
Information Processing Letters 74 (2000) 257–262

Resolving error propagation in distributed systems

Jenn-Wei Lin, Sy-Yen Kuo∗
Department of Electrical Engineering, Rm. 415, National Taiwan University, Taipei, Taiwan

Received 2 May 1998
Communicated by F. Dehne

Abstract

This paper investigates the problem of error propagation in distributed systems. To resolve this problem, a state preservation
scheme is presented to save process states in main memory. Based on the state preservation, the processes suffering from error
propagation can be recovered without involving stable storage. The recovery overhead is significantly reduced. In addition, a
well-known single-source-all-destinationgraph algorithm is also utilized to find the optimal recovery points of the processes
suffering from error propagation. 2000 Elsevier Science B.V. All rights reserved.

Keywords:Error propagation; Distributed systems; State preservation; Stable storage; Graph algorithms

1. Introduction

Most of the existing literature investigating the error
recovery problem in distributed systems often assumes
that an error is detected immediately after it has
occurred [1–3]. This assumption is not realistic since
it requires that error detection mechanisms must have
high detection rate and zero latency. In practice, there
is a nontrivial interval between the occurrence of an
error and the moment of its detection. This interval
is called theerror detection latency. If a message
is sent during error detection latency, the message
may be contaminated by the error. Subsequently, when
this contaminated message arrives at a destination
process and is used in its computation, the destination
process will suffer from contamination. This situation
can be conceived as an error being propagated to the
destination process.

The previous research on the error propagation
is based on the checkpointing recovery techniques.

∗ Corresponding author. Email: sykuo@cc.ee.ntu.edu.tw.

There are two main types of checkpointing recov-
ery techniques: coordinated checkpointing and inde-
pendent checkpointing with message logging. Each
of these two techniques has its benefits and draw-
backs. Silva and Silva utilized a coordinated check-
pointing technique to resolve the error propagation
problem [4]. When an error is detected, the system
first determines a consistent recovery line. Then, all
the processes are rolled back to that recovery line. If
a failure-free process does suffer from error propaga-
tion, it will be rolled back to its most valid checkpoint
to nullify contamination. However, the processes that
do not suffer from the error propagation are also rolled
back. Krishna et al. employed an independent check-
pointing with message logging technique to deal with
the error propagation problem [5]. Upon a failure, re-
covery is initiated to assess the damage caused by the
error propagation. If a process is suspected of suffer-
ing from error propagation, it is rolled back to one
of its previous checkpoint. The previous recovery ap-
proaches [4,5] for the processes suffering from error
propagation are the same as that for the failed process.

0020-0190/00/$ – see front matter 2000 Elsevier Science B.V. All rights reserved.
PII: S0020-0190(00)00060-0



258 J.-W. Lin, S.-Y. Kuo / Information Processing Letters 74 (2000) 257–262

Valid checkpoints are first loaded from stable storage,
and then the processes suffering from error propaga-
tion are restarted from that checkpoints.

In this paper, we will extend the independent check-
pointing with message logging technique to provide
the capability for handling the error propagation prob-
lem. A state preservation scheme is proposed to pre-
serve some process states in main memory. Based on
the state preservation, the processes suffering from
contamination can be recovered by using the states
saved in main memory without involving stable stor-
age. This can significantly reduce the recovery over-
head since the stable storage access is an expensive op-
eration. In addition, a well-knownsingle-source-all-
destinationgraph algorithm is used to find the optimal
recovery points of the processes suffering from error
propagation.

The rest of the paper is organized as follows. Sec-
tion 2 gives some preliminaries. Section 3 presents the
approach to resolving the error propagation problem.
Section 4 evaluates the overhead of the proposed ap-
proach. Finally, we give concluding remarks in Sec-
tion 5.

2. Preliminaries

The system considered in this paper consists of a
set of processing nodes connected through a commu-
nication network. The distributed application program
is partitioned into a set of processes, and each process
is executed in a node. The communication network is
assumed to guarantee FIFO delivery of messages be-
tween any pair of nodes. The following notations and
definitions are used in the rest of paper.

Dmax: the maximum error detection latency.

Rmax: the maximum communication delay.

Definition 1. A process is anerror-occurredprocess
if a failure occurs in the node executing the process.

Definition 2. A process is anerror-contaminated
process if it has received a contaminated message
directly or indirectly.

