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Abstract 

We give a detailed analysis of communication-induced checkpointing protocols that are free of domino effect, We investigate 
the validity of a common intuition in the literature and demonstrate that there is no optimal on-line domino-free protocol in 
terms of the number of forced checkpoints. Formal proofs on comparing existing protocols in the literature are given. D 1999 
Elsevier Science B.V. All rights reserved. 
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1. Introduction 

A distributed computation consists of a finite set 
of processes that communicate and synchronize with 
each other by exchanging messages through a net- 

work. A local checkpoint is a snapshot of the local 
state of a process, saved on nonvolatile storage to sur- 

vive process failures. It can be reloaded into volatile 

memory in case of a failure to reduce the amount of 
lost work. When a process records such a local state, 
we say that this process takes a (local) checkpoint. The 

set of messages and the set of local checkpoints form 
the checkpoint and communication pattern associated 

with the distributed computation. A global checkpoint 
M [ 1 l] is a set of local checkpoints, one from each 
process; M is consistent if no message is sent after a 
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checkpoint in M and received before another check- 
point in M [2]. 

If local checkpoints are taken independently, there 
is a risk that no consistent global checkpoint can 
ever be formed from them. This is the well-known 

problem of domino effect [lo], in which unbounded, 
cascading rollback propagation can occur during the 
process of finding a consistent global checkpoint. 

Many protocols have been proposed to selectively 
take local checkpoints to eliminate the possibility of 
domino effect (see [3]). 

One way to avoid the domino effect is to prevent any 
checkpoint from becoming a useless checkpoint [4], 

i.e., a checkpoint that cannot belong to any consis- 
tent global checkpoint. In this paper, we use the term 
domino-free checkpointing protocol to refer to proto- 
cols that guarantee no useless checkpoints. Coordi- 
nated checkpointing protocols [2,6] achieve domino- 
freedom by synchronizing the checkpointing actions 
of all processes through explicit control messages. In 
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contrast, communication-induced checkpointing pro- 

tocols [5] achieve coordination by piggybacking con- 

trol information on application messages. Specifically, 

in addition to taking basic checkpoints independently, 

each process can also be asked by the protocol to 

take additional jtirced checkpoints so as not to make 

any existing checkpoint become useless. The protocol 

makes its decision based on the piggybacked informa- 

tion as well as local control variables. 

Since forcing additional checkpoints incurs runtime 

overhead, it is desirable to force as few checkpoints 

as possible while still guaranteeing domino-freedom. 

Throughout this paper, we compare the pet$ormance 

of protocols in terms of the number of forced check- 

points. Intuitively, if a protocol forces checkpoints 

only at a stronger condition, then it should force fewer 

checkpoints overall. More specifically, if protocol A 

forces a checkpoint whenever condition Y is true, pro- 

tocol B forces a checkpoint whenever condition Z is 

true, and condition Y implies condition Z, then proto- 

col A should always outperform protocol B. In other 

words, it seems true that we can always improve upon 

a protocol by “sharpening” the condition under which 

it forces a checkpoint. Moreover, we can derive an 

optimal protocol, which always forces fewer check- 

points than any other protocol, by finding the strongest 

(or minimal) condition under which any protocol must 

force a checkpoint to avoid generating useless check- 

points. 

In this paper, we construct a counterexample to 

prove that the above common intuition is in fact false. 

Basically, when comparing two protocols, the intuition 

is true only up to the first forced checkpoint. Beyond 

that, the two patterns may diverge and no longer have 

a common ground for comparing the conditions. For 

example, a protocol may unnecessarily force a check- 

point at an earlier execution point but end up outper- 

forming other “more intelligent” protocols because it 

changes the pattern and happens to avoid two forced 

checkpoints later. Following the same arguments, we 

also prove that there cannot exist an optimal, domino- 

free communication-induced checkpointing protocol. 

Finally, we present a technique for formally compar- 

ing the performance of a family of domino-free proto- 

cols. 

