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Abstract: When a wheeled autonomous robot drives with wheel slips, the velocity and posture
control becomes difficult. An ideal automatic driving control system should be able to comply
with changes in slip conditions so as to optimise the control performance. Using dual heuristic pro-
gramming and multi-layer perceptron neural networks, an adaptive critic anti-slip control design is
developed to achieve this goal. The critic structure enables neural network learning by satisfying
the Bellman equation so that the inclination of the action performance can be assessed to improve
the control parameters. A slip model of the robot vehicle is derived. The adaptive critic anti-slip
control system is verified extensively by computer simulation. The result shows that the perform-
ance is significantly better than that of using traditional fuzzy control.
1 Introduction

Wheeled autonomous robots may drive without prior
knowledge of slip conditions. An automatic driving control-
ler with fixed parameters may in this situation perform
poorly or even go out of control. Ideally, the controller
should be able to learn the slip conditions, assess the
robot’s states and then compensate for the slip effect. This
article demonstrates an adaptive critic anti-slip control
design that fulfils this requirement by dual heuristic pro-
gramming (DHP)-based neural networks. The adaptive
critic method is a technological attempt to implement
human processes of learning and applying control to
achieve a future goal [1]. Humans are motivated by love,
fortune, power and so on. The critic structure shapes the
controller to satisfy the Bellman equation, the motivation
equivalence. The critic method essentially uses compu-
tational entity to criticise actions. Then in accordance
with the inclination of the action performance, the control
unit is improved to approximate optimal control.

Dynamic programming is a mathematical formalism
to design an optimal controller for a nonlinear system.
Bellman’s [2] principle of optimality allows us to take
every step as a starting point to look for the optimal sol-
ution. However, the nature of requesting future information
makes dynamic programming not directly feasible in prac-
tical applications. Alternatively, DHP has been developed
as an approximator to implement dynamic programming
[3, 4]. Other than DHP, heuristic dynamic programming
(HDP) and global dual heuristic programming (GDHP)
serve the same purpose. They are differentiated by the
output of the critic entity. In the DHP method, the critic pro-
duces the derivative of the Bellman equation [5, 6].
However, in HDP, the critic’s output is the criteria function
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of the Bellman equation. In GDHP, both the Bellman
equation and its derivative are calculated. However,
DHP was demonstrated in Prokhorov et al. [7] and
Venayagamoorthy et al. [8] to have a superior performance
to HDP and there was no observable improved performance
by GDHP.

This article embodies adaptive critic anti-slip control
with DHP and multi-layer perceptron (MLP) neural
networks. For anti-slip control, it is assumed that the
frictional forces at the wheel–road contacts are depen-
dent on surface condition and location. Therefore a
driving wheel may purely roll, roll with slip, or spin to
challenge the control design. The adaptive critic anti-
slip control is shown as able to learn the action
performance so as to modify the network parameters and
approximate optimal control. Optimal anti-slip control
optimises a utility function under variant slips. The adaptive
critic anti-slip design is integrated with the velocity
control as a single system. A slip model of the robot
vehicle is derived. Extensive simulation studies verify
the usefulness of the proposed design. Control performance
is compared with that using the traditional fuzzy control
method [9].

2 Slip model of the robot vehicle and the
anti-slip control problem

The robot vehicle under consideration has two passive
front wheels and two independent, motorised rear wheels.
Fig. 1 shows a schematic top view. Manoeuvring the
driving wheels (rear wheels) can change the linear and
angular velocities of the vehicle. Such a robot vehicle
equipped with stereovision guidance for autonomous navi-
gation has been implemented and demonstrated by Lin
et al. [10]. Without considering the slip condition, a mathe-
matical model of the vehicle has been derived and verified
experimentally in Lin et al. [11]. Lin et al. [9] have devel-
oped a hierarchical fuzzy control system for automatic
drive. Using MLP neural networks and DHP, this article
presents the adaptive critic anti-slip control system for
automatic drive.
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2.1 General model of the robot vehicle

