
ELSEVIER Information Processing Letters 69 (1999) 31-37

Evaluations of domino-free communication-induced
checkpointing protocols

Jichiang Tsai a, ‘, Yi-Min Wang b, Sy-Yen Kuo a,*7 I
a Deparhnent of Electrical Engineering, National Taiwan University, Taipei, Taiwan

b Microsof Research, Microsoji Corporation, Redmond, WA, USA

Received 7 May 1998; received in revised form 23 July 1998

Communicated by D. Gries

Abstract

We give a detailed analysis of communication-induced checkpointing protocols that are free of domino effect, We investigate
the validity of a common intuition in the literature and demonstrate that there is no optimal on-line domino-free protocol in
terms of the number of forced checkpoints. Formal proofs on comparing existing protocols in the literature are given. D 1999
Elsevier Science B.V. All rights reserved.

Keywords: Distributed systems; Fault tolerance; Domino effect; Communication-induced checkpointing; Rollback-recovery

1. Introduction

A distributed computation consists of a finite set
of processes that communicate and synchronize with
each other by exchanging messages through a net-

work. A local checkpoint is a snapshot of the local
state of a process, saved on nonvolatile storage to sur-

vive process failures. It can be reloaded into volatile

memory in case of a failure to reduce the amount of
lost work. When a process records such a local state,
we say that this process takes a (local) checkpoint. The

set of messages and the set of local checkpoints form
the checkpoint and communication pattern associated

with the distributed computation. A global checkpoint
M [1 l] is a set of local checkpoints, one from each
process; M is consistent if no message is sent after a

* Corresponding author. Email: sykuo@cc.ee.ntu.edu.tw.

’ Tsai and Kuo’s work is supported by the National Science

Council, Taiwan, RGC, under Grant NSC 87-2213-E-259-007.

checkpoint in M and received before another check-
point in M [2].

If local checkpoints are taken independently, there
is a risk that no consistent global checkpoint can
ever be formed from them. This is the well-known

problem of domino effect [lo], in which unbounded,
cascading rollback propagation can occur during the
process of finding a consistent global checkpoint.

Many protocols have been proposed to selectively
take local checkpoints to eliminate the possibility of
domino effect (see [3]).

One way to avoid the domino effect is to prevent any
checkpoint from becoming a useless checkpoint [4],

i.e., a checkpoint that cannot belong to any consis-
tent global checkpoint. In this paper, we use the term
domino-free checkpointing protocol to refer to proto-
cols that guarantee no useless checkpoints. Coordi-
nated checkpointing protocols [2,6] achieve domino-
freedom by synchronizing the checkpointing actions
of all processes through explicit control messages. In

0020-0190/99/$ - see front matter 0 1999 Elsevier Science B.V. All rights reserved.

PII: SOOZO-0190(98)00183-5

32 J. Tsai et al. /Information Processing Letters 69 (1999) 31-37

contrast, communication-induced checkpointing pro-

tocols [5] achieve coordination by piggybacking con-

trol information on application messages. Specifically,

in addition to taking basic checkpoints independently,

each process can also be asked by the protocol to

take additional jtirced checkpoints so as not to make

any existing checkpoint become useless. The protocol

makes its decision based on the piggybacked informa-

tion as well as local control variables.

Since forcing additional checkpoints incurs runtime

overhead, it is desirable to force as few checkpoints

as possible while still guaranteeing domino-freedom.

Throughout this paper, we compare the pet$ormance

of protocols in terms of the number of forced check-

points. Intuitively, if a protocol forces checkpoints

only at a stronger condition, then it should force fewer

checkpoints overall. More specifically, if protocol A

forces a checkpoint whenever condition Y is true, pro-

tocol B forces a checkpoint whenever condition Z is

true, and condition Y implies condition Z, then proto-

col A should always outperform protocol B. In other

words, it seems true that we can always improve upon

a protocol by “sharpening” the condition under which

it forces a checkpoint. Moreover, we can derive an

optimal protocol, which always forces fewer check-

points than any other protocol, by finding the strongest

(or minimal) condition under which any protocol must

force a checkpoint to avoid generating useless check-

points.

In this paper, we construct a counterexample to

prove that the above common intuition is in fact false.

Basically, when comparing two protocols, the intuition

is true only up to the first forced checkpoint. Beyond

that, the two patterns may diverge and no longer have

a common ground for comparing the conditions. For

example, a protocol may unnecessarily force a check-

point at an earlier execution point but end up outper-

forming other “more intelligent” protocols because it

changes the pattern and happens to avoid two forced

checkpoints later. Following the same arguments, we

also prove that there cannot exist an optimal, domino-

free communication-induced checkpointing protocol.

