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In this paper, we develop efficient selection and sorting schemes for

processing large files distributed over a network. The efficiencies of the

schemes are expressed in terms of message count and communication delay.

The schemes are developed using the concept of coteries which is a class of

communication structures widely used in the development of some classical

distributed algorithms, namely mutual exclusion, multiway rendezvous, etc.

The development of the schemes is carried out as follows. First, we develop a

ranking scheme. Second, using the ranking scheme, we develop a restricted

version of sorting, where each node of the network contains exactly one key,

and the sorting leads to the ith node holding the ith key of the sorted list.

Third, using this restricted sorting, a selection scheme is developed. Given n
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keys evenly distributed among p nodes, selection of the kth key means

identifying the value of the key. Finally, using the idea of selection, we sort the

n keys distributed among p nodes. Both the ranking and the restricted sorting

steps need Oðp
ffiffiffiffi
p

p
Þ messages and suffer a two-round communication delay.

The selection step needs Oðp3=2 log nÞ messages with communication delay of

Oðt log pÞ, where t is the maximum of the times taken by a message to be sent

to all the members of a quorum. The sorting scheme needs OðnÞ messages and

its communication delay is Oðtnp Þ. Both of these complexities are optimal

provided n is polynomial in p and n ¼ Oðp5=2 log nÞ. # 2002 Elsevier Science (USA)

Key Words: large distributed files; selection; sorting; coteries; sampling

technique; consensus.
1. INTRODUCTION

In this paper, we develop selection and sorting schemes to process large files

distributed over a network of computers. By a large file we mean a file size several

times the number of nodes in the network, such as of the order of p10 keys in the file,

where p is the number of network nodes. Distributed large files must be processed in

applications such as national census, personnel information of large multinational

companies, etc. Hereafter, by a file we mean a large file. In this context, selection and

sorting are explained as follows. Given a file F with n keys evenly distributed over a

network of p nodes and an integer k; 14k4n, the selection problem is to find the

kth smallest key of F. Sorting F means relocating the n keys among the p nodes

such that all the keys at the ith node are smaller (greater) than all the keys at the jth
node for i5jði > jÞ. Before and after sorting, the keys should be evenly distributed

among the nodes.

In the development of our schemes, we logically organize the nodes into coterie

structures. Informally, a quorum is a subset of the nodes, and a coterie is a collection

of quorums, such that any two distinct quorums have at least one common node and

no quorum is a subset of another [4, 7]. Using the coterie structures, several

distributed algorithms have been developed for such classical problems as mutual

exclusion [9], k-entry mutual exclusion [6], multiway rendezvous [2], and consensus

[8, 10]. A central idea in a coterie-based algorithm is that a node communicates only

with the members belonging to the same quorum. Information flows between two

nodes belonging to different quorums through an intersecting node of the two

quorums. Thus, any two nodes can indirectly communicate in at most two rounds of

communication. The low message complexities of coterie-based algorithms is due to

a node communicating only with a small subset of the nodes, say of size
ffiffiffiffi
p

p
or log p,

where p is the number of nodes in the coterie.

We develop the selection and sorting schemes using the ideas of ranking and a

restricted version of sorting. Let X be any set of keys from linear order. Then the

rank of any key k in X is defined to be the one plus the number of elements of X that

are less than k. Let each node in a network have a single key. The ranking problem is

to compute the rank of each key. The keys are not moved. In the restricted version of

sorting (i.e., each node has exactly one key), we place the kth ranked key at the kth
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node using our ranking scheme. We develop the selection scheme (for selecting the

kth key from n keys evenly distributed over a coterie of p nodes) by using the

restricted version of sorting and a consensus protocol as primitives. For efficiency,

we use sampling techniques [11] in the selection scheme. Finally, given n keys evenly

distributed among p nodes, we sort the n keys. The sorting scheme is a variation of

the quicksort, where selections of the pivots are done using the developed selection

scheme.

We express the performance of the selection and sorting schemes in terms of

message count and rounds of communication involved. The importance of message

count is due to the fact that local processing time is much smaller than

communication time including transmission, reception, and queueing delays. The

rounds of communication involved also contributes to processing time. Our ranking

and restricted sorting need Oðp
ffiffiffiffi
p

p
Þ messages and suffer 2t communication delay,

where t is the maximum of the times taken by a message to be sent to each member

of a quorum. The selection scheme needs Oðp3=2 log nÞ messages with communication

delay of Oðt log pÞ. The sorting scheme needs OðnÞ messages and its communication

delay is OðtnpÞ. Both of these complexities are optimal provided n is polynomial in p
and n ¼ Oðp5=2 log nÞ.

In Section 2, we introduce two coterie structures and state their properties.