A wheeled robot vehicle is a typical non-holonomic mech-
anical system [12] and the literature [11, 13–15] has shown
that vehicle dynamics can generally be described as

MðqÞ€qþ Cðq; _qÞ_qþ Fð_qÞ þ GðqÞ þ td ¼ BðqÞuþ ATðqÞl

ð1Þ

and constrained by

AðqÞ_q ¼ 0 ð2Þ

where q [ <n�1 is the generalised coordinate vector,
M(q) [ <n�n is a symmetric, positive definite inertia
matrix, C(q; _q) [ <n�n is the centripetal and Coriolis
matrix, F(_q) [ <n�1 denotes the surface friction,
G(q) [ <n�1 is the gravitational vector, td [ <n�1 denotes
the bounded unknown disturbance including unstructured,
unmodelled dynamics, B(q) [ <n�r represents the input
transformation matrix, u [ <n�1 denotes the input torques,
A(q) [ <m�n is a full rank matrix associated with the con-
straints and l [ <m�1 is the Lagrange multiplier or the
vector of constraint forces.

Assume Z(q) [ <n�(n2m) is a set of smooth linearly
independent vector fields spanning the null space of A(q).
Then there exists an auxiliary vector time function
R(t) [ <n�(n2m), such that for all t

_q ¼ ZðqÞRðtÞ ð3Þ

where R does not necessarily have any physical signifi-
cance. With (1), (2) and (3), the following reduced order
dynamic model without the Lagrange multiplier is obtained

�MðqÞ _Rþ �Cðq; _qÞRþ �Fð_qÞ þ �GðqÞ þ �td ¼ �BðqÞu ð4Þ

where

�MðqÞ ¼ Z 0ðqÞMðqÞZðqÞ [ <r�r

�Cðq; _qÞ ¼ Z 0ðqÞðMðqÞ _ZðqÞ þ Cðq; _qÞZðqÞÞ [ <r�r

�Fð_qÞ ¼ Z 0ðqÞFð_qÞ [ <r�1

�GðqÞ ¼ Z 0ðqÞGðqÞ [ <r�1

�td ¼ Z 0ðqÞtd [ <r�1

2.2 Slip model of the robot vehicle

Consider the vehicle shown in Fig. 1 and use the following
notations: p ¼ [x y u]0 denotes a posture vector; b is the

Fig. 1 Schematic top view of the robot vehicle
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half-width of the axle of the driving wheels; d is the dis-
placement from the point P along the Xc axis to the centre
of mass; r is the radius of driving wheels; mc is the
weight of the body (i.e. excluding the driving wheels and
their associated rotors); mw is the mass of a single driving
wheel (i.e. taking the associated rotor into account); Ic is
the moment of inertia of the body; Iw is the moment of
inertia of each driving wheel about the axle; and Im is the
moment of inertia of each driving wheel about a wheel
diameter. Assume the vehicle moves by satisfying the
following conditions.

Condition 1: The vehicle only moves in the direction
normal to the axle of driving wheels (i.e. no lateral motion).

Condition 2: Each driving wheel rolls with slip only in the
longitudinal direction.

Then the slip model of the vehicle can be described in the
forms of (3) and (4) and the following parameters are
obtained:

1. Kinematics of the slip model: Conditions 1 and 2 put the
following constraints

_y cos u� _x sin u ¼ 0 ð5Þ

_x cos uþ _y sin u� b_u ¼ rrl _wl ð6Þ

_x cos uþ _y sin uþ b_u ¼ rrr _wr ð7Þ

where rl and rr, 0 , rl, rr � 1 represent the anti-slip factors
associated with left and right driving wheels, respectively.
Anti-slip factor is defined as the percentage of a wheel’s
driving force reflected effectively by the road friction.
Generally, it is dependent on wheel and road conditions
and may vary with locations. When an anti-slip factor
varies within [0, 1], the corresponding driving wheel may
purely roll, roll with slip, or spin. However, in deriving
the slip model, 0 , rl, rr � 1 is assumed.

