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Abstract. The research issue of broadcasting has attracted a considerable amount of attention in a mobile computing system. By utilizing
broadcast channels, a server continuously and repeatedly broadcasts data to mobile users. These broadcast channels are also known as
“broadcast disks” from which mobile users can retrieve data. Using broadcasting, mobile users can obtain the data of interest efficiently and
only need to wait for the required data to present on the broadcast channel. The issue of designing proper data allocation in the broadcast
disks is to reduce the average expected delay of all data items. We explore in this paper the problem of generating hierarchical broadcast
programs with the data access frequencies and the number of broadcast disks in a broadcast disk array given. Specifically, we first transform
the problem of generating hierarchical broadcast programs into the one of constructing a channel allocation tree with variant-fanout. By
exploiting the feature of tree generation with variant-fanout, we develop a heuristic algorithm VFK to minimize the expected delay of data
items in the broadcast program. In order to evaluate the solution quality obtained by algorithm VFK and compare its resulting broadcast
program with the optimal one, we devise an algorithm OPT based on a guided search to obtain the optimal solution. Performance of these
algorithms is comparatively analyzed. Sensitivity analysis on several parameters, including the number of data items and the number of
broadcast disks, is conducted. It is shown by our simulation results that by exploiting the feature of variant-fanout in constructing the
channel allocation tree, the solution obtained by algorithm VFK is of very high quality and is in fact very close to the optimal one resulted
by algorithm OPT. Moreover, algorithm VFK is of very good scalability which is important for algorithm VFK to be of practical use to
generate hierarchical broadcast programs dynamically in a mobile computing environment.
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1. Introduction

In a mobile computing environment, a mobile user with a
power-limited mobile computer can access various informa-
tion via wireless communication. Applications such as stock
activities, traffic reports and weather forecast have become in-
creasingly popular in recent years [26,27]. It is noted that mo-
bile computers use small batteries for their operations without
directly connecting to any power source, and the bandwidth
of wireless communication is in general limited. As a result,
an important design issue in a mobile system is to conserve
the energy and communication bandwidth of a mobile unit
while allowing mobile users of the ability to access informa-
tion from anywhere at anytime [5,9,15,28].

In order to conserve the energy and communication band-
width of a mobile computing system, a data delivery architec-
ture in which a server continuously and repeatedly broadcasts
data to a client community through a broadcast channel was
proposed in [1,13,14,17,25]. In a push-based information sys-
tem, a server generates a broadcast program to broadcast data
to the mobile users. This broadcast channel is referred to as a
“broadcast disk” from which mobile clients can retrieve data.
The mobile users need to wait for the data of interest to appear
on the broadcast channel, and the corresponding waiting time
is called the expected delay of that data item. One objective
of designing proper data allocation in the broadcast disks is to
reduce the average expected delay of data items. Broadcast-
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ing schemes in this context have been previously addressed by
other researchers [3,20,22,24]. Also, a significant amount of
research effort has been elaborated on developing the index
mechanism in multiple broadcast channels [18,21]. A sys-
tem of multiple broadcast channels can be viewed as a broad-
cast disk array. The broadcast disks in a broadcast disk array
can be categorized according to the speed of broadcast disks,
where the speed of a broadcast disk corresponds to the ex-
pected delay for the data items in that broadcast disk. The data
items in each broadcast disk are sent out in a round robin man-
ner. Clearly, as the number of data items in a broadcast disk
increases, the expected delay of those data items increases.
As a result, the data items that are more frequently requested
by mobile users should be put in fast broadcast disks, whereas
cold data items can be pushed to slow broadcast disks to mini-
mize the average expected delay of data items in the broadcast
disk array. Organizing data in a broadcast disk array raises a
number of new research problems. The most important issue
is to develop algorithms to allocate data items to the broad-
cast disk array according to their access frequencies so as to
minimize the average expected delay of data items. This is
the very problem that we shall address in this paper.

The problem we study can be best understood by the illus-
trative example in figure 1 where two broadcast programs are
presented. Assume that the data items Ri , 1 � i � 6, are of
the same size and figure 1(a) shows a flat broadcast program,
where data items are evenly allocated to the two broadcast
disks and the speeds of two broadcast disks in the broadcast
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Table 1
Expected delays and access frequencies of data items under two broadcast programs.

(a)

Expected delay of data items

dR1 dR2 dR3 dR4 dR5 dR6

In figure 1(a) 1 1 1 1 1 1
In figure 1(b) 0.5 0.5 1.5 1.5 1.5 1.5

(b)

Access frequency Average expected delay

Pr (R1) Pr (R2) Pr (R3) Pr (R4) Pr (R5) Pr (R6) in figure 1(a) in figure 1(b)

Case 1 0.167 0.167 0.167 0.167 0.167 0.167 1 1.16
Case 2 0.25 0.25 0.125 0.125 0.125 0.125 1 1
Case 3 0.3 0.3 0.1 0.1 0.1 0.1 1 0.9
Case 4 0.4 0.4 0.05 0.05 0.05 0.05 1 0.7

Figure 1. Two broadcast programs for the broadcast disk array of two broad-
cast disks.

disk array are the same, meaning that the expected delays for
all data items are equal from one to another. In contrast, fig-
ure 1(b) shows another broadcast program with its channel al-
location tree (or abbreviatedly as allocation tree). As will be
described in section 2 later, the depth of the allocation trees
corresponds to the number of broadcast disks, and those leaf
nodes in the same level of the allocation tree correspond to
those data items to be put in the same broadcast disk. In fig-
ure 1(b), the upper channel is allocated with two data items
and the lower channel is allocated with four data items. No-
tice that in figure 1(b) the data items in the fast disk (i.e.,
the upper broadcast channel) spin twice as fast as those data
items in the slow disk (i.e., the lower broadcast channel). The
allocation tree in figure 1(b) is called an allocation tree with
variant-fanout in this paper. Denote the expected delay and
the access frequency of data item Ri , respectively, as dRi and
Pr(Ri). Table 1(a) shows the expected delay for data items
under the two different allocations of broadcast arrays, and
four sets of access frequencies of data items are given in ta-
ble 1(b) for illustrative purposes. The average expected delay
in table 1(b) is obtained by multiplying the access frequency
of each data item by the expected delay of that data item and
summing up the results, i.e.,