Finally, we present a technique for formally compar-

ing the performance of a family of domino-free proto-

cols.

2. Preliminaries

2. I. Execution model

A distributed computation consists of a finite set
P of n processes {PI, P2, . . , P,,} that communicate

and synchronize only by exchanging messages. We as-
sume that each ordered pair of processes is connected
by an asynchronous, reliable, directed logical chan-
nel with unpredictable but finite transmission delays.
Processes fail according to the fail-stop model.

A process can execute internal, send, and receive
statements. An internal statement does not involve any
communication. When Pi executes “send(m) to Pj”,

it puts message m into the channel from Pi to Pj.
When Pi executes “receive(m)“, it is blocked until at

least one message directed to Pi has arrived. Then, a
message is withdrawn from one of its input channels
and delivered to P; Executions of internal, send, and

receive statements are modeled by internal, sending,
and receiving events, respectively [4].

Processes of a distributed computation are sequen-

tial: each process P; produces a sequence of events.
All the events produced by a distributed computation
can be modeled as a partially ordered set with Lam-

port’s well-known happened-before relation “!%“, de-
fined as follows [7].

Definition 1. The relation “%” on the set of events

satisfies the following three conditions:

(1)

(2)

(3)

If a and b are events in the same process and a

comes before b, then a 3 b.

If a is the event send(m) and b is the event

receive(m). then a 2 b. /_

Ifa2bandb%cthen,Ifl;c.

Given a distributed computation H, its associated
checkpoint and communication pattern is the set of
local checkpoints in H partially ordered by the set of
messages. Fig. 1 shows an example checkpoint and
communication pattern. Ci,, represents checkpoint x
of process Pi where i is the process id and x the
checkpoint index. The sequence of events occurring
at Pi between Ci,X-l and Ci., (X > 0), called a
checkpoint interval, is denoted by Ii,_\-. We assume
that each process Pi starts its execution with an initial
checkpoint Ci.0.

J. Tsai et al. /Information Processing Letters 69 (1999) 31-37 33

C&O C&i C,,2

p, 1 I n w

c 1.0 G.2

5 I b

m5

GO Ck2
4 m . b

< , >

&I 42

Fig. 1. A checkpoint and communication pattern.

2.2. Z-cycles and useless checkpoints

Netzer and Xu introduced the following notion of
Z-paths and Z-cycles and proved that a checkpoint
C;,, is useless iff it is involved in a Z-cycle.

Definition 2. A Z-path is a sequence of messages

[ml,m2,..., q] (q 3 1) such that, for each i, 1 <
i<q-1:

receiVe(mj) E 1k.s A send(mj+l) E 1k.r As < t [9].

If a Z-path [ml,mz,..., m,] satisfies the condition

that send(ml) E Zi,.r+~ (Ci.,Y precedes send(ml)) and
receive(mq) E Z,i,s (receive(m,) precedes Cj,?), we
say that this Z-path is from C;,, to Cj.,. A Z-
path from a local checkpoint Ci,,Y to the same local
checkpoint C;,, is called a Z-cycle. We say that it
involves the local checkpoint C;.,

Definition 3. A local checkpoint is useless [4] ifs it
does not belong to any consistent global checkpoint.

Theorem 4. A local checkpoint Ci., is useless iff it is

involved in a Z-cycle [9].

For example, in Fig. 1, both the message sequences
[ms, rnz] and [ms, ms] constitute Z-pathsfromCk.1 to
Ci.2. According to Theorem 4, Ck, 1 is useless because
it is involved in the Z-cycle [ms, m4]. It becomes
clear that any domino-free checkpointing protocol (as

defined in the previous section) must eliminate all Z-
cycles by forcing additional checkpoints. (We say that
all Z-cycles are broken.)

One approach to avoiding generating any Z-cycles
is to have a checkpoint timestamp algorithm that
guarantees that timestamps for checkpoints always

increase along any Z-path [4,8], as stated in the
following theorem:

Theorem 5. Let each checkpoint C be associated

with a timestamp C.t. Iffor every pair of checkpoints

Ci,, and Cj.? with a Z-pathfrom Ci.,r to Cj,, we have

C;,, .t < Cj,! .t, then there is no Z-cycle.

The timestamps can be maintained in the following

classical way [7]:

l each process Pi manages a local logical clock lc; ;
l before taking a (basic or forced) checkpoint, Pi

increments lc; by Theorem 1 and assigns the new
value to be the timestamp of the checkpoint;

l upon sending a message m, Pi timestamps m with
its current lci (let m.t denote the timestamp of m);

l upon receiving a message m, Pi updates lc; to

max(lc;, m.t).