The linear velocity n and angular velocity v are com-
puted as

n ¼ _x cos uþ _y sin u; v ¼ _u ð8Þ

The relationship between (ẇl, ẇr) and (n, v) is obtained by
substituting (8) into (6) and (7)

rrl _wl ¼ n� bv; rrr _wr ¼ nþ bv ð9Þ

Take the generalised coordinate vector q ¼ [x, y, u, wl, wr]
T

and construct the auxiliary vector R ¼ [v v]T. The constraints
(5)–(7) can be organised in the following matrix form

AðqÞ ¼

sin u � cos u 0 0 0

cos u sin u �b �rrl 0

cos u sin u b 0 �rrr

2
4

3
5 ð10Þ

Then the parameter matrix in (3) of the slip model is

ZðqÞ ¼

cos u 0

sin u 0

0 1

1

rrl

�
b

rrl

1

rrr

b

rrr

2
6666666664

3
7777777775

ð11Þ

2. Dynamics of the slip model: Using Lagrange formalism,
the parametric matrices M, C and B in (1) of the slip model
IET Control Theory Appl., Vol. 1, No. 1, January 2007
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are obtained as follows (the derivations are not presented)

MðqÞ ¼

m 0 �mcd sin u 0 0

0 m mcd cos u 0 0

�mcd sin u mcd cos u I 0 0

0 0 0 Iw 0

0 0 0 0 Iw

2
666664

3
777775

Cðq; _qÞ ¼

0 0 �mcd _u cos u 0 0

0 0 �mcd _u sin u 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

2
6666664

3
7777775

BðqÞ ¼
1

r

rl cos u rr cos u

rl sin u rr sin u

�rlb rrb

r 0

0 r

2
666664

3
777775 ð12Þ

The unmodelled dynamics and disturbance is

hðq; _qÞ ¼ Fð_qÞ þ GðqÞ þ td ð13Þ

Accordingly, the parametric matrices in (4) of the slip
model are

�MðqÞ ¼

mþ
Iw

r2

1

r2
l

þ
1

r2
r

� �
bIw

r2

�1

r2
l

þ
1

r2
r

� �

bIw

r2

�1

r2
l

þ
1

r2
r

� �
I þ

b2Iw

r2

1

r2
l

þ
1

r2
r

� �
2
6664

3
7775 ð14Þ

�Cðq; _qÞ ¼

Iw

r2rl

d

dt

1

rl

� �
þ

Iw

r2rr

d

dt

1

rr

� �

mcd_u�
bIw

r2rl

d

dt

1

rl

� �
þ

bIw

r2rr

d

dt

1

rr

� �
2
6664

�mcd_u�
bIw

r2rl

d

dt

1

rl

� �
þ

bIw

r2rr

d

dt

1

rr

� �

b2Iw

r2rl

d

dt

1

rl

� �
þ

b2Iw

r2rr

d

dt

1

rr

� �
3
7775 ð15Þ

�BðqÞ ¼

1

r
rl þ

1

rl

� �
1

r
rr þ

1

rr

� �

�b

r
rl þ

1

rl

� �
b

r
rr þ

1

rr

� �
2
6664

3
7775 ð16Þ

The unmodelled term (13) becomes

�hðq; _qÞ ¼ Z 0hðq; _qÞ ¼ Z 0½Fð_qÞ þ GðqÞ þ td � ð17Þ

The linear and angular velocities (v, v) are estimated as
below

v

v

� �
¼

r

2

r

2
�r

2b

r

2b

2
64

3
75 rlvl

rrvr

� �
ð18Þ

where vl and vr denote the angular velocities of left and
right driving wheels respectively. Equations (11), (14)–
(16) and (18) show that the slip model is nonlinearly depen-
dent on the anti-slip factors. Furthermore, the anti-slip
factors are unknown, unmeasurable and generally vary
with the vehicle location and road condition. The anti-slip
control problem is stated to find an optimal velocity control-
ler for a system described by the slip model in which the slip
IET Control Theory Appl., Vol. 1, No. 1, January 2007
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is unknown and unmeasurable. For the convenience of
computer simulation, we assume that the anti-slip factor is
a function r(x, y) of simply the vehicle location. Then rl