Ranking and restricted sorting schemes are developed on the coterie structures in

Section 3}the restricted sorting uses the idea of ranking. Using the idea of sampling

technique and the restricted sorting and consensus as building blocks, in Section 4,

we develop a selection scheme. Finally, in Section 5, a distributed file is sorted using

the selection scheme.

2. PRELIMINARY FACTS

In this section, we introduce two coterie structures. Let S ¼ fs1; s2; . . . ; si; . . . ; spg
be the set of nodes of a network. A coterie is a family C ¼ fSj j Sj � Sg of subsets of

nodes such that any pair of subsets in C has at least one common node, and no

member of C is a subset of another member. Members of a coterie are called

quorums. The development of a coterie-based algorithm depends on the way the

quorums of the coterie are constructed. Our ranking scheme depends on the coterie

structures, whereas the selection and sorting schemes are independent of the

structure of a coterie. In the following, we explain two kinds of coteries to be used in

this paper.

2.1. Coterie Structure 1 (CS1)

We first consider a kind of coterie called a finite projective plane. A finite

projective plane p of order m52 is a structure consisting of a set, S, of points and a

set, L, of lines, each of which contains a subset of points of S, and satisfies the

following axioms [5, 10].

1. Any two lines cross at one and only one point.
2. There exist four lines, no three of which cross at the same point.
3. Each line comprises of exactly ðmþ 1Þ points.
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FIG. 1. A finite projective plane of order two.
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Also, the following properties can be obtained from the above three axioms.

1. Each point is on ðmþ 1Þ lines.
2. jSj ¼ ðm2 þ mþ 1Þ (i.e., the size of a finite projective plane is determined by

its order).

An example of a finite projective plane of order two is shown in Fig. 1. From the

figure, one can see that the collection of the points on line li form quorum i. To use

CS1 as a communication structure for developing our algorithms, we refer a point in

CS1 as a node and a line in CS1 as a broadcast communication link.

During the course of computation, each node behaves the same without being

controlled by any other node, which consists of sending messages over adjoining

lines, waiting for incoming messages, and processing received messages. We assume

that messages can be transmitted independently in both directions on a line, and

reach their destinations in sequence after a finite delay without error. In order to

reduce the number of messages, a node si can directly send messages only to a subset

of S, which is called the sending set of node si. Likewise, a node si can directly receive

messages only from a subset of S, which is called the receiving set of node si. Both

sending set and receiving set are defined in Definition 2.1. For the purpose of

developing our ranking algorithm, the sending and receiving sets are chosen in such a

way that after the first round of sending and receiving, we have
[

sj2Sið1Þ

Rjð1Þ ¼ S 8i:

Definition 2.1. Letting SiðjÞ denote the jth round2 sending set of node si, and

Rið jÞ denote the jth round receiving set of node si; 14j42, we have:

Sið1Þ ¼ fsajsi 2 lag ð14a; i4m2 þ mþ 1Þ,
Sið2Þ ¼ fsajsa 2 lig ð14a; i4m2 þ mþ 1Þ,
Rið1Þ ¼ Sið2Þ;
Rið2Þ ¼ Sið1Þ.
2 A message originated from any node can reach its destinations in two rounds (hops) in a finite

projective plane.
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Referring to Fig. 1, we have the following sending and receiving sets for node s1:

S1ð1Þ ¼ fs1; s6; s7g; S1ð2Þ ¼ fs1; s2; s4g; R1ð1Þ ¼ fs1; s2; s4g, and R1ð2Þ ¼ fs1; s6; s7g.

2.2. Coterie Structure 2 (CS2)

The second kind of coterie structure for a p-node network is constructed as

follows.

Step 1. Create a completely connected auxiliary graph with m nodes, where

m5
1þ

ffiffiffiffiffiffiffiffiffi
8pþ1

p

2
.

Step 2. Associate each node of the network with an edge of the auxiliary graph.

For discussion convenience, we only consider the case where m ¼
1þ

ffiffiffiffiffiffiffiffiffi
8pþ1

p

2
, i.e., the

number of edges, say p, is equal to mðm�1Þ
2

, such that the one-to-one mapping is
possible.

Step 3. A coterie structure is constructed as follows. A node of the auxiliary

graph is represented by a line, and an edge is represented by a node. All the nodes on

a line form a quorum, and the collection of the lines is the desired coterie structure.

It is then not hard to see that the line clique has the following properties:

1. Each line consists of exactly m� 1 nodes.
2. Each node is on exactly two lines.
3. Every two lines cross at one and only one node.
4. There are m lines in the structure.
5. There are p nodes in the structure.