2. Preliminaries 

2. I. Execution model 

A distributed computation consists of a finite set 
P of n processes {PI, P2, . . , P,,} that communicate 

and synchronize only by exchanging messages. We as- 
sume that each ordered pair of processes is connected 
by an asynchronous, reliable, directed logical chan- 
nel with unpredictable but finite transmission delays. 
Processes fail according to the fail-stop model. 

A process can execute internal, send, and receive 
statements. An internal statement does not involve any 
communication. When Pi executes “send(m) to Pj”, 

it puts message m into the channel from Pi to Pj. 
When Pi executes “receive(m)“, it is blocked until at 

least one message directed to Pi has arrived. Then, a 
message is withdrawn from one of its input channels 
and delivered to P; Executions of internal, send, and 

receive statements are modeled by internal, sending, 
and receiving events, respectively [4]. 

Processes of a distributed computation are sequen- 

tial: each process P; produces a sequence of events. 
All the events produced by a distributed computation 
can be modeled as a partially ordered set with Lam- 

port’s well-known happened-before relation “!%“, de- 
fined as follows [7]. 

Definition 1. The relation “%” on the set of events 

satisfies the following three conditions: 

(1) 

(2) 

(3) 

If a and b are events in the same process and a 

comes before b, then a 3 b. 

If a is the event send(m) and b is the event 

receive(m). then a 2 b. /_ 

Ifa2bandb%cthen,Ifl;c. 

Given a distributed computation H, its associated 
checkpoint and communication pattern is the set of 
local checkpoints in H partially ordered by the set of 
messages. Fig. 1 shows an example checkpoint and 
communication pattern. Ci,, represents checkpoint x 
of process Pi where i is the process id and x the 
checkpoint index. The sequence of events occurring 
at Pi between Ci,X-l and Ci., (X > 0), called a 
checkpoint interval, is denoted by Ii,_\-. We assume 
that each process Pi starts its execution with an initial 
checkpoint Ci.0. 
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Fig. 1. A checkpoint and communication pattern. 

2.2. Z-cycles and useless checkpoints 

Netzer and Xu introduced the following notion of 
Z-paths and Z-cycles and proved that a checkpoint 
C;,, is useless iff it is involved in a Z-cycle. 

Definition 2. A Z-path is a sequence of messages 

[ml,m2,..., q] (q 3 1) such that, for each i, 1 < 
i<q-1: 

receiVe(mj) E 1k.s A send(mj+l) E 1k.r As < t [9]. 

If a Z-path [ml,mz,..., m,] satisfies the condition 

that send(ml) E Zi,.r+~ (Ci.,Y precedes send(ml)) and 
receive(mq) E Z,i,s (receive(m,) precedes Cj,?), we 
say that this Z-path is from C;,, to Cj.,. A Z- 
path from a local checkpoint Ci,,Y to the same local 
checkpoint C;,, is called a Z-cycle. We say that it 
involves the local checkpoint C;., 

Definition 3. A local checkpoint is useless [4] ifs it 
does not belong to any consistent global checkpoint. 

Theorem 4. A local checkpoint Ci., is useless iff it is 

involved in a Z-cycle [9]. 

For example, in Fig. 1, both the message sequences 
[ms, rnz] and [ms, ms] constitute Z-pathsfromCk.1 to 
Ci.2. According to Theorem 4, Ck, 1 is useless because 
it is involved in the Z-cycle [ms, m4]. It becomes 
clear that any domino-free checkpointing protocol (as 

defined in the previous section) must eliminate all Z- 
cycles by forcing additional checkpoints. (We say that 
all Z-cycles are broken.) 

One approach to avoiding generating any Z-cycles 
is to have a checkpoint timestamp algorithm that 
guarantees that timestamps for checkpoints always 

increase along any Z-path [4,8], as stated in the 
following theorem: 

Theorem 5. Let each checkpoint C be associated 

with a timestamp C.t. Iffor every pair of checkpoints 

Ci,, and Cj.? with a Z-pathfrom Ci.,r to Cj,, we have 

C;,, .t < Cj,! .t, then there is no Z-cycle. 