and rr can be calculated as follows

rl ¼ rðxl; ylÞ ¼ rðxþ b sin u; y� b cos uÞ ð19Þ

rr ¼ rðxr; yrÞ ¼ rðx� b sin u; yþ b cos uÞ ð20Þ

Specifically, when r(x, y) ¼ constant, (15) becomes

�Cðq; _qÞ ¼
0 �mcd_u

mcd_u 0

� �
ð21Þ

3 Adaptive critic anti-slip control design

The automatic drive of a wheeled autonomous robot needs
basically a navigation system to learn the environment and
plan the desired path, a posture controller to infer the
desired linear and angular velocities and a velocity control-
ler to ensure that the vehicle drives with the desired linear
and angular velocities. The navigation system could
request the vehicle to accomplish a task such as avoiding
an obstacle or tracking a trajectory, as illustrated in
Fig. 2. However, unknown wheel slips challenge severely
the velocity control system. They may reduce the control
performance or even make the system fail to accomplish
the desired task. Adaptive critic anti-slip design aims at
optimising the velocity control under variant wheel slips.

In the optimal control context, the control objective is to
optimise the primary utility function and Bellman’s principle
of optimality allows us to take every step as a starting point to
look for the optimal solution. No matter the wheel slips are,
the objective of the adaptive critic anti-slip control system
is to follow the velocity command as closely as possible.
Therefore the primary utility function is chosen as

U ðtÞ ¼ svfvðtÞ � vdðtÞg
2 þ svfvðtÞ � vdðtÞg

2 ð22Þ

where (v,v) and (vd,vd) are velocities and desired velocities,
respectively, and (sv, sv) are weights to balance the linear
and angular velocity errors. The secondary utility function,
Bellman’s equation and Bellman recursion, is accordingly

J ðtÞ ¼
X1
k¼0

g kU ðt þ kÞ ¼ U ðtÞ þ gJ ðt þ 1Þ ð23Þ

where g, 0 , g � 1 discounts the significance of the utility in
the future [2]. By satisfying the Bellman equation, the adap-
tive critic anti-slip control system approximates optimal
velocity control.

Fig. 2 Trajectory tracking problem
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3.1 Neural networks and the learning structure

As shown in Fig. 3, the DHP algorithm is implemented with
an on-line learning structure of neural networks. This struc-
ture consists of the action network, critic network, verifica-
tion network and vehicle model (not the slip model). The
MLP neural network and backpropagation algorithm [16]
are chosen to implement the action, critic and verification
networks. The architecture of the action network is designed
as illustrated in Fig. 4. It has four inputs (v(t), v(t), vd(t),
vd(t)) and two outputs (tl(t), tr(t)) corresponding to the
torque commands. The hidden layer has three nodes
(neurons) and each with a hyperbolic-tangent activation
function. The activation function has a gain value of 30.
Computational formulas of the action network are listed
as below

r1 ¼ v; r2 ¼ v; r3 ¼ vd; r4 ¼ vd ð24Þ

f1ðxÞ ¼ tanhðxÞ; f2ðxÞ ¼ 30 tanhðxÞ ð25Þ

netj1 ¼
X4

k¼1

W1ð j;kÞrk þ B1ð j;1Þ;

Tj ¼ f1ðnetj1Þ; j ¼ 1; 2; 3 ð26Þ

netj2 ¼
X3

k¼1

W2ð j;kÞTk þ B2ð j;1Þ;

ui ¼ f2ðneti2Þ; i ¼ 1; 2 ð27Þ

u1 ¼ tl; u2 ¼ tr ð28Þ

The architecture of the verification network is shown in
Fig. 5. It has four inputs (v(t), v(t), vd(t), vd(t)), the same
as those of the action network. There are three hidden
layer nodes, each with a hyperbolic-tangent activation
function and a bias. The output node has a linear activation
function. The outputs of the verification network are
l1(t) ffi @J(t)/@v(t) and l2(t) ffi @J(t)/@v(t). Computational