Example 2.1. To construct a coterie structure 2 of 6 nodes, i.e.,

S ¼ fs1; s2; . . . ; s6g; m ¼ 4; p ¼ mðm�1Þ
2 ¼ 6, an auxiliary graph is shown in Fig. 2a;

Fig. 2b shows the association of nodes in S with edges of the auxiliary graph; The

desired line clique is shown in Fig. 2c.

We define the communication set of a node sk as a set of nodes residing on the two

lines which cross at sk. The communication set of sk does not include sk itself. A node

can directly send messages only to nodes in its communication set. Also, a node can

directly receive messages only from the nodes in its communication set. In Fig. 2, the

communication set of s1 is given by fs4; s6; s2; s5g.
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FIG. 2. Construction of a coterie structure 2.
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3. RANKING AND RESTRICTED SORTING

We first develop a ranking scheme for each of the two coterie structures. Next, we

develop a restricted sorting for both of the structures.

3.1. Ranking on the Coterie Structure 1

We define a set of variables managed by each node, intuitively explain the ranking

scheme followed by its formal presentation, and finally show its correctness. Node si
manages the following local variables.

* si: The identifier of the ith node.
* ki: The key of the data item si possesses.
* Sið1Þ: si’s sending set for the first round.
* Sið2Þ: si’s sending set for the second round.
* Rið1Þ: si’s receiving set for the first round ðRið1Þ ¼ Sið2ÞÞ.
* Rið2Þ: si’s receiving set for the second round ðRið2Þ ¼ Sið1ÞÞ.
* des: The identifier of a destination node, des 2 Sið2Þ.
* numdes

i : The number of keys, smaller than the key of des, received from Rið1Þ.
Initially, numdes

i :¼ 0 for each des.
* ranki: The rank of the key of si.

The nodes communicate by exchanging the following two types of messages.

* KEYðki; siÞ: sent by si to 8sj 2 Sið1Þ to notify that the key in si is ki.
* NUMðnumdes

i ; siÞ: sent by si to 8des 2 Sið2Þ.

The ranking scheme works in two rounds of communications and computations.

In the first round, each node sends its own key to all nodes in its sending set, and

receives keys from all nodes in its receiving set. Then each node computes partial

results for the second round. In the second round, each node uses the partial results

from the first round to compute the rank of its own key. The scheme is formally

presented as follows.

ALGORITHM: Each Node si Independently Executes the Following

Procedure

Round 1:
Step 1: (Sending and receiving the keys)
* Send KEYðki; siÞ to sj 8sj 2 Sið1Þ.
* Receive the KEYðkj; sjÞ from sj 8sj 2 Rið1Þ.
Step 2: (Local computation and sending the result of the computation)
numdes

i :¼ 0
for each des 2 Sið2Þ do
begin
(1) for each KEYðkj; sjÞ received do

begin
if kj5kdes then

numdes
i :¼ numdes

i þ 1
end

(2) Send NUMðnumdes
i ; siÞ to sdes.

end
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Round 2:
Step 3: (Receiving the result of the computation)
* Receive NUMðXj; sjÞ from sj 8sj 2 Rið2Þ.
Step 4: (Rank Computation)
* Compute the rank of si using all NUMðXj; sjÞ received:
ranki :¼ ð

P
j XjÞ þ 1,

where Xj represents the number received by si from sj.

Now we give an example of rank computation on a seven node network for which

the coterie structure is shown in Fig. 1. Let nodes 1–7 hold key values 6; 9; 7; 5; 2; 1;
and 4, respectively.

After each node sends its key with its identifier to its sending set Sið1Þ, and receives

the keys and identifiers from all nodes in its receiving set Rið1Þ, each node has the

following information (keys with identifiers).

s1: R1ð1Þ ¼ fð6; s1Þ; ð9; s2Þ; ð5; s4Þg
s2: R2ð1Þ ¼ fð9; s2Þ; ð1; s6Þ; ð4; s7Þg
s3: R3ð1Þ ¼ fð7; s3Þ; ð5; s4Þ; ð1; s6Þg
s4: R4ð1Þ ¼ fð5; s4Þ; ð2; s5Þ; ð4; s7Þg
s5: R5ð1Þ ¼ fð2; s5Þ; ð9; s2Þ; ð7; s3Þg
s6: R6ð1Þ ¼ fð1; s6Þ; ð6; s1Þ; ð2; s5Þg
s7: R7ð1Þ ¼ fð4; s7Þ; ð6; s1Þ; ð7; s3Þg

Let us focus on the nodes in the sending set of s1, namely

s1: R1ð1Þ ¼ fð6; s1Þ; ð9; s2Þ; ð5; s4Þg
s6: R6ð1Þ ¼ fð2; s6Þ; ð6; s1Þ; ð2; s5Þg
s7: R7ð1Þ ¼ fð4; s7Þ; ð6; s1Þ; ð7; s3Þg

Note that the key of each node in S ¼ fs1; s2; . . . ; s7g appears in some nodes of the

sending set, and no key appears more than once in a node.

