Automatica 44 (2008) 2716-2723

journal homepage: www.elsevier.com/locate/automatica

Contents lists available at ScienceDirect

Automatica

Adaptive critic motion control design of autonomous wheeled mobile robot by
dual heuristic programming”

Wei-Song Lin *, Ping-Chieh Yang

Department of Electrical Engineering, National Taiwan University, Taiwan

ARTICLE INFO

Article history:

Received 21 January 2007
Received in revised form

2 September 2007

Accepted 19 March 2008
Available online 10 October 2008

Keywords:

Adaptive critic

Approximate dynamic programming
Mobile robot

Neural networks

ABSTRACT

Autonomous wheeled mobile robot (WMR) needs implementing velocity and path tracking control
subject to complex dynamical constraints. Conventionally, this control design is obtained by analysis
and synthesis or by domain expert to build control rules. This paper presents an adaptive critic
motion control design, which enables WMR to autonomously generate the control ability by learning
through trials. The design consists of an adaptive critic velocity control loop and a self-learning posture
control loop. The neural networks in the velocity neuro-controller (VNC) are corrected with the dual
heuristic programming (DHP) adaptive critic method. Designer simply expresses the control objective
by specifying the primary utility function then VNC will attempt to fulfill it through incremental
optimization. The posture neuro-controller (PNC) learns by approximating the specialized inverse
velocity model of WMR so as to map planned positions to suitable velocity commands. Supervised drive
supplies variant velocity commands for PNC and VNC to set up their neural weights. During autonomous
drive, while PNC halts learning VNC keeps on correcting its neural weights to optimize the control
performance. The proposed design is evaluated on an experimental WMR. The results show that the DHP
adaptive critic design is a useful base of autonomous control.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Autonomous wheeled mobile robots (WMR) rely on using sen-
sors to percept their surroundings and use a motion controller to
drive automatically (Chen & Redmill, 2004; Maurette, 2003; Mey-
rowitz, Blidberg, & Michelson, 1996). In the motion control, WMR
should be capable of performing trajectory tracking, path following
and stabilization. However, WMR is a nonholonomic dynamic sys-
tem with intrinsic nonlinearity, and commonly with unmodeled
disturbance and unstructured, unmodeled dynamics (Greenwood,
1988). Unless its mass is negligible (Lee, Leung, & Tam, 1999), the
motion control should deal with the complex dynamics (Bloch,
Reyhanoglu, & McClamroch, 1992; Kanayama, Kimura, Miyazaki,
& Noguchi, 1990). Conventionally, this control design relies on en-
gineers to analyze the WMR system so as to synthesize the ap-
propriate controller (Colbaugh, Barany, & Glass, 1998; Park, Cho,
& Lee, 2001; Tsai, Wu, Chang, & Wang, 2002). But usually diffi-
culties arise from absence of accurate WMR model. Fuzzy control
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design may skip building the model but needs domain expert to
construct the fuzzy rules (Lee, Adams, & Ryoo, 1997; Pawlowski,
Kozlowski, & Wroblewski, 2001). Controllers based on neural net-
works or neuro-fuzzy networks may construct the control func-
tion by learning training samples (Fierro & Lewis, 1998; Jang &
Sun, 1995; Narendra & Parthasathy, 1990). But preparing appro-
priate training samples usually needs an existing controller (Gu &
Hu, 2002). Alternatively, the adaptive critic motion control design
presented in this paper enables WMR to develop the control abil-
ity autonomously. Neither domain expert to build control rules nor
existing controller to generate training samples is required.

In our laboratory, an experimental WMR has been developed
and its mathematical model has been formulated and identified
(Lin, Huang, Chuang, & Liu, 2004). A hierarchical fuzzy control
system has been implemented and shown able to conduct the
motion of WMR (Lin, Huang, & Chuang, 2005). Furthermore,
the experimental WMR has been equipped with a stereovision
module to enable autonomous path finding and collision avoidance
(Lin, Chuang, & Tien, 2005). This paper assumes the stereovision
module foresees nearest path and the WMR system must generate
the motion control function entirely through learning by trials.
Essentially, this extends the definition of autonomous robot to
autonomous development of the control ability. The idea is to
obtain the control ability by learning through trials to fulfill the
control objective. Neural networks are chosen as the basic learning
model. Trials, actually supervised trials for the sake of safety,
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Fig. 1. A schematic top view of the mobile platform.

supply training inputs to set up the neural weights. Eventually, the
motion control function is built without reference to any existing
controller.