See the Z-path depicted in Fig. 2(a), which contains

only two messages ml and m2 with send(m2) 3

receive(ml) and is from one process to a different

process. We call this type of Z-path an MM-path.

In contrast, the Z-paths shown in Figs 2(b) and (c),

which also contain two messages ml and rn2 with

send(ma) 2 receive(ml) but are from a process to
itself, are called MM-rings. To ensure monotonically
increasing checkpoint timestamps, we consider the

following four cases:
MM-paths with m 1 .t < m2.t: Since the timestamps
increase along the path, Pj does not need to force a
checkpoint.

MM-paths with m 1 .t > m2.t: Since the timestamps
may not increase along the path, a safe strategy to
prevent Z-cycles is for Pj to take a forced check-

point before delivering ml so that the sequence
[m 1, m2] is no longer a Z-path.
MM-rings not involving checkpoints (unbreakable
MM-rings): An MM-ring from a checkpoint to a
later checkpoint of the same process is called an un-

breakable MM-ring. For example, Fig. 2(b) shows
an unbreakable MM-ring from pk to itself. Since
the later checkpoint must have a larger timestamp
value, an unbreakable MM-ring trivially satisfies
the assumption of Theorem 5 and does not require
any forced checkpoint to break the ring.
MM-rings involving checkpoints (breakable MM-

rings): In contrast, a breakable MM-ring is from

34 _I. Tsai el al. /Information Processing Letters 69 (1999) 31-37

(4 @I (cl

Fig. 2. (a) An MM-path; (b) an unbreakable MM-ring; (c) a breakable MM-ring.

(4 (b)

Fig. 3. The scenario of the counterexample (a) CPn; (b) CPm.

a checkpoint to itself or an earlier checkpoint of
the same process. For example, Fig. 2(c) shows
a breakable MM-ring from Ck,x to itself. Since it

is impossible for a breakable MM-ring to satisfy
the assumption of Theorem 5, Pj must force a
checkpoint to break the ring.
Note that it has been shown in [4] that one inte-

ger vector and one Boolean vector are sufficient for
distinguishing whether an MM-ring involves any lo-
cal checkpoint or not. A protocol that detects these
two kinds of rings is described in [4]. Moreover, [4]
describes a family of timestamp-based checkpointing
protocols, whose performance will be formally com-
pared in a later section.

3. Common intuition is false

It seems natural to try to improve the performance
of protocols by piggybacking more causal information
on each message and sharpening the conditions for

forcing checkpoints, like the method used in [4].
Intuitively, if protocols A and B force checkpoints
under conditions Y and Z, respectively, and Y implies
Z, then protocol A should perform at least as well as
protocol B. In this section, we use a counterexample
to show that the above common intuition is false. The
main reason is that forced checkpoint may change
the subsequent pattern, and it may no longer be
meaningful to consider the relation “Y implies Z”
across two different patterns.

Counterexample. Let CPn be a protocol that breaks
any MM-paths [ml, m2] with ml.? > m2.t and all
breakable MM-rings, and CPm be a protocol that
breaks every MM-path [ml, rnz] with ml .t 3 m2.t

and all breakable MM-rings. Clearly, both protocols
achieve monotonically increasing checkpoint time-
stamps along all Z-paths, and so are domino-free.
Also, ml.? > m2.t implies ml.? > m2.t.

Figs 3(a) and (b) show the execution results of CPn
and CPm, respectively, on the same checkpoint and

.I. Tsai et al. /Information Processing Letters 69 (1999) 31-37 35

communication pattern. Integers in circles indicate the
timestamps of checkpoints and messages. Black rec-
tangular boxes represent basic checkpoints, and hol-
low boxes represent forced checkpoints. As shown in
Fig. 3(a), 4 forces a checkpoint before delivering m3
to break the breakable MM-ring, and that checkpoint
in turn forces PI to take another checkpoint before

delivering mq. In contrast, in Fig. 3(b), CPm needs
only one forced checkpoint to make the same pattern
domino-free. This counterexample shows that CPm
forces fewer checkpoints than CPn in the given check-
point and communication pattern, although it forces
checkpoints at a weaker condition. This serves to dis-
prove the common intuition.

ccpat

Fig. 4. Patterns ccpat and ccpat,.

In the next section, we will use similar techniques
to prove that there is no optimal on-line domino-free
protocol. This scenario is quite common in the area of
on-line algorithms due to the lack of knowledge of the

future.