∑6
i=1 dRi · Pr(Ri). Same as in

[1,23], the expected delay for each data item in the broad-
cast disk i is formulated as

∑Ni
x=1(Ni − x)/Ni where i is the

number of data items allocated in the broadcast disk i. For ex-
ample, for the allocation in figure 1(a), N1 = 3 and N2 = 3,
and for the allocation in figure 1(b),N1 = 2 and N2 = 4. For
ease of exposition, the details of formulating the average ex-
pected delay, which are in essence the same as those used in
[1,23], are given in the appendix for interested readers. It can
be verified that the expected delays of data itemsR1 and R2 in
figure 1(a) are both equal to dR1 = dR2 = (2 + 1 + 0)/3 = 1.
On the other hand, the expected delays of data items R1

and R3 in figure 1(b) are dR1 = (1 + 0)/2 = 0.5 and
dR3 = (3 + 2 + 1 + 0)/4 = 1.5, respectively.1

It can be seen from table 1(b) that when the access frequen-
cies of all data items are the same, the flat broadcast program
in figure 1(a) is the one to use, and we do not want to allocate
different numbers of data items to different broadcast disks as
in figure 1(b). Explicitly, the average expected delay of data
items for case 1 is

∑6
i=1 dRi ·Pr(Ri) = 1 ·0.167+1 ·0.167+

1 ·0.167+1 ·0.167+1 ·0.167+1 ·0.167 = 1, whereas that in
figure 1(b) is

∑6
i=1 dRi ·Pr(Ri) = 0.5 · 0.167 + 0.5 · 0.167 +

1.5 · 0.167 + 1.5 · 0.167 + 1.5 · 0.167 + 1.5 · 0.167 = 1.16. It
can be verified that the average expected delay resulting from
the flat broadcast program will remain the same as the access
frequencies of data items vary. However, when the access fre-
quencies become increasingly skewed, the average expected
delay of allocation with variant-fanout is reduced from 1.16
in case 1 to 0.7 in case 4. With the access frequencies being
skewed, the average expected delay of the hierarchical broad-
cast program based on variant-fanout becomes much smaller
than that of the flat broadcast program, showing the very ad-
vantage of exploiting the feature of hierarchy in designing
broadcast programs for a broadcast disk array.

Consequently, we explore in this paper the issue of gen-
erating hierarchical broadcast programs with the data access

1 Note that as described in the appendix, same as in prior work [1,23], the
expected delay dRi we consider in this paper does not include the resid-
ual waiting time which is half of the size of a data item. This provision
will facilitate our presentation, but will not affect the quality of solutions
derived.
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frequencies and the number of broadcast disks in a broadcast
disk array given. Specifically, we first formulate the prob-
lem of generating hierarchical broadcast programs and trans-
form this problem into the one of constructing a channel al-
location tree with variant-fanout. A hierarchical broadcast
program for the broadcast disk array of K broadcast disks
can then be represented by a channel allocation tree with a
height ofK . By exploiting the feature of tree generation with
variant-fanout, we develop a heuristic algorithm VFK (stand-
ing for variant-fanout with the constraint K), which is basi-
cally a family of algorithms with different values of K , to
minimize the expected delay of the corresponding broadcast
program. In order to evaluate the solution quality obtained by
algorithm VFK and compare its resulting broadcast program
with the optimal one, we devise an algorithm OPT (stand-
ing for OPTimal) to obtain the optimal solution. Algorithm
OPT is mainly a guided search and is similar to the well-
known A∗ search by using a cost function to guide the search
and to ensure the optimality of the goal node reached [19].
With the proper design of the guide function, algorithm OPT
can obtain the optimal solution very efficiently. Performance
of these algorithms is comparatively analyzed and sensitivity
analysis on several parameters, including the number of data
items and the number of broadcast disks, is conducted. It is
shown by our simulation results that by exploiting the fea-
ture of variant-fanout in constructing the channel allocation
tree, the solution obtained by algorithm VFK is of very high
quality and is in fact very close to the optimal one resulted
by algorithm OPT. With its polynomial time complexity, al-
gorithm VFK incurs a much shorter execution time than al-
gorithm OPT. As the number of broadcast disks and the num-
ber of data items increase, the advantage of algorithm VFK

over algorithm OPT becomes more prominent. It is worth
mentioning that even when the number of broadcast chan-
nels K changes dynamically, algorithm VFK can reach the
new configuration very efficiently with the number of data
items required to be moved around broadcast channels min-
imized, showing another advantage of algorithm VFK . It is
also shown by our experimental results that algorithm VFK

is not only able to produce the solutions of very high quality
but also of good scalability which is important for VFK to be
of practical use to generate hierarchical broadcast programs
dynamically in a mobile computing environment.

A significant amount of research effort has been elaborated
upon issues of data broadcast [1,3,4,12,24]. We mention in
passing that the authors in [1] explored a push-based data de-
livery architecture using the broadcast disk to meet the need
of mobile applications. The research on striking a balance
between push and pull data delivery methods was conducted
in [2]. The authors in [11] proposed a mechanism to capture
data access patterns which can be utilized in a data delivery
model composed of push-based and pull-based delivery meth-
ods. Without fully exploiting the advantage of multiple broad-
cast channels, the attention of those studies in [1,6,8,11,18]
was mainly paid to the design of data delivery model and in-
dex methods for a single broadcast channel, but not for multi-
ple broadcast channels. The design of index methods in multi-

ple broadcast channels was addressed in [18,21], where, how-
ever, the problem of generating hierarchical broadcast pro-
grams was not considered.