The dual heuristic programming (DHP) adaptive critic tech-
nique (Prokhorov & Wunsch, 1997; Werbos, 1992), which ap-
proximates dynamic programming, is invoked to develop the
learning mechanism. Multilayered perceptrons (MLP) are used
to construct the posture neuro-controller (PNC) and the velocity
neuro-controller (VNC). PNC learns to map planned positions to
suitable velocity commands. VNC learns to conduct the WMR mo-
tion so as to track the velocity commands. Supervised drive of
WMR in variant velocities supplies training inputs for PNC and VNC
to set up their neural weights. During autonomous drive, while
PNC halts learning, VNC is corrected to optimize the control per-
formance. The proposed design is successfully evaluated on the
experimental WMR. The principal contribution is to develop an au-
tonomous control design scheme for mobile robots based on the
DHP adaptive critic method.

This paper is organized as follows: Section 2 illustrates the
architecture of the adaptive critic motion control system of
WMR. Section 3 presents the design of the DHP adaptive critic
motion controller. Section 4 validates the proposed design on the
experimental WMR. Section 5 is the conclusion.

2. Architecture of adaptive critic motion control system of
WMR

The interested autonomous WMR has a four-wheeled mecha-
nism as shown in Fig. 1 and Table 1. While the front wheels are
passive, the rear wheels are motorized independently to give the
differential rotation configuration. Such a WMR with stereovision
module has been assembled in our laboratory for studying naviga-
tion and motion control (Lin et al., 2004; Lin, Huang et al., 2005;
Lin, Chuang et al., 2005). The experimental WMR is completely au-
tonomous because data are elaborated without any external aid,
and its sensors are the encoders attached to the motorized wheels
and the stereovision module to find the path.

Using Lagrange formalism, the dynamical model of WMR is
obtained as (Lin et al., 2004; Yun & Yamamoto, 1993)

M(q)R + C(q, @)R + F(@) + G(q) + 74 = B(q)u (1)

where q = [x, y, 0, ¢1, ¢." is the generalized coordinate vector to
characterize WMR, R = [v, ]" in which v is the linear velocity
and w is the angular velocity, u = [t 7.]" are the input torques

Table 1

Notations in Fig. 1 and values of the experimental WMR

d=0.1m Displacement from point P along X axis to the center of
mass

r=0.125m Radius of motorized wheels

b=0.265m Half length of rear axle

[=08m Length of WMR

me, = 110 kg Mass of the body (excluding motorized wheels and the
associated rotors)

my, = 5kg Mass of single motorized wheel and rotor set

I. = 1.057 kg m? Inertia of the body without motorized wheels and rotor
sets
Inertia of single motorized wheel and rotor set

Inertia of single motorized wheel and rotor set about a

I, = 0.004 kg m?
I, = 0.002 kg m?

diameter
v Linear velocity of WMR
w Angular velocity of WMR
0 Orientation of WMR
@ Angular velocity of left motorized wheel
Or Angular velocity of right motorized wheel

generated by the left and right motors. The parameter matrices in
(1) are

21,
m+ 3 0
M(q) = r 2b21 5
0 I+ 2“’
;
0 —Om.d
C(q,q)—[émd 0“],
C
2 2
B@=|_% 2
Tt

where m = m. + 2m,,, and F(q), G(q) and 7, are unknown terms
corresponding to frictional, gravitational and disturbed forces,
respectively. To conduct the WMR motion needs implementing
velocity and trajectory tracking control. Hierarchical fuzzy control
was shown a feasible approach (Lin, Chuang et al., 2005), but needs
domain experts to construct the fuzzy rules. Alternatively, this
paper seeks to build the motion control function entirely through
learning by trials. The innovative design is called the adaptive critic
motion control system, which consists of mainly a self-learning
posture control loop and an adaptive critic velocity control loop.
Fig. 2 illustrates the design concept. The stereovision module finds
a forward path. According to the forward path, feedback positions
and physical limitations of WMR, the path planner calculates
the planed positions. PNC which approximates the specialized
inverse velocity model (Narendra & Parthasathy, 1990) of WMR
maps planned positions to suitable velocity commands. Actually,
VNC is a DHP adaptive critic design which invokes incremental
optimization to generate the ability of velocity control through
learning. Learning begins with supervised drive to set up the neural
weights in VNC and PNC. Hence, the supervised drive should excite
the WMR dynamics sufficiently in the interested working domain
so that the learning would be complete. During autonomous drive,
while PNC halts learning VNC is corrected successively to optimize
the control performance.