At each node of the sending set of s1, the following computation is done.

in s1: num1 ¼ 1 (since 5 (of s4Þ56 (of s1)),

in s6: num1 ¼ 2, and

in s7: num1 ¼ 1.

Thus, after s1 received these numbers, it can compute the rank of its key in round 2

as rank ¼ ð1 þ 2 þ 1Þ þ 1 ¼ 5. It can be easily verified that the rank of s1’s key of

value 6 is 5 as it is evident from the sorted key list of f1; 2; 4; 5; 6; 7; 9g.

3.1.1. Correctness and analysis of the algorithm

Lemma 3.1. Let K be the set of keys in the network, and let Kjð1Þ be the set of keys

received by sj from Rjð1Þ during the first round. After sending and receiving of the first

round, we have

ki 2 Kjð1Þ 8sj 2 Sið1Þ; ð1Þ

8sj1; sj2 2 Sið1Þ; Kj1ð1Þ \ Kj2ð1Þ ¼ fkig; ð2Þ
[

sj2Sið1Þ

Kjð1Þ ¼ K; where jK j ¼ m2 þ mþ 1: ð3Þ
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Proof. (1) Obvious.

(2) Consider any two lines lj1 and lj2 going through the node si. Let sj1 and sj2
be two nodes in the set Sið1Þ. The receiving sets Rj1ð1Þ and Rj2ð1Þ contain nodes on the

lines lj1 and lj2, respectively. According to axiom 1, lj1 and lj2 only meet at si. Thus,

sj1 and sj2 receive different keys from different nodes except the key ki from si.
(3) According to Definition 2.1, each node sj in the sending set Sið1Þ is on line lj,

and all nodes in receiving set of sj are on line lj. Therefore, to count the number of

keys received by all nodes in Sið1Þ, we only need to count the number of points on

those lines crossing at node si. There are mþ 1 lines going through si (property 1).

Each line lj contains m nodes excluding si (axiom 3). These mþ 1 lines cross at si
only (axiom 1 and property 1). Therefore, mþ 1 lines contain ðm ðmþ 1Þ þ 1Þ
points, which is the total number of nodes in the finite projective plane of order m.

Together with (2), the proof of (3) is completed. ]

Lemma 3.2. After sending and receiving of the first round, a node never receives

duplicate keys.

Proof. Follows from the definition of sending and receiving sets. ]

Theorem 3.1. By performing our ranking algorithm, every node si can compute the

rank of its own key correctly.

Proof. By Lemmas 3.1(1) and 3.1(3), the sending set Sið1Þ of each node si receives

all keys in K, and each node in Sið1Þ receives the key ki of si. Therefore, it is possible

to compare ki with every key in K at the nodes of Sið1Þ. In addition, by Lemmas 3.2

and 3.1(2), no node can have duplicate keys and any two nodes in Sið1Þ do not have

the same key except ki. Thus, the summation of numj’s which is locally calculated at

the nodes of Sið1Þ represents the number of keys smaller than the key of si. ]

3.1.2. Analysis of our algorithm

Theorem 3.2. Our algorithm uses Oðp
ffiffiffiffi
p

p
Þ messages for the ranking problem.

Proof. Obviously, message receiving only happens in Steps 1 and 3. In Step 1,

since the number of nodes in receiving set Rið1Þ is m excluding si, where m4b
ffiffiffiffi
p

p
c,

every node receives Oð
ffiffiffiffi
p

p
Þ messages. Thus totally p nodes will receive Oðp

ffiffiffiffi
p

p
Þ

messages. Likewise, in step 3, p nodes will receive Oðp
ffiffiffiffi
p

p
Þ messages. Thus, the total

number of messages needed is Oðp
ffiffiffiffi
p

p
Þ. ]

3.2. Ranking on the Coterie Structure 2

The presentation of the ranking scheme for coterie structure 2 is very similar to

that for coterie structure 1. The difference between the two structures leads to

different ways of communications among nodes and different local computations.

Once again, we define a set of variables managed by each node, intuitively explain

the ranking scheme followed by its formal presentation, and finally show its

correctness. Node si manages the following local variables.
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3.2.1. Local variables

* si: The identifier of the ith node.
* ki: The key of the data item si possesses.
* gi: The communication set of si.
* des: The identifier of a destination node sdes; sdes 2 gi.
* gides: The communication set of sdes 2 gi.
* num1des: The number of keys, smaller than the key of des, received from each

node sj 2 gides. Initially num1des :¼ 0 for each des.
* num2des: The number of keys, smaller than the key of des, received from each

node sj =2 gides. Initially num2des :¼ 0 for each des.
* ranki: The rank of the key of si.

