N

Information
ﬁ Processing
- Letters
ELSEVIER Information Processing Letters 74 (2000) 257-262

www.elsevier.com/locate/ipl

Resolving error propagation in distributed systems

Jenn-Wei Lin, Sy-Yen Kud

Department of Electrical Engineering, Rm. 415, National Taiwan University, Taipei, Taiwan

Received 2 May 1998
Communicated by F. Dehne

Abstract

This paper investigates the problem of error propagation in distributed systems. To resolve this problem, a state preservation
scheme is presented to save process states in main memory. Based on the state preservation, the processes suffering from er
propagation can be recovered without involving stable storage. The recovery overhead is significantly reduced. In addition, a
well-known single-source-all-destinatiograph algorithm is also utilized to find the optimal recovery points of the processes
suffering from error propagationl 2000 Elsevier Science B.V. All rights reserved.

Keywords:Error propagation; Distributed systems; State preservation; Stable storage; Graph algorithms

1. Introduction There are two main types of checkpointing recov-
ery techniques: coordinated checkpointing and inde-
Most of the existing literature investigating the error pendent checkpointing with message logging. Each
recovery problem in distributed systems often assumesof these two techniques has its benefits and draw-
that an error is detected immediately after it has backs. Silva and Silva utilized a coordinated check-
occurred [1-3]. This assumption is not realistic since pointing technique to resolve the error propagation
it requires that error detection mechanisms must have problem [4]. When an error is detected, the system
high detection rate and zero latency. In practice, there first determines a consistent recovery line. Then, all
is a nontrivial interval between the occurrence of an the processes are rolled back to that recovery line. If
error and the moment of its detection. This interval a failure-free process does suffer from error propaga-
is called theerror detection latencylf a message tion, it will be rolled back to its most valid checkpoint
is sent during error detection latency, the message to nullify contamination. However, the processes that
may be contaminated by the error. Subsequently, whendo not suffer from the error propagation are also rolled
this contaminated message arrives at a destinationback. Krishna et al. employed an independent check-
process and is used in its computation, the destination pointing with message logging technique to deal with
process will suffer from contamination. This situation the error propagation problem [5]. Upon a failure, re-
can be conceived as an error being propagated to thecovery is initiated to assess the damage caused by the
destination process. error propagation. If a process is suspected of suffer-
The previous research on the error propagation ing from error propagation, it is rolled back to one
is based on the checkpointing recovery techniques. of its previous checkpoint. The previous recovery ap-
proaches [4,5] for the processes suffering from error
* Corresponding author. Email: sykuo@cc.ee.ntu.edu.tw. propagation are the same as that for the failed process.

0020-0190/00/$ — see front mattér 2000 Elsevier Science B.V. All rights reserved.
PIl: S0020-0190(00)00060-0

258 J.-W. Lin, S.-Y. Kuo / Information Processing Letters 74 (2000) 257—262

Valid checkpoints are first loaded from stable storage, and the moment that the event of error occurrence is
and then the processes suffering from error propaga-known by all processes. After an error is detected,
tion are restarted from that checkpoints. an Error-Notified message is broadcast to notify an
In this paper, we will extend the independent check- error occurrence. The maximum error notification can
pointing with message logging technique to provide be represented a3max + Rmax- If @ process receives
the capability for handling the error propagation prob- an Error-Notification message at timey, the earliest
lem. A state preservation scheme is proposed to pre-time of error occurrence may b® — Rmax — Dmax-
serve some process states in main memory. Based on
the state preservation, the processes suffering from
contamination can be recovered by using the states3. Error propagation
saved in main memory without involving stable stor-
age. This can significantly reduce the recovery over- In the previous research on error propagation [4,5],
head since the stable storage access is an expensive oghe error-contaminated process is recovered by loading
eration. In addition, a well-knowsingle-source-all- its most valid checkpoint from stable storage and then
destinationgraph algorithm is used to find the optimal restarting from that checkpoint. However, stable stor-
recovery points of the processes suffering from error age is usually implemented by disks. Loading a check-
propagation. point from a disk is a time-consuming operation. To
The rest of the paper is organized as follows. Sec- eliminate the loading time from disks, a state preser-
tion 2 gives some preliminaries. Section 3 presents the vation scheme is proposed in this section. In addition,
approach to resolving the error propagation problem. asingle-source-all-destinatiograph algorithm is also
Section 4 evaluates the overhead of the proposed ap-utilized to find the optimal recovery points of error-
proach. Finally, we give concluding remarks in Sec- contaminated processes.
tion 5.
3.1. State preservation