3. Design of DHP adaptive critic motion controller

3.1. Adaptive critic velocity neuro-controller

Adaptive critic methods are usually practiced with model-
based learning structures such as neural or neuro-fuzzy networks.
They have common roots as generalizations of dynamic program-
ming for neural reinforcement learning approaches and have a
capability of optimization over time under conditions of noise,
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Fig. 3. Architecture of the DHP adaptive critic velocity neuro-controller. The solid
lines indicate signal paths, the dashed lines indicate data paths, and the round
rectangular blocks represent neural networks.

uncertainty, and nonlinearity (Werbos, 1992, 2004). Heuristic dy-
namic programming (HDP), dual heuristic programming (DHP),
and globalized dual heuristic programming (GDHP), and their ac-
tion dependent companions are the main categories of adaptive
critic designs (Prokhorov & Wunsch, 1997). They can be differ-
entiated by the critic output. HDP uses the critic to estimate the
value function in the Bellman equation of dynamic programming.
In DHP, the critic approximates the derivative value function to fa-
cilitate the computation in the gradient correcting rule. The critic
in GDHP estimates both the value function and its derivatives. DHP
was shown to have a superior performance to HDP and no observ-
able improved performance by GDHP (Lendaris & Shannon, 1998;
Prokhorov, Santiago, & Wunsch, 1995). In addition, incremental
optimization based on dynamic programming is rigorous in theory.
Stability of a trained DHP adaptive critic control system is governed
by the optimal control theory in the sense of dynamic program-
ming (Bertsekas, 2005).

As illustrated in Fig. 3, VNC contains blocks called the action
network, critic network, shadow critic network, plant model and
primary utility. The action network is responsible for producing
suitable control signals while the critic and shadow critic networks
form the adaptive critic to critique the action performance. The
plant model can be either mathematical formulations or neural
approximation of the WMR dynamics.

3.1.1. Neural computing of VNC
The action, critic and shadow critic networks are each
implemented with three-layer perceptrons (Haykin, 1999). These

[w,, (m)]

[w, (m)]

%, (n) z(n)
L]
L ]
.
—5(n)
x,(n)
.
. Felm)

7, () = Y w, ()3, (1), 7, (1) = 1
=0

j‘»l(n) = umnh{biu/,(n);(n}]. X, (=1
-0
Fig. 4. Architecture of the three-layer perceptrons.

neural networks have the common architecture as shown in Fig. 4.
In the neural architecture, each hidden neuron has a hyperbolic
tangent activation function to obtain output as

1
;(n) = atanh (b > wﬁ(n)f(,-(n)> . Ro(m) =1,
i=0

(a,b) >0 (2)
where n denotes time sequence. Each output neuron has a linear
activation function to obtain output as

J
Zm) =cY wgmyn, Jo =1, c>0. (3)
j=0

The partial derivatives pertaining to the neural architecture are
derived as follows:

oz(nm)

By = DO (4)
0z (n) b _ _ _

8;’; (’;) - (;C) wig(mla — Fi(m1a + y;(m) %(n) (5)

0z, (n) bc _ _
T = ; {(a) wig(n)[a — ;(m)][a +yj(n)1wﬁ<n>} . (6)

Usually, (4) and (5) are called the sensitivity functions and (6)
is called the Jacobian function. DHP adaptive critic design needs

these quantities to evaluate the correcting rules.

3.1.2. Plant model and Jacobian quantities

In Fig. 3, the plant model is used to predict the immediate future
states and calculate certain partial derivatives pertaining to the
plant. It can be either the mathematical model or neural approx-
imation of the plant dynamics. Since DHP adaptive critic design al-
lows using partial or qualitative plant model (Shannon, 1999) and
the WMR model is known (Lin et al., 2004). The plant model in VNC
is implemented with (1) but neglecting the unknown terms corre-
sponding to the frictional, gravitational and disturbed forces. From
(1), the simplified model equations are derived as below.