The timestamps can be maintained in the following 

classical way [7]: 

l each process Pi manages a local logical clock lc; ; 
l before taking a (basic or forced) checkpoint, Pi 

increments lc; by Theorem 1 and assigns the new 
value to be the timestamp of the checkpoint; 

l upon sending a message m, Pi timestamps m with 
its current lci (let m.t denote the timestamp of m); 

l upon receiving a message m, Pi updates lc; to 

max(lc;, m.t). 

See the Z-path depicted in Fig. 2(a), which contains 

only two messages ml and m2 with send(m2) 3 

receive(ml) and is from one process to a different 

process. We call this type of Z-path an MM-path. 

In contrast, the Z-paths shown in Figs 2(b) and (c), 

which also contain two messages ml and rn2 with 

send(ma) 2 receive(ml) but are from a process to 
itself, are called MM-rings. To ensure monotonically 
increasing checkpoint timestamps, we consider the 

following four cases: 
MM-paths with m 1 .t < m2.t: Since the timestamps 
increase along the path, Pj does not need to force a 
checkpoint. 

MM-paths with m 1 .t > m2.t: Since the timestamps 
may not increase along the path, a safe strategy to 
prevent Z-cycles is for Pj to take a forced check- 

point before delivering ml so that the sequence 
[m 1, m2] is no longer a Z-path. 
MM-rings not involving checkpoints (unbreakable 
MM-rings): An MM-ring from a checkpoint to a 
later checkpoint of the same process is called an un- 

breakable MM-ring. For example, Fig. 2(b) shows 
an unbreakable MM-ring from pk to itself. Since 
the later checkpoint must have a larger timestamp 
value, an unbreakable MM-ring trivially satisfies 
the assumption of Theorem 5 and does not require 
any forced checkpoint to break the ring. 
MM-rings involving checkpoints (breakable MM- 

rings): In contrast, a breakable MM-ring is from 



34 _I. Tsai el al. /Information Processing Letters 69 (1999) 31-37 

(4 @I (cl 

Fig. 2. (a) An MM-path; (b) an unbreakable MM-ring; (c) a breakable MM-ring. 
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Fig. 3. The scenario of the counterexample (a) CPn; (b) CPm. 

a checkpoint to itself or an earlier checkpoint of 
the same process. For example, Fig. 2(c) shows 
a breakable MM-ring from Ck,x to itself. Since it 

is impossible for a breakable MM-ring to satisfy 
the assumption of Theorem 5, Pj must force a 
checkpoint to break the ring. 
Note that it has been shown in [4] that one inte- 

ger vector and one Boolean vector are sufficient for 
distinguishing whether an MM-ring involves any lo- 
cal checkpoint or not. A protocol that detects these 
two kinds of rings is described in [4]. Moreover, [4] 
describes a family of timestamp-based checkpointing 
protocols, whose performance will be formally com- 
pared in a later section. 

3. Common intuition is false 

It seems natural to try to improve the performance 
of protocols by piggybacking more causal information 
on each message and sharpening the conditions for 

forcing checkpoints, like the method used in [4]. 
Intuitively, if protocols A and B force checkpoints 
under conditions Y and Z, respectively, and Y implies 
Z, then protocol A should perform at least as well as 
protocol B. In this section, we use a counterexample 
to show that the above common intuition is false. The 
main reason is that forced checkpoint may change 
the subsequent pattern, and it may no longer be 
meaningful to consider the relation “Y implies Z” 
across two different patterns. 

Counterexample. Let CPn be a protocol that breaks 
any MM-paths [ml, m2] with ml.? > m2.t and all 
breakable MM-rings, and CPm be a protocol that 
breaks every MM-path [ml, rnz] with ml .t 3 m2.t 

and all breakable MM-rings. Clearly, both protocols 
achieve monotonically increasing checkpoint time- 
stamps along all Z-paths, and so are domino-free. 
Also, ml.? > m2.t implies ml.? > m2.t. 