Fig. 3 Adaptive critic anti-slip control system with the DHP
learning algorithm; the action and verification networks each
has a weight update rule; the critic network copies weight
values from the verification network
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formulas of the verification network are listed as

r1 ¼ v; r2 ¼ v; r3 ¼ vd; r4 ¼ vd ð29Þ

f1ðxÞ ¼ tanhðxÞ; f2ðxÞ ¼ x ð30Þ

netj1 ¼
X4

k¼1

W1ð j;kÞrk þ B1ð j;1Þ;

Tj ¼ f1ðnetj1Þ; j ¼ 1; 2; 3 ð31Þ

li ¼
X3

k¼1

W2ði;kÞTk þ B2ði;1Þ; i ¼ 1; 2 ð32Þ

l1 ¼
@J ðtÞ

@vðtÞ
; l2 ¼

@J ðtÞ

@vðtÞ
ð33Þ

The critic network is identical to the verification network,
except the inputs and outputs. The critic network has
(v(tþ 1), v(tþ 1), vd(t), vd(t)) as inputs, and produces
the predictive quantities l1(tþ 1) ffi @J(tþ 1)/@v(tþ 1)
and l2(tþ 1) ffi @J(tþ 1)/@v(tþ 1).

The vehicle model predicts the quantities R(tþ 1),
@R(tþ 1)/@R(t) and @R(tþ 1)/@u(t), where R(t) ¼ [v(t),
v(t)]T. The vehicle model can be of mathematical or
neural/fuzzy type. In this article, the mathematical model
is used. The model equation of the vehicle (no wheel slip)
is obtained by substituting rl ¼ rr ¼ 1 into the slip model.
The linearisation, sampled-data form of the model equa-
tion with on-line parameter update implements the vehicle
model.

3.2 Weight update rules

The backpropagation algorithm and gradient-descent
method are adopted to develop the weight update rules of
the action and verification networks. The critic network
does not have weight update rules but copies weight
values from the verification network for every fifth
sampling time. As we have the vehicle model to predict
the states one-step ahead, the Bellman recursion can

Fig. 4 Architecture of the action network

Fig. 5 Architecture of the verification network
IET Control Theory Appl., Vol. 1, No. 1, January 2007
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substitute for the error measure required in the backpropa-
gation algorithm [6]. The weight update rule of the action
network is

DwaðtÞ ¼ �a
@J ðtÞ

@waðtÞ
¼ �a

X2

j¼1

@J ðtÞ

@ujðtÞ

@ujðtÞ

@waðtÞ
ð34Þ

where a is the learning rate, wa denotes a weight of the
action network

@J ðtÞ

@ujðtÞ
¼
@U ðtÞ

@ujðtÞ
þ g

@J ðt þ 1Þ

@ujðtÞ

and where

@J ðt þ 1Þ

@ujðtÞ
¼
X2

s¼1

@J ðt þ 1Þ

@Rsðt þ 1Þ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
Critic output

@Rsðt þ 1Þ

@ujðtÞ|ffl{zffl}
Model output

The weight update rule of the verification network is
obtained by supervised learning through backpropagation.
Based on the Bellman recursion, the desired output l8 of
the verification network is estimated as follows

l�s ðtÞ ¼
@J ðtÞ

@RsðtÞ
¼
@U ðtÞ

@RsðtÞ
þ g

@J ðt þ 1Þ

@RsðtÞ
; s ¼ 1; 2 ð35Þ

where

@J ðt þ 1Þ

@RsðtÞ
¼
X2

k¼1

@J ðt þ 1Þ

@Rkðt þ 1Þ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
Critic output

@Rkðt þ 1Þ

@RsðtÞ|fflffl{zfflffl}
Model output

þ
X2

k¼1

X2

j¼1

@J ðt þ 1Þ

@Rkðt þ 1Þ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
Critic output

@Rkðt þ 1Þ

@ujðtÞ|ffl{zffl}
Model output

@ujðtÞ

@RsðtÞ

Then the error measure is taken as

eðtÞ ¼
X2

s¼1

flsðtÞ � l�s ðtÞg
2 ð36Þ

where l1(t) ¼ @J(t)/@v(t) and l2(t) ¼ @J(t)/@v(t) are the
verification outputs. The weight update rule is