R=-M'(q)C(q.9)R + M '(q)B(q)u. (7)
Rewrite (7) as the following nonlinear mappings:
R=fRuw, i=1,2,...,58. (8)

Then for the operating point (R,, u,) at sampling time t,, the
first-order approximation of (7) is obtained as

R(t) = A(WR(t) + B(n)u(t) + D(n) (9)
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where t denotes real time,

dfi(R, dfi(R,
Au(n) — M , Bik(n) — M and
aRJ Rp,uy 8Uk Rp,up
Di(n) :fi(Rm un)
" 9fi(R, u) ~ iR w)
- Z T an - Z T nk-
j=1 \Jj Ry, up k=1 Uy Rp,up

The discrete form of the simplified WMR model is obtained as
R(n + 1) = A(mR(n) + B(myu(n) + D(n) (10)

where A(n) = eA™4, B(n) = [/ er™dtB(n), D(n) =

fOA eA™tdt D(n), and where A represents sampling period. In VNC,
the plant model uses (10) to predict the states and calculates the
following Jacobian quantities

OR(n+1) OR(n+1) -
O = Aj(n), = Bu(n). (11)

3.1.3. Correcting the action network

In Fig. 3, U(n) is the primary utility function defined by
according to the specific application context. Since the objective
of VNC s to control WMR to track the velocity command as closely
as possible, the primary utility function is defined as

U(n) = 0.25(v(n) — vg(n))? 4+ 0.25(w(n) — wq(n))? (12)

where (vg(n), wg(n)) is the velocity command. To achieve the
control objective, the neural weights in the action network must be
corrected to minimize not only the present value but also the sum
of all future values of U(n). According to dynamic programming
(Bellman, 1957), this goal can be achieved by minimizing the
secondary utility function, i.e. value function, expressed as

Jm ="y Um+k =U@m) +njn+1) (13)

k=0

where 1,0 < n < 1is a discount factor. Thus, using the gradient
descent method, a suitable correcting rule of the action network is

Awym(n)

W) _aaj (n) duy (n)

C T dwem(n)  Aug(n) dwiem (n)

_ (aU(m aj<n+1>) due(n)

o T ) ) dwim(n)
aU (n) o dR;(n+ 1) | dux(n)

=\ dmm) HZ:M o | swemm Y
Utility Model Action

where « is the learning rate and wy, (1) is the mth neural weight
associated with the kth output of the action.

3.1.4. Correcting the shadow critic network and the critic network

In(14), A{(n + 1) = dJ(n + 1)/0Rs(n + 1) is unknown. DHP
design embodies in estimating this quantity by the adaptive critic
which is composed of the shadow critic and critic networks. They
estimate the partial derivatives of the secondary utility function at
present and immediate future sampling times as

Cagm "
As(n) R’ s=1,2,...,S (shadow critic) (15)
Ai(n+1) = 9 (n+1) =1,2,...,S (critic) (16)

T AR(n+1)°

where S denotes the dimension of R(n). Take partial derivative on
(13) and substitute (16) into its right hand side to obtain

oy 0
Ag(n) = IR Um) +nJ(n+1))

UM | <N [ AUMm) du(n) | g+ 1)
= 3R(n) +;[8uk(n) aR(n) } * "; Ry (1 + 1)

Ry M+ 1) S [ORy(n+ 1) duy (n)
X( R, () +Z< () a&(n)))} ()

k=1

where K denotes the dimension of the control vector u(n). Since
(12) shows U(n) is independent of u(n), (17) can be rewritten as

Wwm 3Ry (n+ 1)
Ag(n) = + E A+ 1) | ———2
s = Sr " 0D Torm
~—— Critic
utility Model

i Ry (n+ 1) duy (n)

18

— dug (n)  0Rs(n) (18)
e e N —’
Model Action

In (18), Ay °(n + 1) is the output of the critic network, Ry (n +
1)/0Rs(n) and dRy(n + 1)/duy(n) are the Jacobian functions of
the plant model, duy(n)/dRs(n) is the Jacobian function of the
action network, and U(n) is a known function, therefore, A (1)
can be calculated. The adaptive critic in DHP learns by updating
the shadow critic network so that A(n) tracks A°(n). Hence, an
error measure for correcting the shadow critic network can be
formulated as

E() =05 Y (As(m) —a2(m)”. (19)
Then the gradient correcting rule is
_, 0E(m) e As(n)
Awgn(n) = P B (As(n) — A2 () Bwan () (20)

where g is the learning rate and wy;, is the mth neural weight
associated with the sth output of the shadow critic network. The
critic network duplicates the corresponding neural weights of the
shadow critic network therefore no correcting rule is needed.
But for learning convergence, duplication is made only for every
several (typically five) sampling times.