2. Preliminaries An error-contaminated process is injured due to re-
ceiving a contaminated message (not due to an inter-
The system considered in this paper consists of a | error). The injured area in the node executing the
set of processing nodes connected through a commu-g(ror-contaminated process is confined to the address
nication network. The distributed application program gpace related to that process. If a second address space
is partitioned into a set of processes, and each process;an pe allocated from main memory and is not used
is executed in a node. The communication network is {g execute user processes, this address space will be
assumed to guarantee FIFO delivery of messages be-ntact after receiving a contaminated message. There-
tween any pair of nodes. The following notations and fgre, if a correct process state is also saved in the intact
definitions are used in the rest of paper. partin advance, the error-contaminated process can be
recovered from main memory instead of stable stor-
age. This significantly reduces the recovery time of
Rmax: the maximum communication delay. the error-contaminated process. The problem next is
how to find a correct process state. Since a contami-
Definition 1. A process is amrror-occurredprocess nhated message is introduced byeaeiveinstruction,
if a failure occurs in the node executing the process. the process state prior to executing the receive instruc-
tion is a correct state. However, a contaminated mes-
Definition 2. A process is anerror-contaminated sage is not identified until the error is detected. To be
process if it has received a contaminated messageconservative, whenever a process receives a message,

Dmax: the maximum error detection latency.

directly or indirectly. its current process state is preserved in the allocated
second address space in advance. Then, if a process
Definition 3. The maximum error notificatioNmax is notified to have received a contaminated message, it

is the interval between the occurrence of an error canbe restarted from the point prior to receiving a con-

J.-W. Lin, S.-Y. Kuo / Information Processing Letters 74 (2000) 257-262 259

time } } } } } } } }

4 t t3 Yy ts te t7 tg

\ error detection |

| 1 |
P, N2 - atency -

error error
occurred detected

Py
P

— message passing
-~ contamination paths

A : contamination points

Fig. 1. Interactions among processes during error detection latency.

taminated message and then re-receive a clean mese The memory state is incrementally saved in the
sage. Here, the process state with respect to a receive second address space by individually saving each
message is only preserved for a limited time interval, = memory block when it is modified.
defined as follows:

3.2. Recovery

Definition 4. Thepreservation periodor the process Based on the state preservation scheme, we know
state with respect to eeceiveinstruction is Dmax + that the error-contaminated process can be recovered
Rmax- from its contamination point. However, if an error-

contaminated process receives more than one conta-
minated message, it has several contamination points.

- . e The recovery point of the error-contaminated process
message within the maximum error notification la-
must be the point before it received the first con-

tency Dmax + Rmax after areceiveinstruction was is- — inaie message. For example, in Fig. 1, the re-
sued, that means the receive instruction was not issued .) :

. covery point of proces®, is the point before mes-
after the error occurrence. The received message can

be al diob) d. Theref sagen is received. In addition, the first contaminated
€ also guarantee .to € uncontam|.nate - [nere Ore’message of each error-contaminated process is not
the process state with respect to the isseeaivein-

o necessarily received from the error-occurred process.
struction is not preserved further.

; The first contaminated message may be received from
To reduce both the impact on the regular process giher error-contaminated processes. For example, in
execution and the amount of the address space forgjg 1 the first contaminated messagg of process

state preservation, the copy-on-write checkpointing P3 is received from error-contaminated proce’s
technique [6] is used to assist the state preservation.The recovery point of an error-contaminated process
The copy-on-write checkpointing technique can over- myst be determined from the view of the overall sys-
lap the execution of a process with the preservation of tem. To systemically find the exact number of error-
a process state, as follows. contaminated processes and their respective recovery
e Allocate a second address space in main memory. points, two process stagesarly analysis stagandfi-
e The current state of the process is first divided into nal determination stagare done as follows.
the CPU state and the memory state. The early analysis stage is to collect alfror-
e The CPU state is entirely saved in the second suspectednessages (the messages which may suffer
address space. from contamination). To accomplish this work, when-