The contributions of this paper are twofold. First, we pro-
pose an innovative concept to broadcast data in a hierarchi-
cal manner through multiple broadcast channels, and then, in
light of this concept, we develop algorithm VFK which uti-
lizes the feature of variant-fanout tree generation to minimize
the average expected delay of data items. In addition, in or-
der to evaluate the quality of the solution obtained by algo-
rithm VFK , we develop algorithm OPT which exploits the
feature of A∗ search to obtain the optimal solution for perfor-
mance comparison with algorithm VFK . To the best of our
knowledge, priori works neither fully explored the impact of
using a broadcast disk array, nor utilized the feature of hier-
archy to allocate data items for broadcasting, let alone devel-
oping efficient algorithms to generate hierarchical broadcast
programs and conducting their performance studies. These
features distinguish this paper from others. The fast increase
in mobile applications which use broadcasting for informa-
tion dissemination justifies the timeliness and importance of
this study.

This rest of this paper is organized as follows. Prelimi-
naries are given in section 2. In section 3, we develop algo-
rithm VFK for allocating data items to a broadcast disk ar-
ray. We devise algorithm OPT in section 4 to obtain the opti-
mal solution. Performance studies are conducted in section 5.
This paper concludes with section 6.

2. Preliminaries

Note that as the number of data items in a broadcast disk
increases, the expected delay of those data items within the
broadcast disk increases. Theoretically, generating such a
broadcast program can be viewed as a partition problem for
data items. Given the number of broadcast disks in a disk
array and the access frequencies of all data items, we shall
determine the proper set of data items that should be allo-
cated to each broadcast disk in a broadcast disk array with the
purpose of minimizing the average expected delay of all data
items. Table 2 shows the description of symbols used in mod-
elling the program. Figure 2 shows the program formulation
of generating a hierarchical broadcast program for a broadcast
disk array of K broadcast disks. Denote the total number of

Table 2
Description of symbols.

Description Symbol

Number of broadcast disks in a broadcast disk array K

Number of data items within broadcast disk i Ni
The expected delay of data items within broadcast disk i di
The j th data item Rj
The access frequency of data item Rj Pr(Rj )

The expected delay of data item Rj dRj
The number of leaf nodes in level i of the allocation tree Li
The weight of leaf nodes in level i of the allocation tree wi
The aggregate access frequency for the leaf nodes in level i PLi
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Figure 2. Generating hierarchical broadcast programs for a broadcast disk
array of K broadcast disks, where Ni is the number of data items allocated
to disk i and ti = ∑i

j=1 Nj .

data items as n, and a data item as Ri , 1 � i � n. Recall that
Pr(Ri) is the access frequency of Ri and

∑n
i=1 Pr (Ri) = 1.

Assume that all data items in figure 2 have been sorted ac-
cording to the descending order of the access frequencies of
all data items. As can be seen in figure 2, a broadcast disk ar-
ray ofK broadcast disks corresponds to the partition of n data
items into K groups, where Ni is the number of data items to
be allocated to broadcast disk i. We then have

∑K
i=1Ni = n.

According to the characteristics of broadcast disks, we have
the following properties.

Property 1. The expected delay of the data items within the
broadcast disk i, denoted by di , is di = ∑Ni

j=1(Ni − j)/Ni ,
where Ni is the number of data in that broadcast disk.

Property 2. Let ti = ∑i
h=1Nh and t0 = 0. Then, Ni data

items, denoted by Rj , ti−1 + 1 � j � ti , are allocated to
broadcast disk i, and di = dRj for j ∈ [ti−1 + 1, ti].

For example, in figure 1(b), d1 = dR1 = dR2 = 0.5
since R1 and R2 are in broadcast disk 1, and d2 = dR3 =
dR4 = dR5 = dR6 since R3, R4, R5 and R6 are in broad-
cast disk 2. The problem that we study in this paper can be
formally defined as follows:

Problem of generating a hierarchical broadcast program.
Given the number of broadcast disks in a disk array and the
access frequencies of all data items, we shall determine the
proper set of data items that should be allocated to each broad-
cast disk in a broadcast disk array with the purpose of mini-
mizing the average expected delay of all data items. The aver-
age expected delay of all data items in a broadcast disk array
of K broadcast disks can be formulated as follows:

n∑
j=1

dRj · Pr(Rj )

=
K∑
i=1

di

ti∑
j=ti−1+1

Pr(Rj )

=
K∑
i=1

(
Ni∑
q=1

Ni − q
Ni

)
ti∑

j=ti−1+1

Pr(Rj ), (1)

where ti = ∑i
h=1Nh and t0 = 0.

Problem transformation. As mentioned above, generating
such a broadcast program can be viewed as a partition prob-
lem. We now would like to transform this partition problem

Figure 3. Grouping a set of nodes and moveing them to a lower level to
reduce the weights of leaf nodes.

on data items into the one of generating a channel allocation
tree. The initial allocation tree is mainly a tree of all data
items attached to the root node (as shown in figure 3(a)). Note
that the leaf nodes in the same level of the allocation tree cor-
respond to a set of data items to be put in the same broadcast
disk. Thus, the allocation tree in figure 3(a) corresponds to the
case that all data items are put in one broadcast disk. We next
expand the allocation tree by moving a set of nodes to one
level lower as shown in figure 3(b) (the criterion to determine
such a set of nodes will be explained in section 3 later). Fig-
ure 3(b) corresponds to the case that two broadcast disks are
used to store the data items. This procedure continues by per-
forming more partitions on data items until all broadcast disks
in the broadcast disk array are used. As such, a hierarchical
broadcast program for a broadcast disk array of K broadcast
disks can be represented as a channel allocation tree with a
height of K .