3.2. Self-learning posture neuro-controller

PNC consists of two neural networks mentioned as the linear
and angular PNC to map planned positions to linear and angular
velocity commands. The self-learning mechanism is constructed
by identifying the specialized inverse velocity model of WMR
as shown in Fig. 5. For learning convergence, the specialized
inverse velocity model and PNC are organized as standalone neural
networks. The neural architecture is shown in Fig. 4. The linear PNC
has twelve inputs organized from two planned positions and five
feedback positions as follows:

[x(n+2) —x(n+1),y(n+2) —y(n+ 1), x(n+ 1) — x(n),
yn+1) —ym),x(n—1) —x(m),y(n — 1) —y(n),
xn—2)—x(n—1),y(n—2) —y(n—1),x(n — 3)
—x(n—2),y(n—3) —y(n —2),x(n —4) — x(n — 3),

yin—4) —ymn-3)I". (21)
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Fig. 5. Scheme of learning the specialized inverse velocity model.

Actually, (21) contains multi-step displacements to imply the
velocity, acceleration and jerk for PNC to determine the outputs.
The output of the linear PNC is the linear velocity command vq (1)
and vg(n + 1), where vg(n) is active and vg(n + 1) is dummy.
Similarly, the angular PNC has eighteen inputs organized as below

[x(n+2)—x(n+1),y(n+2) —y(n+ 1),

O(n+2)—0n+1),

x(n+1) —x(n),y(n+ 1) —ym),0(m+ 1) — 6(n),

x(n—1) —x(n),y(n—1) —y(n),0(n—1) — 6(n)
x(n—2)—x(n—1),yn—-2)—y(n—1),06(n—2)
—0n—1),x(n—3)—x(n—2),y(n—3) —y(n — 2),
O(n—3)—60(n—2),

x(n—4) —x(n—3),y(n—4) —y(n—3),

O(n—4) —0(n—3)". (22)

The output of the angular PNC is the angular velocity command
wq(n) and wy(n+ 1), where wy(n) is active and wq(n+ 1) is dummy.

Fig. 5 shows the scheme of learning the specialized inverse
velocity model. The specialized inverse, which is not necessarily
the complete inverse, covers simply the working domain excited
by supervised drive. Therefore, no singularity of WMR would
be encountered. Certainly, supervised drive must supply rich
enough, safe velocity commands to encompass the working
domain requested in autonomous drive. At the end of supervised
drive, PNC duplicates the neural weights in the specialized inverse
velocity model. During autonomous drive, the neural weights in
PNC are kept constant so that VNC can incrementally optimize the
velocity control.

Backpropagation with Levenberg Marquardt algorithm (LM)
(Wilamowski, 2003) is used to correct the specialized inverse
velocity model. Define the error of the velocity inferred by the
specialized inverse velocity model as

e(n)
= [(va(n — 1) = 0™ (n = 1)), (va(n — 2) — """ (n - 2)),
(@a(n = 1) =™ (n = 1), (@a(n = 2) — " (n = 2)]",
(23)
For the usage of the LM algorithm, e(n) are collected for m
sampling times. Then the error measure is constructed as
e(W) = 0.5E'E (24)
whereE = [eT(n), eT(n—1), ..., e'(n—m+ 1)]". Then the neural
weights in the specialized inverse velocity model are corrected as
Wi =W, — [6'G+ £1]7'G'E (25)

where G = V (¢(W)) and I is the identity matrix. When using (25),
the scalar £ is decreased after each successful step, i.e. reduction in

ytan(®, /2)
>

E(xe.ye.0e)

S(xs.Y5,05) Clxeye)

Fig. 6. Planning a smooth path with the arc-line algorithm.

the error measure, and increased only when a tentative step would
increase the error measure. This provides a switching capability
between the Gauss-Newton algorithm and the steepest descent
method.