If a process does not receive Bnror-Notification

260

J.-W. Lin, S.-Y. Kuo / Information Processing Letters 74 (2000) 257-262

ever a message is received, some information (the e The first contaminated message of an error-contam-

identifier of the sending process and the reception
time) pertaining to the received messages is kept. After
an error is detected, a failure-free node is elected as the
error-contamination recovery manager in addition to
broadcasting ai&rror-Notificationmessage. Upon re-
ceiving theError-Notification message, each process
uses the reception timgy to determine the earliest
time 7y — Rmax — Dmax Of error occurrence (see De-
finition 3). If a process has received a contaminated

message, the reception time of this message must be

in the range of(ty — Rmax — Dmax tn). Next, each
process filters its kept information to select the items
whose timestamps are in the range(of — Rmax —

inated process is the message with the lowest re-
ception time among all the process’s contaminated
messages. This observation is equivalent to say-
ing that the first contaminated message of an error-
contaminated process is on the contaminated path
with the lowest weight among all of that process’s
contaminated paths. Here, the weight of a conta-
minated path is defined as the weight of its last
edge. For example, in Fig. 1, the first contaminated
message of proceg% is on the contaminated path
(m1, m2), and the weight of this contaminated path
is 5.

However, the algorithm for theingle-source-all-

Dmax, ty) and then sends selected items to the error- destinationsproblem can not be directly applied to
contamination recovery manager. The messages cor-solve the problem of the final determination stage. It
responding to these selected items are error-suspectetheeds to be slightly modified, as shown in Fig. 2.

messages.
The final determination stage is to find error-con-

taminated processes and their optimal recovery points.4. Evaluation

The error-contaminated process must be restarted
from the point before the first contaminated mes-

In this section, we will evaluate the overhead

sage is received. The optimal recovery point of an incurred by the proposed approach. The overhead
error-contaminated process is the point where it re- incurred is measured as: performance degradation
ceived the first contaminated message. To achieveincurred and amount of the address space required by
this work, the relationship among the error-suspected the state preservation. The advantages of the proposed
messages is modeled as a weighted directed graphapproach is also described in this section.

G(V, E). Each vertex inV represents a process, and

each edge inE represents an error-suspected mes- 4.1. Overhead

sage. The weight of a edge is the reception time

of the corresponding message. Based on the graph The copy-on-write checkpointing is used to assist
G, if the error-occurred process and other processesthe state preservation. The process state (CPU state
are designated as the source node and the destinaand memory state) is incrementally saved in the
tion nodes, respectively, the problem of determining second address space. The performance degradation
respective first contaminated message of the error-incurred by the state preservation contains two parts:
contaminated processes is similar to the well-known e Time to copy the CPU states to the second address

single-source-all-destinatioproblem [7]. Thesingle-
source-all-destinatioproblem is how to find all the
shortest paths from a given source node to all desti-
nation nodes. This is based on the following observa-

space in main memory.

e Time to incrementally copy the memory state to the

second address space in main memory.
The first part takes a fixed period of time. The sec-

tions: ond part is dependent on how many write operations

e A contaminated message is either directly or in- are issued during the preservation period, since the
directly propagated by the error-occurred process. write operations in this period are required to copy
This can be conceived that a contaminated mes- the old data. This part can be overlapped with the
sage introduces a contaminated path from the error- process execution. The performance degradation is
occurred process. For example, in Fig. 1, message mainly dominated in the time to save a CPU state.
my introduces a contaminated paf, m2) from The amount of the address space required by the
processP;. state preservation can be represented as the total space

J.-W. Lin, S.-Y. Kuo / Information Processing Letters 74 (2000) 257-262 261

Procedurdrecovery_of Error-Contaminated_Processey)
/* G is the weighted directed graph formed by all error-suspected messages,
p is the identifier of the error-occurred process */
p.contamination_ time— ry — Rmax — Dmax (the earliest time of error occurrence,
ty is the reception time of thError-Notificationmessage);
S<—{phT<{}
while (True) {
min_weight« oo;
(V1nexp V2nexy) < MUl
forall v; € S do {
examine all the outgoing edges of nagieand then choose one outgoing edge
(v1, v2) with the following three properties:
(1) minimum weight among the outgoing edges from noge
(Quvaés
[* the next error-contaminated process can not already exist ifi get
(3) the weight of(v1, v2) must be greater tham .contaminated-time
/* the contaminated message must be sent after the contaminated point */
if min_weight> the weight of(v1, v2) {
min_weight« the weight of(v1, vp);
(V1nexe V2nexd) < (V1,02) };
/* next contaminated message is the message with the smallest reception time among all
contaminated messages sent fr8ri
%
if (V1,000 V2nexe) 1S NUIl then
exit while;
else {
vp.contamination_time— the weight of(vy,,., V2,e);
S < SU{vo};
Ir=Tvu {(vlnext’ vznext)};
}; [* end while */
T contains the sets of edges corresponding to the first contaminated messages of error-contaminated processes;
end;