The nodes communicate by exchanging the following two types of messages.

* KEYðki; siÞ: sent by si to sj 8sj 2 gi to notify that the key in si is ki.
* NUMðnum1des; num2des; siÞ: sent by si to sdes 8sdes 2 gi.

THE ALGORITHM

Node si autonomously executes the following procedure.

Round 1

Step 1: (Sending and receiving the keys)

(1) Send KEYðki; siÞ to sj 8sj 2 gi.
(2) Receive KEYðkj; sjÞ from sj 8sj 2 gi.

Step 2: (Local computation and sending the result of the computation)

for each sdes 2 gi do
begin

(1) numdes
1 :¼ 0; numdes

2 :¼ 0
(2) for each KEYðkj; sjÞ received do

if kj5kdes then
if j 2 gides then num1des :¼ num1des þ 1
else num2des :¼ num2des þ 1

(3) Send NUMðnum1des; num2des; siÞ to sdes.
end

Round 2

Step 3: (Receiving the result of the computation)

Receive Numðnum1i; num2i; sjÞ from sj 8sj 2 gi:

Step 4: (Rank Computation)

Compute the rank of si;using all NUMðnum1i; num2i; sjÞ received :

ranki :¼
P

num1i

m�2
þ

P
num2i

4
þ 1:

Now we give an example of rank computation on a six node network for which the

coterie structure is shown in Fig. 2. Let nodes 1–6 hold key values 3; 5; 2; 9; 1, and 7,

respectively. For p ¼ 6, we have m ¼ 4. After each node sends its key with the
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identifier of the node to its communication set, and receives the keys and identifiers

from all the nodes in its communication set, each node holds the following

information (keys with identifiers):

s1: fð9; s4Þ; ð7; s6Þ; ð5; s2Þ; ð1; s5Þg
s2: fð7; s6Þ; ð2; s3Þ; ð3; s1Þ; ð1; s5Þg
s3: fð7; s6Þ; ð5; s2Þ; ð1; s5Þ; ð9; s4Þg
s4: fð1; s5Þ; ð2; s3Þ; ð3; s1Þ; ð7; s6Þg
s5: fð3; s1Þ; ð5; s2Þ; ð2; s3Þ; ð9; s4Þg
s6: fð5; s2Þ; ð2; s3Þ; ð3; s1Þ; ð9; s4Þg

Let us focus on the nodes in the communication set of s1 given by the set

fs2; s4; s5; s6g. In the first round, the messages received by these nodes are as follows.

s4: fð1; s5Þ; ð2; s3Þ; ð3; s1Þ; ð7; s6Þg;
s6: fð5; s2Þ; ð2; s3Þ; ð3; s1Þ; ð9; s4Þg;
s2: fð7; s6Þ; ð2; s3Þ; ð3; s1Þ; ð1; s5Þg;
s5: fð3; s1Þ; ð5; s2Þ; ð2; s3Þ; ð9; s4Þg.

Note that the key of each node in S ¼ fs1; s2; . . . ; s6g appears in some nodes of the

communication set, and no key appears more than once in a node. ð2; s3Þ appears in

four nodes because s3 is not in the communication set of s1. ð9; s4Þ; ð7; s6Þ; ð5; s2Þ,
and ð1; s5Þ appear in 2 ¼ m� 2 nodes. This is because s4; s6; s2, and s5 are in the

communication set of s1. ð3; s1Þ appears in 4 ¼ 2ðm� 2Þ nodes. At each node of the

communication set of s1, the following computation is done.

s4: num11 ¼ 1 ðsince 1 ðof s5Þ53 ðof s1ÞÞ and num21 ¼ 1

s6: num11 ¼ 0 and num21 ¼ 1

s2: num11 ¼ 1 and num21 ¼ 1

s5: num11 ¼ 0 and num21 ¼ 1

Thus, after s1 receives these numbers, it can compute the rank of its key using the

formula in Step 4 as rank1 ¼ ð1 þ 0 þ 1 þ 0Þ=ð4 � 2Þ þ ð1 þ 1 þ 1 þ 1Þ=4 þ 1 ¼ 3. It

can be seen that the rank of the key value 3 of s1 in the sorted key list f1; 2; 3; 5; 7; 9g.

is indeed 3.

3.2.2. Correctness and analysis of our algorithm

Lemma 3.3. After Step 1, the communication set of each node sk receives all keys in

the network.