Definition 3. The maximum error notificationNmax
is the interval between the occurrence of an error

and the moment that the event of error occurrence is
known by all processes. After an error is detected,
an Error-Notified message is broadcast to notify an
error occurrence. The maximum error notification can
be represented asDmax+ Rmax. If a process receives
anError-Notificationmessage at timetN , the earliest
time of error occurrence may betN −Rmax−Dmax.

3. Error propagation

In the previous research on error propagation [4,5],
the error-contaminated process is recovered by loading
its most valid checkpoint from stable storage and then
restarting from that checkpoint. However, stable stor-
age is usually implemented by disks. Loading a check-
point from a disk is a time-consuming operation. To
eliminate the loading time from disks, a state preser-
vation scheme is proposed in this section. In addition,
asingle-source-all-destinationgraph algorithm is also
utilized to find the optimal recovery points of error-
contaminated processes.

3.1. State preservation

An error-contaminated process is injured due to re-
ceiving a contaminated message (not due to an inter-
nal error). The injured area in the node executing the
error-contaminated process is confined to the address
space related to that process. If a second address space
can be allocated from main memory and is not used
to execute user processes, this address space will be
intact after receiving a contaminated message. There-
fore, if a correct process state is also saved in the intact
part in advance, the error-contaminated process can be
recovered from main memory instead of stable stor-
age. This significantly reduces the recovery time of
the error-contaminated process. The problem next is
how to find a correct process state. Since a contami-
nated message is introduced by areceiveinstruction,
the process state prior to executing the receive instruc-
tion is a correct state. However, a contaminated mes-
sage is not identified until the error is detected. To be
conservative, whenever a process receives a message,
its current process state is preserved in the allocated
second address space in advance. Then, if a process
is notified to have received a contaminated message, it
can be restarted from the point prior to receiving a con-



J.-W. Lin, S.-Y. Kuo / Information Processing Letters 74 (2000) 257–262 259

Fig. 1. Interactions among processes during error detection latency.

taminated message and then re-receive a clean mes-
sage. Here, the process state with respect to a receive
message is only preserved for a limited time interval,
defined as follows:

Definition 4. Thepreservation periodfor the process
state with respect to areceiveinstruction isDmax+
Rmax.

If a process does not receive anError-Notification
message within the maximum error notification la-
tencyDmax+ Rmax after areceiveinstruction was is-
sued, that means the receive instruction was not issued
after the error occurrence. The received message can
be also guaranteed to be uncontaminated. Therefore,
the process state with respect to the issuedreceivein-
struction is not preserved further.

To reduce both the impact on the regular process
execution and the amount of the address space for
state preservation, the copy-on-write checkpointing
technique [6] is used to assist the state preservation.
The copy-on-write checkpointing technique can over-
lap the execution of a process with the preservation of
a process state, as follows.
• Allocate a second address space in main memory.
• The current state of the process is first divided into

the CPU state and the memory state.
• The CPU state is entirely saved in the second

address space.

• The memory state is incrementally saved in the
second address space by individually saving each
memory block when it is modified.

3.2. Recovery

Based on the state preservation scheme, we know
that the error-contaminated process can be recovered
from its contamination point. However, if an error-
contaminated process receives more than one conta-
minated message, it has several contamination points.
The recovery point of the error-contaminated process
must be the point before it received the first con-
taminated message. For example, in Fig. 1, the re-
covery point of processP2 is the point before mes-
sagem1 is received. In addition, the first contaminated
message of each error-contaminated process is not
necessarily received from the error-occurred process.
The first contaminated message may be received from
other error-contaminated processes. For example, in
Fig. 1, the first contaminated messagem2 of process
P3 is received from error-contaminated processP2.
The recovery point of an error-contaminated process
must be determined from the view of the overall sys-
tem. To systemically find the exact number of error-
contaminated processes and their respective recovery
points, two process stages:early analysis stageandfi-
nal determination stageare done as follows.

The early analysis stage is to collect allerror-
suspectedmessages (the messages which may suffer
from contamination). To accomplish this work, when-



260 J.-W. Lin, S.-Y. Kuo / Information Processing Letters 74 (2000) 257–262

ever a message is received, some information (the
identifier of the sending process and the reception
time) pertaining to the received messages is kept. After
an error is detected, a failure-free node is elected as the
error-contamination recovery manager in addition to
broadcasting anError-Notificationmessage. Upon re-
ceiving theError-Notification message, each process
uses the reception timetN to determine the earliest
time tN − Rmax−Dmax of error occurrence (see De-
finition 3). If a process has received a contaminated
message, the reception time of this message must be
in the range of(tN − Rmax− Dmax, tN ). Next, each
process filters its kept information to select the items
whose timestamps are in the range of(tN − Rmax−
Dmax, tN ) and then sends selected items to the error-
contamination recovery manager. The messages cor-
responding to these selected items are error-suspected
messages.