DwvðtÞ ¼ �
h

2

@eðtÞ

@wvðtÞ

¼ �h
X2

s¼1

�
lsðtÞ|ffl{zffl}

verification
output

�l�s ðtÞ

�
@lsðtÞ

@wvðtÞ
ð37Þ

where h is the learning rate, and wv denotes a weight of the
verification network. The training algorithm of the adaptive
critic anti-slip control system is summarised in the follow-
ing steps:

Step 1. Obtain (v(t), v(t), vd(t), vd(t)) from the vehicle and
posture controller, and apply to the action network to
produce the torque command (tl(t), tr(t));
Step 2. Apply the torque command (tl(t), tr(t)) to the
vehicle;
IET Control Theory Appl., Vol. 1, No. 1, January 2007
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Step 3. Measure (v(t), v(t)) and apply (tl(t), tr(t)) to run the
vehicle model to evaluate R(tþ 1), @R(tþ 1)/@R(t) and
@R(tþ 1)/@u(t);
Step 4. Apply (v(tþ 1), v(tþ 1), vd(t), vd(t)) to the critic
network to obtain l(tþ 1), and apply (v(t), v(t), vd(t),
vd(t)) to the verification network to obtain l(t);
Step 5. Calculate the desired output l8(t) of the verification
network;
Step 6. Calculate weight updates of the action network and
update the weights according to (34);
Step 7. Calculate weight updates of the verification network
and update the weights according to (37);
Step 8. The critic network copies the weight values of the
verification network for every fifth sampling time.

4 Simulation results

The vehicle parameters in Lin et al. [10] are listed in
Table 1 and adopted in the following computer simulations.
Anti-slip factor is expressed as a known function r(x, y). For
comparison, the posture controller has a fuzzy logic design,
the same as in Lin et al. [9]. It accepts position error (ex, ey)
as inputs to produce the desired linear and angular velocities
(vd, vd).

4.1 Simulation 1: Self-learning from scratch

Ability of learning from scratch means updating to the
neural weights can begin and continue without human
help. This is essential in an autonomous robot. In this simu-
lation, all the neural weights are initialised randomly in the
range [20.1, 0.1]. The primary utility function is (22)
with (sv, sv) ¼ (0.25, 0.25). The discount factor in (23) is
g ¼ 1. The velocity commands are vd ¼ 2 sinf(p/600)kTg,
vd ¼ 1.5 cosf(p/1200)kTg. The sampling interval is
T ¼ 0.01 s. The learning process takes 10 000 sampling
times. The results show that the linear and angular velocity
errors decrease quickly along with increase in sampling
times. The weight values in the action and verification
networks converge after training for 3000 sampling
times. Thereafter the system demonstrates good velocity
tracking.

After the self-learning from scratch, the vehicle is
commanded to drive on roads with variant slip
conditions. The road is divided into five zones and
each zone has a specified anti-slip factor as shown in
Figs. 6 and 7. Three roads are studied in the following
simulations:

Road 1: Anti-slip factors in all zones equal 1 (no slip).
Road 2: In zones 2 and 4, the anti-slip factor equals 0.6 and
in other zones equals 1.
Road 3: In zones 1, 3 and 5, the anti-slip factors equal 0.6
and in other zones equals 1.

The desired trajectory attempts to lead the vehicle to make a
left turn. The results obtained from the adaptive critic anti-
slip control are compared with those of the hierarchical
fuzzy control [9].
Table 1: Mechanical figures of the vehicle

b, m d, m r, m wc, m mc, kg mw, kg Ic, kg m2 Iw, kg m2 Im, kg m2

0.265 0.1 0.125 0.8 110 5 1.057 0.004 0.002
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4.2 Simulation 2: Trajectory tracking under variant
wheel slips

Fig. 6 shows the left-turn trajectories obtained by applying
the hierarchical fuzzy control to drive the vehicle on roads
1, 2 and 3 respectively. In spite of maintaining stable
moving, the tracking errors vary in different roads and the
maximum distance between two trajectories is as large as
1.08 m. This reveals that fuzzy control can handle
unknown, nonlinear dynamics to obtain stable control but
lacks an ability to maintain it.