It can be seen that similar to the formulation of the ex-
pected delay for those data items residing in a broadcast disk,
the weight of leaf nodes in level i, denoted by wi , can be for-
mulated as wi = ∑Li

x=1(Li − x)/Li , where Li is the number
of leaf nodes in the level i. The weightwi in fact corresponds
to the expected delay of each data item in level i. Explic-
itly, when the construction of an allocation tree is completed,
Li equals Ni and wi equals di . Let PLi be the summation
of access frequencies of data items associated with leaf nodes
in level i. For example, it can be seen from figure 1(b) that
the depth of the allocation tree is 2 and those leaf nodes in
the same level are allocated in the same broadcast disk. For
that allocation tree with access frequencies given in case 3 of
table 1(b), we have w1 = 0.5, w2 = 1.5, PL1 = 0.6, and
PL2 = 0.4. According to the formulation of average expected
delay for broadcast disk array, we have the cost of the tree
below:

K∑
i=1

wiPLi =
K∑
i=1

(
Li∑
q=1

Li − q
Li

)
· PLi , (2)

where

PLi =
si∑

j=si−1+1

Pr(Rj ),
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si =
i∑
h=1

Lh and s0 = 0.

As such, the problem of generating a hierarchical broad-
cast program can be transformed into the one of building an
allocation tree with the minimal cost.

3. Algorithm VFK : using variant-fanout for allocation
tree generation

We devise in section 3.1 a heuristic algorithm VFK to gener-
ate the channel allocation tree which explores the feature of
tree generation with variant-fanout to minimize the expected
delay of the corresponding broadcast program. The execution
scenario of algorithm VFK is illustrated in section 3.2.

3.1. Design of algorithm VFK

With the problem transformation described above, we devise
algorithm VFK (standing for Variant-Fanout with the con-
straint K) to explore variant-fanout in the allocation tree gen-
eration to minimize the cost of this tree.

Algorithm VFK is greedy in nature and builds the alloca-
tion tree in a top down manner. Algorithm VFK starts with
attaching all data records to the root node. Then, after some
evaluation, algorithm VFK groups nodes with small access
frequencies and moves them to one level lower so as to reduce
the cost of the tree. Figure 3 shows the scenario of grouping
a set of nodes and moving them to a lower level.

Definition 1. Suppose that level v in the allocation tree has
j − i+ 1 data nodes, Ri,Ri+1, . . . , Rj . The cost of level v is
defined as

Ci,j =
j−i+i∑
k=1

(j − i + 1)− k
j − i + 1

j∑
q=i
Pr (Rq),

which is equal towv ·PLv , wherewv andPLv are, respectively,
the weight of leaf nodes and the aggregate access frequency
for the leaf nodes in level v of the allocation tree.

In essence, the value of Ci,j is related to the average ex-
pected delay of leaf nodes in level v. It can be seen from
figure 3 that moving down those nodes to the next level de-
creases the corresponding expected delay of leaf nodes, and
thus the cost of the allocation tree will be reduced. In order to
evaluate the reduction of partitioning, we have the following
definition.

Definition 2. Suppose that node R has j − i + 1 child data
nodes, Ri,Ri+1, . . . , Rj , which are sorted according to the
descending order of Pr(Rq), i � q � j , i.e., Pr(Rq) �
Pr(Ry) iff q � y. The reduction gain achieved by grouping
nodes Rp+1, Rp+2, . . . , Rj and attaching them under a new
child node, denoted by δ(p), can be formulated as δ(p) =
Ci,j − (Ci,p + Cp+1,j ).

Algorithm VFK .

Input. Assume that R1, . . . , Rn have been sorted according to the
descending order of Pr (Rj ), 1 � j � n, i.e.,Pr (Rq) � Pr(Ry) iff q � y.
K is the number of broadcast disks in a broadcast disk array.
Output. The resulting allocation tree.
begin
1. Create table AT with K rows;
2. AT(1).B = 1; /∗ AT(1).B records the beginning of level 1 ∗/
3. AT(1).E = n; /∗ AT(1).E records the end of level 1 ∗/
4. AT(1).LC = C1,n; /∗ AT(1).LC records the cost of level 1 ∗/
5. for each row i in table AT and i � 2
6. begin
7. AT(i).B = 0; /∗ AT(i).B records the beginning of level i ∗/
8. AT(i).E = 0; /∗ AT(i).E records the end of level i ∗/
9. AT(i).LC = 0; /∗ AT(i).LC records the cost of level i ∗/
10. end
11. pivot = 1;
12. repeat
13. begin
14. Choose row i from table AT such that AT(i).LC is maximal

among all unmarked rows;
15. if (i == 1 or i == pivot) /∗ Upward and downward partition ∗/
16. begin
17. j = Partition(RAT(i).B , RAT(i).B+1, . . . , RAT(i).E );
18. {Update table AT accordingly and unmark all rows;
19. pivot + +;}
20. end
21. else /∗ Middle partition ∗/
22. begin
23. j = Partition(RAT(i).B , RAT(i).B+1, . . . , RAT(i).E );
24. if (AT (i − 1).E −AT (i − 1).B) < (j −AT (i).B)
25. {Update table AT accordingly and unmark all rows;
26. pivot + +;}
27. else {
28. Mark row i;
29. Merge (RAT(i).B , RAT(i).B+1, . . . , Rj ) and

(Rj+1, Rj+2, . . . , RAT(i).E ) together;}
30. end
31. end
32. until (pivot == K)
end

In light of definition 2, we devise algorithm VFK which
contains a procedure Partition to identify the group of nodes
to be moved downward in each execution level so as to maxi-
mize the reduction gain in each step.

Procedure Partition(Ri,Ri+1, . . . , Rj ).

1. Determine p∗ such that

δ(p∗) = max
∀p∈{i,i+(j−i+1)/2−1}

{δ(p)}.