The final determination stage is to find error-con-
taminated processes and their optimal recovery points.
The error-contaminated process must be restarted
from the point before the first contaminated mes-
sage is received. The optimal recovery point of an
error-contaminated process is the point where it re-
ceived the first contaminated message. To achieve
this work, the relationship among the error-suspected
messages is modeled as a weighted directed graph
G(V,E). Each vertex inV represents a process, and
each edge inE represents an error-suspected mes-
sage. The weight of a edge is the reception time
of the corresponding message. Based on the graph
G, if the error-occurred process and other processes
are designated as the source node and the destina-
tion nodes, respectively, the problem of determining
respective first contaminated message of the error-
contaminated processes is similar to the well-known
single-source-all-destinationproblem [7]. Thesingle-
source-all-destinationproblem is how to find all the
shortest paths from a given source node to all desti-
nation nodes. This is based on the following observa-
tions:
• A contaminated message is either directly or in-

directly propagated by the error-occurred process.
This can be conceived that a contaminated mes-
sage introduces a contaminated path from the error-
occurred process. For example, in Fig. 1, message
m2 introduces a contaminated path〈m1,m2〉 from
processP1.

• The first contaminated message of an error-contam-
inated process is the message with the lowest re-
ception time among all the process’s contaminated
messages. This observation is equivalent to say-
ing that the first contaminated message of an error-
contaminated process is on the contaminated path
with the lowest weight among all of that process’s
contaminated paths. Here, the weight of a conta-
minated path is defined as the weight of its last
edge. For example, in Fig. 1, the first contaminated
message of processP3 is on the contaminated path
〈m1,m2〉, and the weight of this contaminated path
is t5.
However, the algorithm for thesingle-source-all-

destinationsproblem can not be directly applied to
solve the problem of the final determination stage. It
needs to be slightly modified, as shown in Fig. 2.

4. Evaluation

In this section, we will evaluate the overhead
incurred by the proposed approach. The overhead
incurred is measured as: performance degradation
incurred and amount of the address space required by
the state preservation. The advantages of the proposed
approach is also described in this section.

4.1. Overhead

The copy-on-write checkpointing is used to assist
the state preservation. The process state (CPU state
and memory state) is incrementally saved in the
second address space. The performance degradation
incurred by the state preservation contains two parts:
• Time to copy the CPU states to the second address

space in main memory.
• Time to incrementally copy the memory state to the

second address space in main memory.
The first part takes a fixed period of time. The sec-

ond part is dependent on how many write operations
are issued during the preservation period, since the
write operations in this period are required to copy
the old data. This part can be overlapped with the
process execution. The performance degradation is
mainly dominated in the time to save a CPU state.

The amount of the address space required by the
state preservation can be represented as the total space



J.-W. Lin, S.-Y. Kuo / Information Processing Letters 74 (2000) 257–262 261

ProcedureRecovery_of_Error-Contaminated_Processes(G,p)

/* G is the weighted directed graph formed by all error-suspected messages,
p is the identifier of the error-occurred process */

p.contamination_ time← tN −Rmax−Dmax (the earliest time of error occurrence,
tN is the reception time of theError-Notificationmessage);

S←{p}; T ←{};
while (True) {

min_weight←∞;
(v1next, v2next)← null
for all v1 ∈ S do {

examine all the outgoing edges of nodev1 and then choose one outgoing edge
(v1, v2) with the following three properties:

(1) minimum weight among the outgoing edges from nodev1
(2) v2 /∈ S

/* the next error-contaminated process can not already exist in setS */
(3) the weight of(v1, v2) must be greater thanv1.contaminated-time;

/* the contaminated message must be sent after the contaminated point */
if min_weight> the weight of(v1, v2) {

min_weight← the weight of(v1, v2);
(v1next, v2next)← (v1, v2) };

/* next contaminated message is the message with the smallest reception time among all
contaminated messages sent fromS */