Figs 3(a) and (b) show the execution results of CPn 
and CPm, respectively, on the same checkpoint and 
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communication pattern. Integers in circles indicate the 
timestamps of checkpoints and messages. Black rec- 
tangular boxes represent basic checkpoints, and hol- 
low boxes represent forced checkpoints. As shown in 
Fig. 3(a), 4 forces a checkpoint before delivering m3 
to break the breakable MM-ring, and that checkpoint 
in turn forces PI to take another checkpoint before 

delivering mq. In contrast, in Fig. 3(b), CPm needs 
only one forced checkpoint to make the same pattern 
domino-free. This counterexample shows that CPm 
forces fewer checkpoints than CPn in the given check- 
point and communication pattern, although it forces 
checkpoints at a weaker condition. This serves to dis- 
prove the common intuition. 

ccpat 

Fig. 4. Patterns ccpat and ccpat,. 

In the next section, we will use similar techniques 
to prove that there is no optimal on-line domino-free 
protocol. This scenario is quite common in the area of 
on-line algorithms due to the lack of knowledge of the 

future. 

CPm in the counterexample illustrated previously 
needs to take only one forced checkpoint, protocols 
that force any checkpoint between c and b need at least 
two forced checkpoints by Lemma 7 and therefore 
cannot be optimal. Trivially, protocols that take more 
than one checkpoint between a and c cannot be 
optimal either. So an optimal domino-free protocol, if 
any, must take exactly one forced checkpoint between 
a and c according to Lemma 6. 

4. No optimal on-line protocol 

We base our proof on the pattern used in the 

previous counterexample, which is redrawn in Fig. 4 
and denoted as ccpat. Because the MM-ring [m3, mz] 
is breakable, we immediately have the following 
lemma: 

Lemma 6. Any domino-freeprotocol mustforceproc- 

ess P2 in ccpat to take at least one checkpoint between 

points a and b. 

Now suppose there exists an optimal on-line dom- 
ino-free protocol CPo, which must take exactly one 
forced checkpoint between a and c. Consider the 
pattern ccpat, in Fig. 4, shown as the portion to the 

left of the dotted line. Since ccpat, and ccpat have 
exactly the same execution history up to the dotted 
line, the on-line protocol CPo must still take exactly 
one forced checkpoint between a and c. Similarly, 
the on-line protocol CPn in the counterexample still 
takes zero forced checkpoint in ccpat,, contradicting 
the optimality of CPo. q 

Lemma 7. Any domino-freeprotocol thatforcesproc- Since on-line protocols CPn and CPm are based 
ess P2 in ccpat to take a checkpoint between points only on causal history, as opposed to omniscient 
c and b, must also force process P1 to take another knowledge of the entire execution history, the same 
forced checkpoint. proof holds for the following corollary: 

Proof. If P2 takes a checkpoint between c and b, then 
MM-ring [md, m 11 becomes breakable. As a result, P1 

has to take another checkpoint to break this MM-ring 
in order to make the pattern domino-free. q 

Theorem 8. There is no optimal on-line domino-free 
protocol. 

Corollary 9. There is no optimal on-line domino-free 
protocol based on causal history. 

5. Techniques for protocol performance 
comparison 

Proof. Consider the checkpoint and communication 
pattern ccpat in Fig. 4. Since the domino-free protocol 

Results from the previous sections indicate that the 
comparison of domino-free protocol performance can- 
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not be based on that of checkpoint-inducing condi- 
tions. Hence we demonstrate in this section formal ap- 
proaches to comparing several existing protocols. The 
underlying condition of each protocol proposed in the 
literature can be expressed as (m.r > Ici) A P where P 

is a predicate characterizing the protocol [4]. The MS 
protocol proposed in [8], which is a variation of the 

protocol in [l], is exactly based on the “(m.t > Ici)” 

condition; that is, it directs process Pi to force a check- 
point when receiving a message m with a timestamp 
larger than the local clock of P; . Two other protocols 
are proposed in [4]: protocol HMNRl forces a check- 
point when encountering an “m. t > lci” condition af- 
ter a sending event in the same interval, while protocol 
HMNR2 is more restrictive and takes a forced check- 
point only for some particular “m.t > ki” conditions 

after a sending event in the same interval. Both MS and 
HMNRl are simplified versions of HMNR2 [4]. Sim- 

ulation results comparing these three protocols have 
been presented in [4]. We now describe an approach 
to formally comparing their performance by demon- 

strating that the common intuition is in fact valid for 
this particular family of protocols, denoted by FE. 