2. Attach nodes Rp∗+1, Rp∗+2, . . . , Rj under a new node I
in the tree.

3. Return p∗.

To generate the allocation tree, algorithm VFK first starts
with a configuration where all nodes are attached to the root.
Table AT (standing for Auxiliary Table) is created to record
the status of the allocation tree as stated from line 1 to line 10
in algorithm VFK . Note that since there are three kinds of
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(a)

(b)

Figure 4. The tree representations by using TL and TU. (a) A tree represen-
tation by using TL subtree. (b) A tree representation by using TU subtree.

partitioning, i.e., upward, middle and downward partitions,
judiciously applying these partitions is able to reduce the to-
tal cost of the allocation tree. To facilitate the description
of algorithm VFK , we define two subtrees, i.e., TU and TL,
where TU (respectively, TL) is left-upper (respectively, right-
lower) subtree and does not contain the top level (respectively,
the last level) of the tree. Consider the tree representations
by TU and TL in figure 4 where the original tree is the one
in figure 3(b). Figure 5(a) shows the scenario of an upward
partition for the allocation tree in figure 4(a). On the other
hand, figure 5(b) illustrates the scenario of a downward par-
tition for the allocation tree in figure 4(b). From table AT,
algorithm VFK chooses the level with the maximal cost to
partition (line 14 of algorithm VFK ). Let pivot be the number
of levels expanded in the allocation tree thus far. Explicitly,
as can be seen from line 15 to line 20 in algorithm VFK , if the
cost of the top (respectively, the last) level is larger than that of
other levels, algorithm VFK performs upward (respectively,
downward) partition. Otherwise, VFK performs the middle
partition according to the operations from line 21 to line 31
in algorithm VFK . Table AT is then updated accordingly. As
can be seen from line 24 to line 29 in algorithm VFK , al-
gorithm VFK makes sure that each partition will satisfy the
feature of hierarchy. That is, the number of leaf nodes (i.e.,
data items) in the upper level is always smaller than that in
the lower level. According to definition 2, the candidate set
of nodes with the maximal reduction gain δ(p∗) is chosen.
When such a set of nodes is identified and moved to the next
level, those nodes will be evaluated by themselves to see if
any further partition for some of them is necessary in line 32
(the condition (pivot == K) means that the number of the
channels has been reached). Algorithm VFK partitions the
nodes iteratively with the objective of minimizing the aver-

(a)

(b)

Figure 5. Illustrations of upward and downward partitions. (a) A scenario of
upward partition. (b) A scenario of downward partition.

age cost
∑K
i=1 wi · PLi until the depth of the tree reaches the

number of broadcast disks in the broadcast disk array. As
such, the allocation tree is expanded and constructed in a top
down manner.

It can be verified that algorithm VFK is of polynomial
time complexity. With n sorted data items and a broadcast
disk array of K broadcast disks given, the complexity of al-
gorithm VFK can be expressed byK · (O(K logK)+O(n)).
Specifically, the complexity of choosing the partition with the
maximal cost from table AT is K · O(K logK) and that of
partitioning is K · O(n). When the number of data items is
significantly larger than the number of broadcast disks, i.e.,
n � K , the value of K ·O(n) is the dominating factor of the
complexity of VFK .

3.2. An example execution scenario VFK

For example, consider the profile in table 3 where the number
of data items n is 11 and the number of broadcast disksK is 4.
The initial tree configuration is shown in figure 6(a), where all
data records are attached to the root. Procedure Partition then
determines the optimal partition of nodes to be moved to the
next level. The values in table AT and their changes made in
accordance with the execution of algorithm VFK are shown
in table 4, where in table 4(a)–4(c), the first table is table AT
and the second table is the one to determine the cut point p∗
for the partition selected where the maximal value of δ(p) is
marked with an ‘*’. From the calculation shown in table 4(a),
we obtainp∗ = 4, and therefore group nodesR5, R6, . . . , and
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Table 3
The profile of an illustrative example.

Data record R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11

Pr(Ri) 0.237 0.211 0.132 0.132 0.08 0.05 0.05 0.027 0.027 0.027 0.027

Figure 6. An execution scenario of algorithm VFK : (a)–(d) the generation of
the allocation tree, and (e) the resulting broadcast program.

R11 together and move them to the next level, resulting in the
configuration shown in figure 6(b). Note that in table AT , the
value of AT(i).LC is the cost of nodes in level i, i.e., wi ·PLi ,
and explicitly, equal to CAT(i).B, AT (i).E . In table 4(b), since
AT(1).LC > AT(2).LC, the upward partition is performed.
Following the calculation shown at the bottom of table 4(b),
we have p∗ = 2 and figure 6(b), in turn, leads to figure 6(c).
Similarly, we obtain AT(1).LC = 0.224 and AT(2).LC =
0.132 shown in table 4(c). Since AT(3).LC = 0.864 is the
maximal in table 4(c), algorithm VFK performs the down-
ward partition. Following the calculation in table 4(c), we
have p∗ = 7. Then, the configuration shown in figure 6(d)
and in table 4(d) follows. As the depth of the allocation
tree equals the number of broadcast disks, algorithm VFK

completes. It can be seen that the very advantage of algo-
rithm VFK is that even when the number of broadcast chan-
nels K changes dynamically, algorithm VFK can reach the
new configuration very efficiently with the number of data
items required to be moved around broadcast channels min-
imized. Also, as validated in our experiments in section 5,
when the number of data items to be broadcast is large, al-
gorithm VFK can expand the allocation tree very efficiently.
According to the configuration in figure 6(d), we can have the
hierarchical broadcast program shown in figure 6(e) where
it can be verified that the average expected delay is the sum
of costs of all levels in the tree shown in figure 6(d), i.e.,
0.224 + 0.132 + 0.18 + 0.162 = 0.698.

Table 4
Determining from table AT the set of nodes to be grouped together as a
partition for allocation tree generation.

(a) Partition (R1, R2, . . . , R11) is selected and decomposed to (R1, . . . , R4)

and (R5, . . . , R11).

Level i AT(i).B AT(i).E AT(i).LC

1 1 11 5∗
2 0 0 0
3 0 0 0
4 0 0 0

p 1 2 3 4 5

C1,11 5 5 5 5 5
C1,p + Cp+1,11 3.4335 2.484 2.05 1.932 2.104

δ(p) 1.5665 2.516 2.95 3.068∗ 2.896

(b) Partition (R1, R2, . . . , R4) is selected and decomposed to (R1, R2) and
(R3, R4).