Fig. 2. The procedure to determine error-contaminated processes and their recovery points.

required by preserving the CPU states and the mem- 7 + Dmax+ Rmax. The maximum amourlemory,,ce

ory states. Whenever a receive instruction is issued, aof the space for preserving memory states is also de-
block is allocated to preserve the current CPU state. termined based on the maximum number of write
Based on Definition 4, we know that the process state operations executed during the preservation period.
with respect to a receive instruction needs to be pre- The total space required by the state preservation

served for a constant peridémax + Rmax- Each allo- is:

cated block can be reused after the tifgax + Rmax

elapses. Therefore, the maximum amoQ@fUspace Dmax + Rmax (size of a CPU state)

of the space for preserving CPU states is dependent I, x ¢;

on the maximum number of receive instructions issued Dmax+ Rmax .

during the preservation period. The memory state is in- CILxe x (size of a memory block) (1)

crementally preserved. If a block is allocated to keep
the old data of a memory block at time it can be wherec; is cycle time, andl,. is average number of
used to preserve another written memory block at time clock cycles per instruction.

262 J.-W. Lin, S.-Y. Kuo / Information Processing Letters 74 (2000) 257-262

4.2. Advantages contaminated point instead of the most recent check-
point. The stable storage access is also not involved in

Compared to the approaches of [4,5], our approach the recovery. Thus, the recovery overhead can be sig-

has the following advantages. nificantly reduced. The evaluation indicates that the

e The recovery point of each error-contaminated performance degradation incurred and the amount of
process is an optimal location since the recovery the address space required by the state preservation are
point is at the point of receiving the first contam- dependent on the maximum detection latency.
inated message. Unlike the approaches [4,5], each
error-contaminated process is recovered from its
most valid checkpoint. The most valid checkpoint
of an error-contaminated process may be also far [1] R. Koo, S. Toueg, Checkpointing and rollback recovery for
from its current execution point. The rollback dis- distributed systems, IEEE Trans. Software Engrg. SE-13 (1)
tance can be reduced by the proposed approach. (1987) 23-31.

e The error-contaminated processes are recovered by{Z] E.N. Elnozahy, W. Zwaenepoel, Manetho: Transparent rollback-

. P . recovery with low overhead, limited rollback, and fast output
using the process states preserved in the main commit, IEEE Trans. Comput. 41 (5) (1990) 526-531.

memory. Inthe previous approaches [4,5], the €ITOr™ (3] 3.L. Kim, T. Park, An efficient protocol for checkpointing
contaminated processes are recovered by loading recovery in distributed systems, IEEE Trans. Parallel Distrib.
their most valid checkpoint from stable storage. Systems 4 (8) (1993) 955-960.

This significantly saves the recovery time. [4] L.M. Silva, J.G. Silva, Global checkpointing for distributed pro-
grams, in: Proc. IEEE Symp. on Reliable Distributed Systems,

1992, pp. 155-162.
[5] P. Krishna, N.H. Vaidya, D.K. Pradhan, Recovery in multicom-
5. Conclusions puters with finite error detection latency, in: Proc. 24th Internat.
Symp. on Fault-Tolerant Computing, 1994, pp. 155-162.

. . [6] K.L. Jeffrey, F. Naughton, J.S. Plank, Low-latency, concurrent
In-this paper, a state preservation scheme has checkpointing for parallel programs, IEEE Trans. Parallel Dis-

been presented to handle the problem of error prop- ip. Systems 5 (8) (1994) 874—879.

agation. In addition, a well-knowsingle-source-all- [7] U. Manber, Introduction to Algorithms A Creative Approach,

destinationgraph algorithm is also employed to find Addison-Wesley, Reading, MA, 1989.

the optimal recovery points of error-contaminated [8] B: Jgnssens, W.K. Fuchs, Rt_alaxing consistency in recoverable
d the propbosed approach. the error- distributed shared memory, in: Proc. 23rd Internat. Symp. on

process_es. Based on prop pp T . Fault-Tolerant Computing, 1993, pp. 155-163.

contaminated process can be recovered from its first

References