3.3. Path planner

The stereovision module is responsible to locate the target
and find a collision-free path. According to the viewed path and
considering the physical limitations of WMR, the path planner
plans a feasible, smooth path and calculates planned positions for
next two steps. The arc-line algorithm (Nelson, 1989) is used to
smooth the path. As illustrated in Fig. 6, this algorithm replaces
the line segments around the intersection of two straight lines
with a smooth curve. First, the start point S(xs, ys, 65) on the first
line, the end point E (x., y., 6.) on the second line, the intersection
point I(x;, y;, 6;) of these two lines, and the angle (¢4 = 0; —0,)
between these two lines are found. Then a value of curvature (y)
is assigned to find the transition point T(x;, y;, 6;) on the first
line, the distance y tan(¢4/2) to the intersection point, and the
center point C(x., y.). Finally, the original straight line segments
are replaced by the arc starts at point T.

As shown in Fig. 7, denote the physical limitations of WMR
on maximum displacement and steering-angle as dp.x and @max.
By constructing a displacement vector from present position
(xp, ¥p, Bp) to a target position (xp, yp) selected on the planned
path, the desired displacement d, and steering angle ¢, can be
determined. Then the planed linear and angular positions are
calculated as

X (n 4+ 1) = x,(n) 4 d, cos(¢y + 6,)
yp(n+1) = yp(n) + dp sin(¢p + 6,) (26)
Op(n+ 1) = 0,(n) + @p.

When they violate the physical limitations, the maximum
allowable values are used.

4. Validation of DHP adaptive critic motion control design

In the following validation, VNC of the experimental WMR
is implemented as below. The action network has four inputs
[v(n), w(n), vg(n), wg(n)]T and two outputs corresponding to
wheel’s driving torques [7;(n), 7, (n)]". The shadow critic network
has four inputs and two outputs denoted by [v(n), w(n), vg(n),
wg(M)]" and [A1(n), A2(n)]7, respectively. The critic network is
a duplicate of the shadow critic network except the inputs and
outputs are [v(n + 1), w(n + 1), v4(n), wg(n)]" and [AS(n +
1), A3(n+ 1)]7, respectively. The number of hidden neurons in each
neural network is chosen by experience. The parameter values
in the activation functions of (2) and (3) are a,b,c = 1. All
neural weights in the action, critic and shadow critic networks are
initialized with values chosen randomly in the range [—0.1, 0.1].



W.-S. Lin, P.-C. Yang / Automatica 44 (2008) 2716-2723 2721

(xb,y0)

(XaVa0)
Fig. 7. Planning a feasible position.

The validation begins with supervised drive and followed by
autonomous drive. Supervised drive supplies 1000 sets of velocity
commands calculated from the following equations:

: 6r(i—1) —0.001i
=05 _— 1 e
vq (i) |:cos ( 1000 + n) + ] e

i=1,2,...,1000

o 6r=1 N\, ] (1]

wyll) = |COS| ——— T sm{——],

d 1000 40
i=1,2,...,1000.

These velocity commands are fed sequentially into VNC to
train the neural networks for 500 cycles. It should be noticed that
supervised drive is responsible to supply rich enough, safe velocity
commands without the corresponding control torques. Here rich
enough velocity commands mean all possibilities covering the
working domain requested in autonomous drive. Therefore, each
training cycle is actually a trial to generate appropriate control
torques by optimizing the secondary utility function. In the mean
time of each trial, the neural weights in VNC and PNC are corrected.
Hence, PNC is simply equivalent to the specialized inverse velocity
model excited by supervised drive. After finishing 500 training
cycles, the performance of VNC and PNC is examined. Finally, the
trained WMR system is turned into autonomous drive and tested
by tracking a right-turn path and a decaying sinusoidal path.

4.1. Performance of VNC

Figs. 8a and 8b compare the actual linear velocity with desired
value in the 50th and 500th training cycles. The velocity error in the
500th cycle is significantly smaller than that of in the 50th cycle.
The result in the angular velocity is similar but not presented. After
finishing the 500 training cycles, the WMR system is commanded
to track the following velocity pattern

0.002i 1<i=<300
0.6 300 < i < 600
v = {1 600 < i < 700 (28)
3.1—0.003i 700 < i <900
0.4 900 < i < 1000
—0.002i 1<i<300
-06 300 < i < 600
we() = { -1 600 < i < 700
0.003i —3.1 700 < i < 900
—0.4 900 < i < 1000.