CPm in the counterexample illustrated previously
needs to take only one forced checkpoint, protocols
that force any checkpoint between c and b need at least
two forced checkpoints by Lemma 7 and therefore
cannot be optimal. Trivially, protocols that take more
than one checkpoint between a and c cannot be
optimal either. So an optimal domino-free protocol, if
any, must take exactly one forced checkpoint between
a and c according to Lemma 6.

4. No optimal on-line protocol

We base our proof on the pattern used in the

previous counterexample, which is redrawn in Fig. 4
and denoted as ccpat. Because the MM-ring [m3, mz]
is breakable, we immediately have the following
lemma:

Lemma 6. Any domino-freeprotocol mustforceproc-

ess P2 in ccpat to take at least one checkpoint between

points a and b.

Now suppose there exists an optimal on-line dom-
ino-free protocol CPo, which must take exactly one
forced checkpoint between a and c. Consider the
pattern ccpat, in Fig. 4, shown as the portion to the

left of the dotted line. Since ccpat, and ccpat have
exactly the same execution history up to the dotted
line, the on-line protocol CPo must still take exactly
one forced checkpoint between a and c. Similarly,
the on-line protocol CPn in the counterexample still
takes zero forced checkpoint in ccpat,, contradicting
the optimality of CPo. q

Lemma 7. Any domino-freeprotocol thatforcesproc- Since on-line protocols CPn and CPm are based
ess P2 in ccpat to take a checkpoint between points only on causal history, as opposed to omniscient
c and b, must also force process P1 to take another knowledge of the entire execution history, the same
forced checkpoint. proof holds for the following corollary:

Proof. If P2 takes a checkpoint between c and b, then
MM-ring [md, m 11 becomes breakable. As a result, P1

has to take another checkpoint to break this MM-ring
in order to make the pattern domino-free. q

Theorem 8. There is no optimal on-line domino-free
protocol.

Corollary 9. There is no optimal on-line domino-free
protocol based on causal history.

5. Techniques for protocol performance
comparison

Proof. Consider the checkpoint and communication
pattern ccpat in Fig. 4. Since the domino-free protocol

Results from the previous sections indicate that the
comparison of domino-free protocol performance can-

36 J. Tsai et al. /Information Processing Letters 69 (1999) 31-37

not be based on that of checkpoint-inducing condi-
tions. Hence we demonstrate in this section formal ap-
proaches to comparing several existing protocols. The
underlying condition of each protocol proposed in the
literature can be expressed as (m.r > Ici) A P where P

is a predicate characterizing the protocol [4]. The MS
protocol proposed in [8], which is a variation of the

protocol in [l], is exactly based on the “(m.t > Ici)”

condition; that is, it directs process Pi to force a check-
point when receiving a message m with a timestamp
larger than the local clock of P; . Two other protocols
are proposed in [4]: protocol HMNRl forces a check-
point when encountering an “m. t > lci” condition af-
ter a sending event in the same interval, while protocol
HMNR2 is more restrictive and takes a forced check-
point only for some particular “m.t > ki” conditions

after a sending event in the same interval. Both MS and
HMNRl are simplified versions of HMNR2 [4]. Sim-

ulation results comparing these three protocols have
been presented in [4]. We now describe an approach
to formally comparing their performance by demon-

strating that the common intuition is in fact valid for
this particular family of protocols, denoted by FE.

Lemma 10. Given any checkpoint and communica-
tion pattern, the timestamps produced by differentpro-

tocols in the FE ~family are equivalent at every execu-

tion point.

Proof. For FE protocols, a process may update its lo-
cal clock according to the management of timestamps
only when a basic checkpoint is taken or an “m.t >

lci” condition is encountered. Because all FE proto-
cols take the same basic checkpoints, it is sufficient
to consider “m.t > lci ” conditions. Since no forced
checkpoint can be taken before the first “m.t > lci”

condition, all FE protocols will encounter the first
“m.t > lci” condition at the same execution point.
Now, no matter a forced checkpoint is taken or not,
all FE protocols will update their local clocks to the
same value of m.t in the max() operation. By repeat-
ing the same argument for all subsequent “m.t > lci”

conditions, this lemma is proved. q

It directly follows from the previous lemma that
HMNRl outperforms MS. This is because, whenever
HMNRl forces a checkpoint, the “m.t > lci” condi-
tion must also be true in the MS case to force a check-

point at the same execution point. We next show that
any protocol CPs based on a stronger condition than
HMNRl’s outperforms HMNRl. Let Ch and rZY rep-
resent the checkpoint-inducing conditions of HMNRl
and CPs, respectively. By definition, we have C,s =+

ch.