Lemma 10. Given any checkpoint and communica- 
tion pattern, the timestamps produced by differentpro- 

tocols in the FE ~family are equivalent at every execu- 

tion point. 

Proof. For FE protocols, a process may update its lo- 
cal clock according to the management of timestamps 
only when a basic checkpoint is taken or an “m.t > 

lci” condition is encountered. Because all FE proto- 
cols take the same basic checkpoints, it is sufficient 
to consider “m.t > lci ” conditions. Since no forced 
checkpoint can be taken before the first “m.t > lci” 

condition, all FE protocols will encounter the first 
“m.t > lci” condition at the same execution point. 
Now, no matter a forced checkpoint is taken or not, 
all FE protocols will update their local clocks to the 
same value of m.t in the max() operation. By repeat- 
ing the same argument for all subsequent “m.t > lci” 

conditions, this lemma is proved. q 

It directly follows from the previous lemma that 
HMNRl outperforms MS. This is because, whenever 
HMNRl forces a checkpoint, the “m.t > lci” condi- 
tion must also be true in the MS case to force a check- 

point at the same execution point. We next show that 
any protocol CPs based on a stronger condition than 
HMNRl’s outperforms HMNRl. Let Ch and rZY rep- 
resent the checkpoint-inducing conditions of HMNRl 
and CPs, respectively. By definition, we have C,s =+ 

ch. 

Lemma 11. HMNRl must force at least one check- 

point between any two consecutive forced checkpoints 
taken by CPs in a process. 

Proof. First, consider the pattern produced by CPs. 
Given any two consecutive forced checkpoints, con- 
sider the second one and call it ~2. Since C,7 =+ Ch, 
there exists at least one sending event between c2 and 
its nearest previous checkpoint (basic or forced). Let 
e denote one such event that is closest to ~2. Clearly, 
e is between the two consecutive forced checkpoints. 
Also, there is an “m.t > lci” condition at the execution 
point a where cz is taken. 

Now consider the pattern produced by HMNRl, 
which contains the same event e. From Lemma 10. 
the above “m.t > lci” condition is still true at a, and 
we distinguish two cases: either at least one forced 
checkpoint has been taken between e and a or none 
has been taken. In the latter case, Ci, is true at a, 
so HMNRl must force a checkpoint at a. So, in 
either case, at least one forced checkpoint is taken 
by HMNRl between the two consecutive checkpoints 
forced by CPs. q 

We can then derive the following monotonicity 

property. 

Lemma 12. In any process, HMNRl takes the nth 
forced checkpoint no later than CPs, for all n. 

Proof. We give a proof by induction. Since C,Y =+ 
Ch, HMNRl takes the first forced checkpoint no 
later than CPs. Now suppose HMNRl takes the kth 
forced checkpoint no later than CPs. From Lemma 11, 
HMNRl must force at least one checkpoint between 
the kth and the (k + 1)th forced checkpoints of 
CPs, and this checkpoint must be HMNRl’s mth 
checkpoint where m > k + 1. Therefore HMNRl must 
take its (k + 1)th forced checkpoint no later than 
CPS. cl 

Finally, we have the following theorem. 
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Theorem 13. Any domino-free protocol CPs that for- 
ces a checkpoint at a stronger condition than HMNRl ‘s 
must always take at most as many forced checkpoints 

as HMNRl. 

Proof. Given any checkpoint and communication pat- 
tern, CPs forces every process to take at most as many 

forced checkpoints as in the HMNRl case, according 
to Lemma 12. Therefore, in the overall system, CPs 

forces at most as many checkpoints. q 

Since HMNR2 belongs to the family of CPs, it 

directly follows from Theorem 13 that HMNR2 forces 
at most as many checkpoints as HMNRl. 
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