Figs. 9a and 9b shows both linear and angular velocity
tracking are accurate. Apparently, the DHP adaptive critic learning
algorithm converges and appropriate VNC is obtained.
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0.9 T T

. :
————— Actual
08 Desired ||

0.7

0.6

0.5

0.4

v (m/s)

0.3

0.2

0.1

0

-0.1

300 400 500 €00 700 800 900 1000

Samples (i)

0 100 200

Fig. 8a. Result of linear velocity tracking in the 50th cycle.
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Fig. 8b. Result of linear velocity tracking in the 500th cycle.

4.2. Performance of PNC

The trained WMR system is turned into autonomous drive and
commanded to track a sequence of positions calculated with

i BT i=1,2 1000 29
y(l)_cos<1000x(1)>, i=1,2,..., . (29)

During autonomous drive, the outputs of PNC are recorded. The
recorded values corresponding to the linear and angular velocities
are presented as the dashed curve (actual) in Figs. 10a and 10b.
The solid curve (desired) is obtained by using the fuzzy posture
controller designed by Lin, Huang et al. (2005). Both curves are
close to each other. Obviously, PNC performs as well as the fuzzy
posture controller. The difference is that while the fuzzy posture
controller was built by domain expert, PNC is obtained entirely by
machine learning.

4.3. Performance of the trained WMR system

The trained WMR system is turned into autonomous drive
and commanded to track a right-turn path and then a decaying
sinusoidal path. The limitations on the posture control are dy.x =
0.035 and ¢max = 0.03.
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Fig. 9a. Result of linear velocity tracking.
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Fig. 9b. Result of angular velocity tracking.
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Fig. 10a. Comparing the linear PNC output (actual) with that of using the fuzzy
posture controller (desired).

Case 1: Tracking a right-turn path.

Fig. 11 compares the results of tracking a right-turn path
without and with the arc-line algorithm. Without the arc-line
algorithm, the WMR system makes a nice right-turn as the dotted
curve shown in Fig. 11. But due to PNC has no knowledge of the

angular velocity
0.8 T T T

------- Actual Qutput

Desired

0.6

0.4

w (rad/s)

0.8 L L . . L . : . .
0 50 100 150 200 250 300 350 400 450 500
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Fig. 10b. Comparing the angular PNC output (actual) with that of using the fuzzy
posture controller (desired).

Path

Desired Path
————— Path with path planner
35 1 e Path without path planner

y (m)

X (m)

Fig. 11. Results of tracking a right-turn path with and without using the
arc-line algorithm.

right-turn until it occurs. Large overshoot is found around the
right-turn. On the other hand, when the arc-line algorithm with
curvature y = 1.1 is involved, the dashed curve in Fig. 11 shows
the overshoot disappears. This means the stereovision and path
planner enable shaping the tracking path.

Case 2: Tracking a decaying sinusoidal path.

Fig. 12 shows the result of tracking a decaying sinusoidal path
described by

7 .
(i) = 1.1sin (;;x(i)) e 030 {172 ...,1000.  (30)

The dashed curve shows the path tracking is accurate. The
dotted curve is obtained by using the fuzzy posture controller (Lin,
Huang et al., 2005) instead of PNC. It seems because of optimization
the DHP adaptive critic motion control design performs better than
that built by domain expert.

5. Conclusion

The DHP adaptive critic motion control design unveiled au-
tonomous development of control ability. Eventually, it minimized
the engineering task in analyzing and synthesizing the system dy-
namics to obtain an appropriate controller. Detailed formulations
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Path
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Fig. 12. Result of tracking a decaying sinusoidal path.

of the DHP adaptive critic motion control design were presented
and explained. VNC corrected the neural weights by incremental
optimization while PNC learned by approximating the specialized
inverse velocity system. Simply the primary utility function was
required to define the control objective. Neither existing controller
nor representative training samples nor control rules built by do-
main experts was required. The proposed design was evaluated on
the experimental WMR and successful results were obtained.
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