Level i AT(i).B AT(i).E AT(i).LC

1 1 4 1.068∗
2 5 11 0.864
3 0 0 0
4 0 0 0

p 1 2

C1,4 1.068 1.068
C1,p + Cp+1,4 0.475 0.356

δ(p) 0.593 0.712∗

(c) Partition (R5, R6, . . . , R11) is selected and decomposed to (R5, . . . , R7)

and (R8, . . . , R11).

Level AT(i).B AT(i).E AT(i).LC

1 1 2 0.224
2 3 4 0.132
3 5 11 0.864∗
4 0 0 0

p 5 6 7

C5,11 0.864 0.864 0.864
C5,p + Cp+1,11 0.52 0.381 0.342

δ(p) 0.344 0.483 0.522∗

(d) The final result of table AT.

Level i AT(i).B AT(i).E AT(i).LC

1 1 2 0.224
2 3 4 0.132
3 5 7 0.18
4 8 11 0.162
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4. Algorithm OPT: obtaining the optimal broadcast
program

In order to compare the solution quality obtained by algo-
rithm VFK with the optimal one, by utilizing the concept of
A∗ search [19], we implement in section 4.1 algorithm OPT
which constructs a solution tree and is able to determine the
optimal solution. The execution scenario of algorithm OPT is
presented in section 4.2.

4.1. Design of algorithm OPT

Finding solutions for the problem of partitioning data items
and allocating them into each broadcast disk can be rep-
resented by a search problem based on state transition.
In essence, algorithm OPT is a best-first state transition
search [16,19]. The search made by algorithm OPT can be
represented by a solution tree where each node is associated
with a state of partitioning. Note that the solution tree in algo-
rithm OPT should not be confused with the allocation tree in
algorithm VFK . Figure 7 shows part of an example state tran-
sition search which corresponds to the case of allocating 6
data items into 3 broadcast disks. Starting from the root in
the level one, algorithm OPT generates nodes in level i to
explore the possible partitions of data items into i group. Al-
gorithm OPT is mainly a guided search and is similar to the
well-known A∗ search by using a cost function to guide the
search and to ensure the optimality of the goal node reached.
However, algorithm OPT we employed in this study is differ-
ent from a typical A∗ search in that our interest here is only
limited to obtain the optimal partition efficiently so that we
can evaluate the solution quality obtained by algorithm VFK .
Yet, in this specific application, we do not have to use the op-
timal path from the root to the goal node found by the search.

As shown in figure 7, a node in the solution tree contains
the set of partitions where the data items in the same partition
are allocated to the same broadcast disk. A node in the level j
has j partitions, which is associated with one allocation for a
broadcast disk array of j broadcast disks. The set of partitions
for the node i in the level j is denoted by SPi and the parti-
tions belonging to SPi are denoted by P1, P2, . . . , Pj . We use
|SPi | to represent the number of partitions in that set. Let the
data items in the beginning and the end of Pj be denoted by
Pj .B and Pj .E, respectively. The cost of the partition Pj ,
expressed by c(Pj ), is then CPj .B,Pj .E which can be deter-
mined by definition 1. The cost of the node can be obtained
by summing up the costs of partitions within that node. Also,
let Pmax refer to the partition having the maximal cost within

Figure 7. The solution tree with the number of data items to be 6 for K = 3.

the node. Consider the node marked with a star in figure 7
as an example. In that node, there are three partitions P1, P2
and P3. It can be verified that c(P1) = C1,1 = 0, c(P2) =
C2,2 = 0, c(P3) = C3,6 and the cost of that node is equal
to the value of

∑3
i=1 c(Pi). P3 is then the Pmax of that node

with Pmax.B = 3 and Pmax.E = 6. With a given solution
tree of its depth K, the problem of generating a hierarchical
broadcast program for K broadcast disks becomes a search
problem based on state transition in which a node in level K
with the minimal cost is to be found (i.e., the goal node).

Similarly to an A∗ search, the search in algorithm OPT is
controlled by an evaluation function f (·). The node i chosen
for further partition (i.e., whose immediate successors will be
generated in the solution tree) is the one which has the small-
est value of f (·) among all generated nodes which have not
been partitioned so far. Algorithm OPT stops the expansion
until the goal node is found. Hence, the function f (i) that
guides the search in algorithm OPT consists of two compo-
nents: the cost of reaching node i from the root, i.e., g(i), and
the expected cost of arriving at the goal node from node i, i.e.,
h(i). Accordingly, f (i) = g(i)+ h(i).

The function g(i) is calculated by the cost from the root
to node i along the minimal cost path found so far in the so-
lution tree. Assume that the number of broadcast disks in a
broadcast disk array is K and the node i is in level j . Thus,
we have,

g(i) =
j−1∑
x=1

c(Px),

where Px ∈ SPi − Pmax for the guided search in algorithm
OPT.

In addition, the function h(i) is the estimated cost from
node i to the goal node. In order to obtain the minimal cost,
Pmax that has the maximal cost is chosen for further parti-
tioning so as to reduce the total cost from the root to the
nodes generated from node i. By utilizing the procedure
Partition described in section 3, we have the following pro-
cedure Partition_Cost which returns the minimal cost for par-
titioning Pmax.

Procedure Partition_Cost(Pmax).

1. p∗ = Partition(RPmax ·B,RPmax ·B+1, . . . , RPmax ·E).

2. Return ((CPmax ·B,Pmax ·p∗)+ (CPmax ·p∗+1,Pmax ·E)).

Consequently, the function h(i) for node i in level j can
be defined as below:

Case 1. If the level of node i equals the number of broadcast
disks, i.e., j = K , meaning that no further partition is
needed, h(i) = c(Pmax).

Case 2. If the level of node i is smaller than the number of
broadcast disks, i.e., j < K , meaning that further parti-
tions are needed, h(i) = Partition_Cost(Pmax)/(K − j).
In light of the evaluation function, algorithm OPT can be

outlined below.
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Figure 8. An execution scenario of algorithm OPT.