Lemma 11. HMNRl must force at least one check-

point between any two consecutive forced checkpoints
taken by CPs in a process.

Proof. First, consider the pattern produced by CPs.
Given any two consecutive forced checkpoints, con-
sider the second one and call it ~2. Since C,7 =+ Ch,
there exists at least one sending event between c2 and
its nearest previous checkpoint (basic or forced). Let
e denote one such event that is closest to ~2. Clearly,
e is between the two consecutive forced checkpoints.
Also, there is an “m.t > lci” condition at the execution
point a where cz is taken.

Now consider the pattern produced by HMNRl,
which contains the same event e. From Lemma 10.
the above “m.t > lci” condition is still true at a, and
we distinguish two cases: either at least one forced
checkpoint has been taken between e and a or none
has been taken. In the latter case, Ci, is true at a,
so HMNRl must force a checkpoint at a. So, in
either case, at least one forced checkpoint is taken
by HMNRl between the two consecutive checkpoints
forced by CPs. q

We can then derive the following monotonicity

property.

Lemma 12. In any process, HMNRl takes the nth
forced checkpoint no later than CPs, for all n.

Proof. We give a proof by induction. Since C,Y =+
Ch, HMNRl takes the first forced checkpoint no
later than CPs. Now suppose HMNRl takes the kth
forced checkpoint no later than CPs. From Lemma 11,
HMNRl must force at least one checkpoint between
the kth and the (k + 1)th forced checkpoints of
CPs, and this checkpoint must be HMNRl’s mth
checkpoint where m > k + 1. Therefore HMNRl must
take its (k + 1)th forced checkpoint no later than
CPS. cl

Finally, we have the following theorem.

.I. Tsai et al. /Information Processing Letters 69 (1999) 31-37 31

Theorem 13. Any domino-free protocol CPs that for-
ces a checkpoint at a stronger condition than HMNRl ‘s
must always take at most as many forced checkpoints

as HMNRl.

Proof. Given any checkpoint and communication pat-
tern, CPs forces every process to take at most as many

forced checkpoints as in the HMNRl case, according
to Lemma 12. Therefore, in the overall system, CPs

forces at most as many checkpoints. q

Since HMNR2 belongs to the family of CPs, it

directly follows from Theorem 13 that HMNR2 forces
at most as many checkpoints as HMNRl.

References

[l] D. Briatico, A. Ciufoletti, L. Simon&i, A distributed domino-

effect free recovery algorithm, in: Proc. 4th IEEE Symp. on

Reliability in Distributed Software and Database Systems,

October 1984, pp. 207-215.

[2] K.M. Chandy, L. Lamport, Distributed snapshots: determining

global states of distributed systems, ACM Trans. Comput. Syst.

3 (1) (1985) 63-75.

[3] E.N. Elnozahy, D.B. Johnson, Y.M. Wang, A survey of

rollback-recovery protocols in message-passing systems, TR,

CMU-CS-96-181, Carnegie-Mellon University, Pittsburgh, PA,

1996.

[4] J.M. Helary, A. Mostefaoui, R.H.B. Netzer, M. Raynal,

Communication-based prevention of useless checkpoints in

distributed computations, in: Proc. 16th IEEE Symp. Reliable

Distributed Systems, October 1997, pp. 183-190.

[5] B. Janssens, W.K. Fuchs, Experimental evaluation of multi-

processor cache-based error recovery, in: Proc. Intemat. Conf.

Parallel Processing 1 (1991) 505-508.

[6] R. Koo, S. Toueg, Checkpointing and rollback-recovery for

distributed systems, IEEE Trans. Software Eng. 13 (1) (1987)

23-31.

[7] L. Lamport, Time, clocks and the ordering of events in a

distributed system, Comm. ACM 21 (7) (1978) 558-565.

[8] D. Manivannan, M. Singhal, A low overhead recovery tech-

nique using quasi-synchronous checkpointing, in: Proc. 16th

IEEE Intemat. Conf. Distributed Computing Systems, May

1996, pp. 100-107.

[9] R.H.B. Netzer, J. Xu, Necessary and sufficient conditions for

consistent global snapshots, IEEE Trans. Parallel Distrib. Syst.

6 (2) (1995) 165-169.

[lo] B. Randell, System structures for software fault-tolerance,

IEEE Trans. Software Eng. 1 (2) (1975) 22G232.

[l l] Y.M. Wang, A. Lowry, W.K. Fuchs, Consistent global check-

points based on direct dependency tracking, Inform. Process.

Lett. 50 (4) (1994) 223-230.