};
if (v1next, v2next) is null then

exit while;
else {

v2.contamination_time← the weight of(v1next, v2next);
S← S ∪ {v2};
T = T ∪ {(v1next, v2next)};}; /* end while */

T contains the sets of edges corresponding to the first contaminated messages of error-contaminated processes;
end;

Fig. 2. The procedure to determine error-contaminated processes and their recovery points.

required by preserving the CPU states and the mem-
ory states. Whenever a receive instruction is issued, a
block is allocated to preserve the current CPU state.
Based on Definition 4, we know that the process state
with respect to a receive instruction needs to be pre-
served for a constant periodDmax+ Rmax. Each allo-
cated block can be reused after the timeDmax+Rmax
elapses. Therefore, the maximum amountCPUspace,
of the space for preserving CPU states is dependent
on the maximum number of receive instructions issued
during the preservation period. The memory state is in-
crementally preserved. If a block is allocated to keep
the old data of a memory block at timet , it can be
used to preserve another written memory block at time

t +Dmax+Rmax. The maximum amountMemoryspace
of the space for preserving memory states is also de-
termined based on the maximum number of write
operations executed during the preservation period.
The total space required by the state preservation
is:

Dmax+Rmax

Ic × ct × (size of a CPU state)

+ Dmax+Rmax

Ic × ct × (size of a memory block), (1)

wherect is cycle time, andIc is average number of
clock cycles per instruction.



262 J.-W. Lin, S.-Y. Kuo / Information Processing Letters 74 (2000) 257–262

4.2. Advantages

Compared to the approaches of [4,5], our approach
has the following advantages.
• The recovery point of each error-contaminated

process is an optimal location since the recovery
point is at the point of receiving the first contam-
inated message. Unlike the approaches [4,5], each
error-contaminated process is recovered from its
most valid checkpoint. The most valid checkpoint
of an error-contaminated process may be also far
from its current execution point. The rollback dis-
tance can be reduced by the proposed approach.
• The error-contaminated processes are recovered by

using the process states preserved in the main
memory. In the previous approaches [4,5], the error-
contaminated processes are recovered by loading
their most valid checkpoint from stable storage.
This significantly saves the recovery time.

5. Conclusions

In this paper, a state preservation scheme has
been presented to handle the problem of error prop-
agation. In addition, a well-knownsingle-source-all-
destinationgraph algorithm is also employed to find
the optimal recovery points of error-contaminated
processes. Based on the proposed approach, the error-
contaminated process can be recovered from its first

contaminated point instead of the most recent check-
point. The stable storage access is also not involved in
the recovery. Thus, the recovery overhead can be sig-
nificantly reduced. The evaluation indicates that the
performance degradation incurred and the amount of
the address space required by the state preservation are
dependent on the maximum detection latency.

References

[1] R. Koo, S. Toueg, Checkpointing and rollback recovery for
distributed systems, IEEE Trans. Software Engrg. SE-13 (1)
(1987) 23–31.

[2] E.N. Elnozahy, W. Zwaenepoel, Manetho: Transparent rollback-
recovery with low overhead, limited rollback, and fast output
commit, IEEE Trans. Comput. 41 (5) (1990) 526–531.

[3] J.L. Kim, T. Park, An efficient protocol for checkpointing
recovery in distributed systems, IEEE Trans. Parallel Distrib.
Systems 4 (8) (1993) 955–960.

[4] L.M. Silva, J.G. Silva, Global checkpointing for distributed pro-
grams, in: Proc. IEEE Symp. on Reliable Distributed Systems,
1992, pp. 155–162.

[5] P. Krishna, N.H. Vaidya, D.K. Pradhan, Recovery in multicom-
puters with finite error detection latency, in: Proc. 24th Internat.
Symp. on Fault-Tolerant Computing, 1994, pp. 155–162.

[6] K.L. Jeffrey, F. Naughton, J.S. Plank, Low-latency, concurrent
checkpointing for parallel programs, IEEE Trans. Parallel Dis-
trib. Systems 5 (8) (1994) 874–879.

[7] U. Manber, Introduction to Algorithms A Creative Approach,
Addison-Wesley, Reading, MA, 1989.

[8] B. Janssens, W.K. Fuchs, Relaxing consistency in recoverable
distributed shared memory, in: Proc. 23rd Internat. Symp. on
Fault-Tolerant Computing, 1993, pp. 155–163.


