24 35 ¼
cos y sin y 0

� sin y cos y 0

0 0 1

24 35½pr � pc� ð24Þ

The FS takes the polar coordinate ðde;fÞ; i.e. distance and
angle of the position error ðex; eyÞ as inputs so as to facilitate
the construction of fuzzy rules and membership functions.
The objective of the FS is to infer the desired linear and
angular velocities ðvd;odÞ for guiding the WR to reduce
position error. In building the linguistic rules of the FS, the
stability of the system affected by the coupling between
linear and angular motion dynamics must be taken into
consideration. The function of the FS can be represented by
the following 2-to-1 fuzzy mappings:

vdðkÞ ¼ fv½deðkÞ;fðkÞ� ð25Þ

odðkÞ ¼ fo½deðkÞ;fðkÞ� ð26Þ

where fv½deðkÞ;fðkÞ� or fo½deðkÞ;fðkÞ� denote a fuzzy
mapping in the form of (20). The PFLC and PFAC each
has a proportional part ðkv; koÞ for feed-forward control, and
a fuzzy part FLC and FAC, respectively, for error
compensation and stabilisation. The PFLC and PFAC
operate in discrete-time mode, and take the velocity error
ei; i 2 fv;og and change of velocity error Dei; i 2 fv;og
as inputs. To facilitate the design of fuzzy sets and
membership functions, ei and Dei are converted into polar
coordinates ri (radius) and yi (angle) as follows:

ri ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2i þ De2i

q
and yi ¼ arctanðDei=eiÞ for ei 6¼ 0;

i 2 fv;og
ð27Þ

Using fi½riðkÞ; yiðkÞ�; i 2 fv;og to represent a fuzzy map-
ping in the form of (20), the output of the PFLC and PFAC
can be expressed as

uiðkÞ ¼ KiidðkÞ þ yiðkÞ
¼ KiidðkÞ þ Ci fi½riðkÞ; yiðkÞ�; i 2 fv;og ð28Þ

where Ki is a proportional gain of the feed-forward control.
Ci is a scaling factor of the physical output signal, and yiðkÞ
is a fuzzy feedback compensation considering stabilisation
of the velocity control system.

The appropriate design of the fuzzy sets and the
associated membership functions for each fuzzy sub-
controller will actually determine the system performance.
However, the theoretical method to prove or analyse the
performance of a fuzzy design is lacking. In this work, the
hierarchical fuzzy control structure has been built as
discussed above, and the fuzzy parameters simply need to
be adjusted by a domain expert. Performance of the
resulting design is studied by using simulation and
experimental tests. To make the parameter adjustment as
easy as possible, each term value is associated with a

Fig. 2 Block diagram of fuzzy autonomous navigation system
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triangular membership function characterised by left spread
a, vertex b, and right spread c as follows:

mðx; a; b; cÞ ¼

0 for x< a
x�a
b�a

for a � x< b
c�x
c�b

for b � x � c

0 for x>c

8>>><>>>: ð29Þ

Therefore, simply the number of term sets, the spreads and
vertexes of the associated membership functions need be
decided by the domain expert. For simulation and
experimental study on the prototype WR, we have set up
a typical design for each fuzzy sub-controller. The polarised
inputs ðri; yiÞ; i 2 fv;og of the PFLC and PFAC are termed
as {zero (ZE), positive small (PS), positive big (PB)} for ri;
and {negative big (NB), negative medium (NM), zero (ZE),

positive medium (PM), positive big (PB)} for yi; respect-
ively. The fuzzy outputs of the PFLC and PFAC are both
termed the same as those for yi: For the FS, term sets of de
and vd are both represented as {ZE, PS, PM, PB}, and term
sets of f and od are both denoted as {NB, NM, negative
small (NS), ZE, positive small (PS), PM, PB}. For the
convenience of comparison, the simulation and the
experimental studies shown in the next Section use
the same fuzzy design. Figure 3 and Table 1 present
the input membership functions and rule base of the PFLC,
respectively. The PFAC case is similar and not shown.
Figure 4 and Table 2 show the input membership functions
and rule bases of the FS, respectively. All output member-