In the adaptive critic anti-slip control, the neural weights
obtained in simulation 1 are used as initial values and then
the learning and control begins. Fig. 7 shows the left-turn
trajectories of the vehicle driving on roads 1, 2 and 3,
respectively. The results show that the responsive
trajectories in all three roads are very close. The
maximum distance between two trajectories is 0.23 m,
much smaller than that of the hierarchical fuzzy control.
This confirms that the adaptive critic anti-slip control can
comply with changes in the wheel slip to approximate
optimal control.

Fig. 7 Left-turn trajectories with the adaptive critic anti-slip
control in simulation 2

Fig. 6 Left-turn trajectories with the fuzzy velocity control in
simulation 2
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4.3 Simulation 3: Velocity response under variant
wheel slips

According to the slip conditions, each trajectory in Figs. 6
and 7 is divided into five segments. For road 2 case, the
five segments from the beginning to the end of a trajectory
have slip values (rl, rr) as r1 ¼ (0.6, 1.0), r2 ¼ (0.6, 0.6),
r3 ¼ (1.0, 1.0), r4 ¼ (0.6, 0.6), r5 ¼ (1.0, 1.0), respect-
ively. In segment r1, left and right driving wheels have
unequal anti-slip factors. This difference disturbs mainly
the angular velocity control. Examining segment r1 in
Fig. 8, it is found that the fuzzy velocity control leaves
large errors uncorrected, as no slip is assumed. In contrast,
segment r1 in Fig. 9 shows the adaptive critic anti-slip
control can adapt the action parameters to correct the
error quickly.

In segments r2 to r5, the anti-slip factors at the left and
right driving wheels are equal, but values change from
segment to segment. When the vehicle goes from one
segment to another, changes in the anti-slip factors disturb
mainly the linear velocity control. Fig. 10 shows that at
the beginning of each r2 to r5 segment, large linear velocity

Fig. 8 Angular velocity of road 2 case with the fuzzy velocity
control in simulation 3

Fig. 9 Angular velocity of road 2 case with the adaptive critic
anti-slip control in simulation 3
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error presents. But the error dies out very soon after the
action parameters being improved by the DHP learning
algorithm. In other words, the adaptive critic anti-slip
control system can surely comply with changes in the
wheel slip.

5 Conclusion

A wheeled autonomous robot may encounter road con-
ditions resulting in wheel slips. The wheel slip modifies
the commanded forces unpredictably and challenges the
accuracy and stability of the motion control. Without appro-
priate anti-slip control, the robot may lose tracking the
desired trajectory. In this context, it has been shown that
the DHP adaptive critic design enabled the robot control
system to adjust its control parameters automatically by
learning to satisfy the Bellman equation. The DHP adaptive
critic design was implemented with an MLP neural network
structure to achieve anti-slip velocity control. The resulting
system was demonstrated to be able to improve the control
performance significantly under variant wheel slips. In con-
trast, in spite of stable control, traditional fuzzy velocity
control was shown to be unable to maintain high perform-
ance under such conditions. Ideally, the DHP adaptive
critic design aimed at learning and control to satisfy the
Bellman equation. But in practice, the parameters in the
action network were updated merely a small step for each
sampling time to obtain learning convergence. Therefore
optimal control obtained only in the steady-state situation,
in which the control environment did not change and
the action parameters reached stable values. Otherwise,
the DHP adaptive critic design simply kept on improving

Fig. 10 Linear velocity of road 2 case with the adaptive critic
anti-slip control in simulation 3
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the action parameters and no optimal control was
guaranteed in the immediate sampling time.
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