Algorithm OPT.

Input. Assume that R1, R2, . . . , Rn have been sorted ac-
cording to the descending order of Pr(Ri), 1 � i � n, i.e.,
Pr(Rp) � Pr(Rq) iff p � q . K is the number of broadcast
disks in the broadcast disk array.
Output. Report the goal node.
begin

1. Construct a heap by the value of the evaluation
function f (·);
/∗ A heap is a data structure which returns the element
with the minimal value when one is to remove an element
from the heap [7]∗/

2. Insert the root node into the heap;
3. repeat
4. begin
5. Remove the node i from the heap;
6. Expand the child nodes of node i;
7. Calculate the descendants of node i and insert

these descendants into the heap;
8. end
9. until (|SPi | == K);

10. Return the node i;
end

Algorithm OPT first constructs the heap [7] and inserts the
root node into the heap (line 1 to line 2 in algorithm OPT). Al-
gorithm OPT removes the node i from the heap (line 5 in al-
gorithm OPT) and expands the descendants of node i (line 6).
The values of function f (·) for all descendants are calculated
and these descendants are inserted into the heap (line 7). Al-
gorithm OPT expands the nodes iteratively until |SPi | = K

and the node i with the minimal cost is removed form the heap
(line 10).

Let h∗(i) denote the cost of a search path from node i to the
goal node. Theorem 1 states that for any node i, h(i) � h∗(i).

Similarly to that in an A∗ search [19], this inequality ensures
the optimality of the solution found by algorithm OPT.

Theorem 1. Given a node i in level j , h(i) is a lower bound
of h∗(i).

Proof. Clearly, h∗(i) can be decomposed into

K−1∑
q=j

Partition_Cost
(
P
q
max
)+ c(PKmax

)
,

where Pqmax is the partition with the maximal cost in level q .
Note that if (j < K), we have

h∗(i)− h(i)
= (K − j)−1

×
(
(K − j)

(
K−1∑
q=j+1

Partition_Cost
(
P
q
max
)+ c(PKmax

))

+ (K − j − 1) · Partition_Cost
(
P
j
max
))

� 0.

Also, if j equals K , we have h∗(i)− h(i) = ∑K−1
q=j Parti-

tion_Cost(P qmax) � 0. Consequently, we have h∗(i) � h(i).
This theorem follows. �

4.2. An example execution scenario of OPT

Consider the profile in table 3 where the number of broadcast
disks is 4, i.e., K = 4. The execution scenario of algorithm
OPT is shown in figure 8, where the number next to each link
represents the sequence of node expansion. Algorithm OPT
starts with the root node and then expands the descendants.
The values of functions g(·), h(·) and f (·) are calculated ac-
cordingly. Consider the node marked with a star in figure 8
as an example. In that node, the value of g(·) is C1,2 = 0.224
and that of h(·) equals (C3,4 + C5,11)/2 = 0.431. Thus,
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f (·) is obtained accordingly, i.e., f (·) = g(·) + h(·) =
0.224 + 0.431 = 0.655.

Following the same procedure, we can obtain the values
of function f (·) for each descendant node. After expanding
the root node, all these descendant nodes are inserted to the
heap. Since the level of the root node is smaller than K , al-
gorithm OPT removes from the heap the node with the min-
imal cost to expand. Thus, the node marked with a star in
figure 8 is selected for further expansion. Algorithm OPT
stops expanding after the level number reaches K . It can be
seen that the resulting broadcast program, with the partition
(R1, R2), (R3, R4), (R5, R6, R7) and (R8, . . . , R11) and the
corresponding average expected delay of 0.698, obtained by
algorithm OPT is indeed the same as the one obtained by al-
gorithm VFK in section 3.2. As the number of data items and
the value of K increase, the number of nodes in the solution
tree increases drastically. It can be seen that the number of
nodes expanded in this illustrative example is 15. With the
proper design of the guide function, OPT can obtain the opti-
mal solution very efficiently.

Note that procedure Partition is the most time consum-
ing procedure. Performance of algorithm VFK and algorithm
OPT can be compared in terms of the number of procedure
calls for Partition. For a broadcast disk array of K disks,
the number of procedure calls for Partition in algorithm VFK

is K − 1, whereas that in algorithm OPT is the number of
internal nodes expanded by algorithm OPT in the solution
tree. As will be shown in section 5, the solution obtained
by algorithm VFK is of high quality and is in fact very close
to that of algorithm OPT. As the number of broadcast disks
and the number of data items increase, the advantage of algo-
rithm VFK over algorithm OPT becomes more prominent.

5. Performance evaluation

In order to evaluate the performance of algorithm OPT and
VFK , we have implemented a simulation model of the broad-
cast environment. Specifically, the simulation model is de-
scribed in section 5.1. Then, we examine the impact of em-
ploying hierarchical broadcast programs in section 5.2. Per-
formance of algorithm VFK and algorithm OPT is compara-
tively analyzed in section 5.3.

5.1. Simulation model

Table 5 summarizes the definitions for some primary simula-
tion parameters. The number of data items to be broadcasted
in a broadcast disk array is denoted by n and the number of
broadcast disks in a broadcast disk array isK . The access fre-
quencies of broadcast data items are modelled by the Zipf dis-
tribution. Let Pr(Ri) = ((N − i)/N)θ /∑n

j=1((N − j)/N)θ ,
where θ is the parameter of Zipf distribution [10]. It can
be verified that the access frequencies become increasingly
skewed as the value of θ increases. For comparison purposes,
a scheme that evenly allocates data items to each broadcast
disk, referred to as FLAT, is implemented. An example broad-

Table 5
The parameters used in the simulation.

Notation Definition

n Total number of data items to be broadcast
K Number of broadcast disks in a broadcast disk array
θ Zipf distribution parameter
FLAT Scheme to generate a flat broadcast program

Figure 9. The average expected delay of FLAT, OPT and VFK with the value
of θ varied.

cast program generated by FLAT is the one shown in fig-
ure 1(a). Experimental results for algorithm VFK , algorithm
OPT and FLAT have been obtained and comparatively evalu-
ated.