Table 1: Rule base of PFLC in simulation and experiment

rv

�v ZE PS PB

PB ZE NM NB

PM ZE PM PB

ZE ZE PM PB

NM ZE NM NB

NB ZE NM NB

Table 2: Rule bases of the FS in simulation and
experiment

de ZE PS PM PB

� vd !d vd !d vd !d vd !d

PB ZE ZE ZE PS ZE PM ZE PB

PM ZE ZE PS PB PS PM PM PM

PS ZE ZE PS PM PM PS PB PS

ZE ZE ZE PS ZE PM ZE PB ZE

NS ZE ZE PS NM PM NS PB NS

NM ZE ZE PS NB PS NM PM NM

NB ZE ZE ZE NS ZE NM ZE NB

Fig. 3 Membership functions for input

a rv of PFLC
b yv of PFLC

Fig. 4 Membership functions for input

a de of FS
b f of FS
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ship functions are an appropriate number of equally spaced
isosceles triangles and not shown.
Closed-loop kinematic control of a WR requires posture

estimate relative to the world. Dead reckoning refers to
estimate of the posture by using wheel rotation information
alone. But the dead-reckoned estimate will be inaccurate
over long distances travelled due to imprecisely known
initial conditions, errors in the kinematic model, or
disturbance during a physical motion, such as wheel
slippage. To correct the posture estimate, visual, ultrasonic,
and global positioning sensors are frequently adopted to
provide the environmental information. In the combined
estimation, considering the slow response of an environ-
mental sensor such as machine vision, the dead reckoning
may be allowed to dominate the posture estimate, and the
environmental sensor, whenever its output is available,
provides information to correct the estimate.

4 Results of experiment and simulation

Figure 5 shows a block diagram of the prototype WR system
developed in this work. The WR has basically four wheels
with two free-to-rotate front wheels and two independent
driving rear wheels. A PM DC motor coupled with an
optical encoder to measure the wheel rotation drives each
rear wheel. The WR has a front viewing stereovision set to
observe its environment. Either position or velocity control
mode can be selected to navigate the prototype WR.
Position control mode can be used to perform trajectory
tracking, whereas velocity control mode can track velocity
profiles in continuous drive. An autonomous navigation
system can switch between position and velocity control
modes to generate a variety of styles of motion. The model
parameters of the prototype WR were estimated in [30] and
Tables 3 and 4 tabulate the main numbers. For cross
comparison and verification, the same studies of auton-
omous navigation have been conducted both by simulation
and experiment.

4.1 Tracking velocity profiles

Stability and performance of the velocity tracking subject to
WR’s nonlinear dynamics has been studied to verify the
mathematical model. Figure 6 shows the results of
simultaneously tracking a trapezoidal linear velocity profile
with the maximum 0:8m=sec and a trapezoidal angular
velocity profile with the minimum �1:5 rad=sec Figs. 6a
and 6b depict the experimental and simulation results,
respectively. Except for the unmodelled noise and disturb-
ance appearing in the prototype system, the consistency
between the experimental and simulation results verifies the
model. In addition, the well-performed velocity tracking
confirms the PFLC and PFAC in the dynamic control.

4.2 Autonomous navigation performing a left
turn

This autonomous navigation plans to perform a left turn.
The linear velocity is desired to be kept at 0:8m=sec:
Figure 7a shows the experimental result of the movement
recorded for every half second, i.e. the simulation result is
similar and not shown. Figure 7b shows the trajectories, and
the maximum overshoots presenting in the experimental and
simulation results are both around 0.5m. The settling time
during the left turn is about 5 and 4.5 s in the experiment and
simulation, respectively. The linear velocity is mainly
controlled by the PFLC as shown in Fig. 7c, and the
PFAC dominates the orientation control as shown in Fig. 7d.
Except for the unmodelled noise and disturbance presenting
in the prototype WR, the results obtained by simulation and
experiment are consistent.