Proof. Consider the communication set of an arbitrary node sk. The commu-

nication set is formed by two lines, say L and L0, crossing at sk. Now consider either

of the two lines, say line L. L crosses with every other line in the coterie structure at

exactly one node according to property 3 of the structure. The key of each node on

the line which crosses with L will reach the node at the crossing node (notice that the

crossing node would not be sk), which implies that each key of each node on every

other line will reach some nodes on L besides sk. Also, for the nodes on line L0, one

might think that these keys will only reach sk which is not in the communication set

of sk. However, according to property 2, these nodes also reside on some different
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lines which cross with L at some other nodes but not sk. In summary, after Step 1,

each key in the network will reach some nodes in the communication set of sk. ]

Lemma 3.4. After Step 1, a node never receives duplicate keys.

Proof. The proof follows from the definition of communication set and

property 3. ]

Lemma 3.5. After Step 1, each communication set holds some redundant keys.

More specifically, the redundant information is as follows.

(1) Each node of the communication set of sk receives the key of node sk. (Note

that there are 2ðm� 2Þ nodes in a communication set.)

(2) Exactly 4 nodes of each communication set, say the communication set of sk,
receive the key of a node si which is not in the communication set of sk.

(3) m� 2 nodes of the communication set, say the communication set of sk, receive

the key of a node si which is in the communication set of sk.

Proof. (1) We first show that the number of nodes in the communication set of a

node is 2ðm� 2Þ. The communication set of a node sk is the set of nodes on the two

lines which cross at node sk (except sk). The number of nodes on a line is m� 1

including sk according to property 1. Thus the number of nodes on the two lines

excluding sk is 2ðm� 2Þ. A node sk sends one message with its key to each node of its

own communication set, and thus 2ðm� 2Þ nodes receive and hold the key of sk.
(2) A node si, which is not in the communication set of sk, is not on the lines of

sk. According to properties 2 and 3, two lines of si cross with two lines of sk at exact 4

nodes as shown in Fig. 3. Thus, the key of node si reaches 4 nodes in the

communication set of sk.
(3) A node si, which is in the communication set of sk, is on the same line as sk is

(see Fig. 4.) Consider an arbitrary node si in the communication set of sk. According

to property 1, there are m� 3 nodes, excluding sk and si, on the line on which sk and

si reside. These m� 3 nodes will undoubtedly receive the key from si. In addition, the

other line on which si resides crosses with the other line on which sk resides at exactly
sk si

FIG. 3. The lines of si and sk crossing at four nodes.
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FIG. 4. Two lines of si and sk crossing at sj.
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one node, say sj (see Fig. 4). Therefore, totally there are m� 3 þ 1 ¼ m� 2 nodes (in

the communication set of sk) which receive the key from si. ]

Theorem 3.3. By performing our ranking algorithm, each node computes the rank

of its key.

Proof. Consider an arbitrarily chosen node, say sk. The communication set of sk
receives all the keys on the network in Step 1 (Lemma 3.3). Each node, say sj, in the

communication set of sk, divides the received keys into two groups depending on

whether those keys are received from nodes on the same line as sk or not. Also, sj
counts the number of keys which are smaller than the key of sk in Step 2. Specifically,

sj counts two numbers num1 and num2. Since sj receives the key of sk (Lemma

3.5(1)), comparison between the key of sk and other keys is possible. sk computes the

sum of all num1’s received from all nodes in its communication set in Step 4.

Similarly, the sum of all num2’s is computed. In order to remove the redundancy, the

sum of num1’s and the sum of num2’s are divided by m� 2 and 4, respectively,

according to Lemmas 3.5(2) and 3.5(3). Therefore, the quantity

P
num1i

m�2
þ

P
num2i

4

represents the exact number of keys smaller than the key of sk. ]

Theorem 3.4. The ranking scheme uses Oðp
ffiffiffiffi
p

p
Þ messages.

Proof. We assume that message sent by a node eventually reaches its destination.

A node receives message from a node in the same order as seen by the sender. Thus,

only counting the number of received messages by all nodes is enough.

In Step 1, since the number of nodes of a communication set is 2ðm� 2Þ where

m ¼
1þ

ffiffiffiffiffiffiffiffiffi
8pþ1

p

2
, every node receives Oð

ffiffiffiffi
p

p
Þ messages. Thus, totally p nodes will

receive Oðp
ffiffiffiffi
p

p
Þ messages. Likewise, in Step 3, p nodes will totally receive Oðp

ffiffiffiffi
p

p
Þ

messages. Thus, the total number of messages needed is Oðp
ffiffiffiffi
p

p
Þ. ]

3.3. Restricted Sorting

With our ranking algorithm, the sorting problem turns into a permutation routing

problem. Precisely, after ranking all keys, our purpose in sorting is to send key ki
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with rank ri to sri for all keys. In the following, we first explain how to perform

routing on coterie structure 2. Next, we show how the routing on coterie structure 2

is slightly different from that on coterie structure 1.