5.2. The impact of employing hierarchical broadcast
programs

To show the advantage of generating hierarchical broadcast
program, we set the value of n to 50 and the value of K to 4.
The expected delay of data items under FLAT, OPT and VFK

are examined with the value of θ varied. Without loss of gen-
erality, assume that all the data items are of the same size
which is used as one unit of waiting time. The resulting ex-
pected delay of data items by running FLAT, OPT and VFK

are shown in figure 9. It can be seen from figure 9 that the ac-
cess frequencies become increasingly skewed as the value of
θ increases and the difference between expected delay of OPT
and that of VFK is almost negligeable, showing the very high
quality of the solutions obtained by algorithm VFK . Note
that as the access frequencies become increasingly skewed,
the hierarchical broadcast programs generated by OPT and
VFK perform significantly better than the flat broadcast pro-
gram, indicating the very advantage of exploiting the feature
of variant-fanout for the allocation tree generation in algo-
rithm VFK .

5.3. Comparative analysis for VFK and OPT

We now examine the impact of varying the values of n andK
to the performance of VFK and OPT. First, in order to evalu-
ate the impact of increasing the value of K , we set the value
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Figure 10. The expected delay of OPT and VFK with the value of K varied.

Figure 11. The execution time incurred by OPT and VF with the value of K
varied.

of n to 50 and the value of θ to 3. Figures 10 and 11 show the
performance results of OPT and VFK .

As can be seen in figure 10, the expected delay of OPT
and VFK decreases as the value of K increases. This agrees
with our intuition, since as the number of broadcast channels
increases, the number of data items in each broadcast chan-
nel decreases, thereby reducing the expected delay of data
items. Notice that the difference between the expected delay
of VFK and that of OPT is very small when the value of K
varies, again showing the good quality and the robustness of
solutions obtained by VFK . From figure 11, the execution
time incurred by OPT increases sharply as the value of K
increases. This means that the advantage of algorithm VFK

over algorithm OPT becomes even more prominent when the
number of K is large, since the expected delays resulted by
the solutions from both algorithms are all very close to each
other.

Next, the experiments of varying the value of n for OPT
and VFK are conducted where we set the value ofK to 4 and
the value of θ to 3. Figure 12 shows the performance com-
parison between OPT and VFK when the value of n varies.
In figure 12(a), as the number of data items to be broadcast
increases, the expected delays of data items resulted by OPT
and VFK increase linearly as we anticipate. Also, the dif-

(a)

(b)

Figure 12. The performance comparison between OPT and VFK with the
value of n varied. (a) The expected delay of OPT and VFK with the value of
n varied. (b) The execution time incurred by OPT and VFK with the value
of n varied.

ference between the expected delays resulted by OPT and
VFK is negligible, again suggesting that algorithm VFK be
able to find a solution of very high quality efficiently when
the value of n increases. Note that the execution time in-
curred by OPT is also significantly larger than that incurred
by VFK in figure 12(b), showing the increasing advantage of
algorithm VFK over algorithm OPT when the number of data
items increases.

It is shown by our experimental results that algorithm VFK

is not only able to produce the solutions of very high quality
but also of good scalability which is important for VFK to be
of practical use to generate hierarchical broadcast programs
dynamically in a mobile computing environment.

6. Conclusions

In this paper, we explored the issue of generating hierarchi-
cal broadcast programs with the data access frequencies and
the number of broadcast disks in a broadcast disk array given.
Specifically, we first formulated the problem of generating hi-
erarchical broadcast programs and transformed this problem
into the one of constructing a channel allocation tree with
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variant-fanout. By exploiting the feature of tree generation
with variant-fanout, we developed a heuristic algorithm VFK

to minimize the expected delay of the corresponding broad-
cast program. In order to evaluate the solution quality ob-
tained by algorithm VFK and compare its resulting broad-
cast program with the optimal one, we devised an algorithm
OPT based on a guide search to obtain the optimal solution.
Performance of these algorithms was comparatively analyzed
and sensitivity analysis on several parameters, including the
number of data items and the number of broadcast disks, was
conducted. It was shown by our simulation results that by ex-
ploiting the feature of variant-fanout in constructing the chan-
nel allocation tree, the solution obtained by algorithm VFK

is of very high quality and is in fact very close to the opti-
mal one resulted by algorithm OPT. With its polynomial time
complexity, algorithm VFK incurs a much shorter execution
time than algorithm OPT. As the number of broadcast disks
and the number of data items increase, the advantage of algo-
rithm VFK over algorithm OPT becomes more prominent. By
exploring the feature of variant-fanout tree construction, algo-
rithm VFK is not only able to produce the solutions of very
high quality but also of good scalability which is important for
algorithm VFK to be of practical use to generate hierarchical
broadcast programs dynamically in a mobile computing envi-
ronment.

Appendix. Average expected delay of data items

The broadcast channel is divided into slots of same size that
is equal to the size of data item. Assume that the number
of data items to be broadcast is Ni and the size of slots for
data items is one. Let Li(j) denote the number of slots from
the end of slot j for data item i. Without loss of generality,
the arrival requests for data items are triggered in the middle
of slots. An illustrative example of a request for data item
x while data item x is being pushed is shown in figure 13.
Note that the latency of the request for data item x is equal to
1/2+Lx(x). Since the residual time, i.e., 1/2, from the arrival
point of the request until the end of the slot is independent of
the program studied in this paper, we ignore it and use Lx(x)
as the measure of the expected delay. It can be verified that the
Lx(x) equalsNi − 1 in our illustrative example shown below.
While the request of data item x may occur at any time slots,
we can formulate the average expected delay of data item x

as
∑Ni
j=1 Lx(j)/Ni = ∑Ni

j=1(Ni − j)/Ni . For more detailed
formulations, interested readers are referred to [1] and [23].

Figure 13. An illustrative example of the expected delay for data item x.
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