4.3 Autonomous navigation performing an
S-curve trajectory

This autonomous navigation plans to track an S-curve
trajectory with 1m radiuses at each circular segment and
straight at the beginning and ending segments. The
desired linear velocity is 0:5m=sec: Figure 8 shows the

Fig. 5 Block diagram of prototype WR
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Table 3: Mechanical figures of prototype WR

b, m d, m r, m wc ; m

0.265 0.1 0.125 0.8

mcðkgÞ mw ðkgÞ Icðkgm2Þ Iw ðkgm2Þ Imðkgm2Þ

110 5 1.057 0.004 0.002

Table 4: Parameters of driving motor

Gear

ratio

Armature

inductance, ohm

Armature

inductance, mH

Coef. of back

EMF, Nm=A

rg ¼ 21 Ral ¼ 0:476 Lal ¼ 0:232 Ke ¼ 0:057

Rar ¼ 0:233 Lar ¼ 0:230 Ker ¼ 0:051

Fig. 7 Left turn movement

a Experimental result recorded every 0.5 s
b Trajectories
c Linear velocity
d Angular velocity

Fig. 6 Result of velocity tracking

a By experiment: 0:8m=sec; �1:5 rad=sec
b By simulation: 0:8m=sec; �1:5 rad=sec
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Fig. 8 S-curve movement

a Experimental result recorded every 0.5 s
b Trajectories
c Error of trajectories
d Linear velocity
e Angular velocity
f Error of orientation
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results of the experiment and simulation. Figure 8a shows
the movement of the WR recorded for every half second
in the experiment Fig. 8b shows the resulting trajectories
of the experiment and simulation, and Fig. 8c shows the
errors compared with the commanded value. The
maximum error is 0.28m in the simulation and 0.32m
in the experiment. One of the causes of the difference is
some unmodelled noise and disturbance resulting from the
road condition and front wheel alignment condition are
not considered in the simulation. The fee-to-rotate front
wheels when not aligned in the tangential direction may
result in a frictional force preventing movement. Figure 8d
shows that the linear velocity in both the simulation and
experimental cases is settled and maintained around the
commanded value 0:5m=sec: Figure 8e shows that
manoeuvring the angular velocity takes the responsibility
of orientation control, and Fig. 8f shows that the absolute
orientation error is no more than 0.07 rad both in
simulation and experiment.

5 Conclusions

For autonomous navigation of a kind of wheeled robot, a
hierarchical fuzzy structure of integrated kinematic and
dynamic control has been developed. This structure
facilitates the fuzzy controller design by combining several
low-dimensionality fuzzy systems so that the manual
construction of each rule base becomes easy. For a WR
driven by the two rear wheels, the fuzzy steering is designed
to consist of two 2-to-1 fuzzy mappings and takes the
coupling effect between linear and angular motion dynamics
into consideration. The fuzzy dynamic controller is
composed of a proportional-fuzzy linear velocity controller
and a proportional-fuzzy angular velocity controller. Each
of them has a 2-to-1 fuzzy mapping to produce driving
signals. The stability and performance of the overall design
have been verified both by computer simulation and
experiment. In the computer simulation, the WR is
considered as a nonholonomic dynamic system and using
the Lagrange formalism its mathematical model has been
built. In the experiment, a computer controlled, motorised
prototype has been implemented. Equipped with the
hierarchical fuzzy controller, the prototype has been tested
for various cases of autonomous navigation. The consist-
ency demonstrated by the simulation and experimental
results has verified the model and confirmed the hierarchical
fuzzy control design. Future works may integrate some
environmental sensors into the hierarchical fuzzy control
system to achieve complete fuzzy autonomous navigation.
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