There are two cases in our routing scheme. In the first case, the destination sri is in

the communication set of si. Because a node knows each node in its own

communication set, si simply sends key ki directly to sri in one step using only one

message. In the other case, the destination sri is not in the communication set of si.
For this, si first sends key ki to each node in its own communication set; next only

those nodes whose communication sets contain sri directly forward ki to sri . Based

on Lemma 3.5(2), there are exactly four nodes which will forward ki to sri .
Obviously, the first step uses Oð

ffiffiffiffi
p

p
Þ messages and the second step uses only four

messages. Thus, the total number of messages sent by all the p nodes is

Oðpð
ffiffiffiffi
p

p
þ 4ÞÞ ¼ Oðp

ffiffiffiffi
p

p
Þ. The number of messages for the restricted sorting

problem is the sum of the messages for ranking and the messages for routing, which

is still Oðp
ffiffiffiffi
p

p
Þ.

Routing on coterie structure 1 can similarly be explained using the idea of sending

sets instead of communication sets. Since, two quorums of a coterie structure 1 have

exactly one common node, the message complexity is Oðpð
ffiffiffiffi
p

p
þ 1ÞÞ ¼ Oðp

ffiffiffiffi
p

p
Þ.

Lemma 3.6. The sorting of p keys, with one key per node, on a p-node network

organized as a coterie structure, can be done in Oðp
ffiffiffiffi
p

p
Þ messages with 4t

communication delay.

4. SELECTION SCHEME

Before we present our selection scheme, we explain two ideas, namely consensus

and sampling technique. The consensus protocol is in fact a two phase decentralized

prefix computation [8]. We summarize these two ideas in what follows.

Here we explain the prefix computation using coterie structure 2. In the first

phase of the prefix computation, every node sends a message containing the

value possessed by the node to all nodes in its communication set. After receiving

messages from all nodes in its communication set, a node performs a simple

associative operation (e.g., summation) and sends the result to all nodes in its

communication set. This value represents a partial result of consensus (e.g., partial

summation). In the second phase, after receiving the values of the function (e.g.,

partial summation) from all nodes in its communication set, a node again performs

the same operation using the received partial results. Every node will produce the

same value of the function (e.g., total summation) from this two-phase computation,

which means the consensus is achieved. It is not hard to see that the message

complexity of this simple but elegant scheme is Oðp
ffiffiffiffi
p

p
Þ which leads to the following

lemma.

Lemma 4.1. A distributed prefix-computation can be realized on a p-node network

organized as a coterie structure using Oðp
ffiffiffiffi
p

p
Þ messages and suffering a communica-

tion delay of 2t.
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The sampling technique we employ is a variant of [1, 11]. It works as follows:

(1) Group the keys into groups with l elements in each group (for an appropriate l);
(2) Sort each group independently; (3) Collect each qth element from each group (for

some q). This collection serves as a ‘‘sample’’ for the original input. Most likely, the

sample set contains the useful information for further processing. For example, the

median of this sample can be shown to be an approximate median for the input.

However, we adopt a different approach. Our algorithm is a twist one of [1]. Initially,

there are n
p keys (or records) at each node. As the algorithm proceeds, keys are dropped

from future consideration. We do not perform any load balancing. The remaining keys

from each node will form the groups. Instead of picking the median of these medians as

the element for partition, we choose a weighted median of these medians. Each group

median is weighted with the number of remaining keys in that node.

Definition 4.1. Let X ¼ k1; k2; . . . ; kn be a sequence of keys where key ki has an

associated weight wi, for 14i4n. Also let W ¼
Pn

i¼1 wi. The weighted median of X
is that kj 2 X which satisfies

P
kl2X&kl4kj wkl5

W
2

and
P

kl2X&kl5kj wkl5
W
2
. In other

words, the total weight of all keys of X that are 4kj should be 5W
2

and the total

weight of all the keys that are 5kj also should be 5W
2
.

Example 4.1. Let X ¼ 9; 15; 12; 6; 5; 2; 21; 17 and let the respective weights

be 1; 2; 1; 2; 3; 1; 7; 5. Here W ¼ 22. The weighted median of X is 17. One way

of identifying the weighted median is to sort X ; let the sorted sequence be

k01; k
0
2; . . . ; k

0
n; let the corresponding weight sequence be w0

1;w
0
2; . . . ;w

0
n; compute the

prefix sums, y1; . . . ; yn, on this weighted sequence, if yj is the leftmost prefix sum that

is > W
2
, then k0j is the weighted median.

For the above X , the sorted order is 2, 5, 6, 9, 12, 15, 17, 21 and the corresponding

weights are 1, 3, 2, 1, 1, 2, 5, 7. The prefix sums of this weight sequence are 1, 4, 6, 7,

8, 10, 15, 22. The leftmost prefix sum that exceeds 11 is 15 and hence the weighted

median is 17.

In Fig. 5, we present a high-level description of the selection algorithm. Each node

si individually executes the algorithm, assuming that the algorithm is for finding the

kth key from a file of size n evenly distributed over a p-node coterie. Node si needs to

manage the following local variables in order that the algorithm can correctly

performed.

Ni: The number of keys remaining in si. Initially, Ni is equal to dn=pe or bn=pc.
During the selection process, some keys will be labelled dead, which will be viewed as

not remaining in the node.

Mi: A variable used to hold the median of the remaining keys in si. It also

carries Ni with it when it is sent as a message to the neighboring nodes. The sending

of Mi as a message is needed due to the invoked restricted sorting in Step 2 (Mi of

each node will be repermuted in the sorted order, i.e., Mi will be moved from si to

srMi
, where rMi is the rank of Mi.).

M : A variable used to hold the weighted median.

c: A constant independent of n and p, and is preassigned to each node by the

system.



FIG. 5. The selection algorithm.
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4.1. Analysis

Step 0 performs a prefix sum computation and thus requires Oðp
ffiffiffiffi
p

p
Þ messages

and needs 2t communication delay according to Lemma 4.1. Steps 1 needs only local

computation and does not require message passing. In Step 2, we sort the medians

and, thereby, compute the weighted median. This can be done using Oðp
ffiffiffiffi
p

p
Þ

messages with 6t communication delay according to Lemmas 4.1 and 3.6. Steps 3–4,

and 5 also perform a prefix computation and thus also require Oðp
ffiffiffiffi
p

p
Þ messages

and suffer 2t communication delay (cf. Lemma 4.1). Step 6 is a local computation.

Step 7 is similar to Steps 0, 3, 4, and 5. Step 8 is a local computation. Therefore, each

run of the repeat loop uses Oðp
ffiffiffiffi
p

p
Þ messages and suffers OðtÞ communication delay.

Our way of identifying the weighted median guarantees that at least N
4 keys are

dropped out in each run of the repeat loop. Assume that k > rM in a given run. (The
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other case can be proved similarly.) The number of keys dropped out is at leastPj
m¼1 d

N 0
m

2
e which is 5N

4
. Consequently, the repeat loop will be executed for Oðlog nÞ

times. Besides, Step 9 also needs Oðp
ffiffiffiffi
p

p
Þ messages and 2t communication delay.

And Step 10 needs only local computations. Therefore, the algorithm uses Oðpffiffiffiffi
p

p
log nÞ messages to finish the selection with Oðt log nÞ communication delay. This

leads to the following theorem.

Theorem 4.1. Assuming that a large file of size n is distributed over a p-node

network logically organized as coterie structure 1 or 2, selection on the file can be done

in Oðp3=2 log nÞ messages with communication delay Oðt log nÞ.

5. SORTING LARGE DISTRIBUTED FILES

In this section, we present an enumeration sorting scheme which uses the selection

of previous section for sorting a large distributed file. A common indexing scheme

used for sorting a distributed file F of size n in a p-node network is that each key,

keyi, will be residing at the drankðkeyi; F Þ �
p
n e th node after sorting. To show the

optimality of our sorting scheme, we first present a lower bound.

Lemma 5.1. Sorting a distributed file F of size n on a p-node coterie structure, in

the worst case, requires at least OðnÞ messages and OðtnpÞ delay.

Proof. In the worst case, the destination of each key is different from its source,

and thus each key has to move. This introduces at least n messages. Also, each node

has to sequentially send out each of its n
p keys, which introduces at least tnp

communication delay. ]

We then present our sorting algorithm which can sort a distributed file of size n in

a p-node coterie structure network in OðnÞ messages and suffering a communication

delay of OðtnpÞ. This algorithm is optimal in the sense of both message complexity

and communication delay. Now we give the basic idea behind our algorithm:

perform the selection algorithm for p times; at the ith time, ibnpcth key is selected and

broadcast to each node of the network and each unmarked key}initially all keys are

unmarked}is compared with the selected key. This computation is done so that

after p iterations, each key will know its own right residence (node). Finally, we

route each key to its right node. To do so, each node of the network individually

performs the following algorithm.

0. i ¼ 1

1. repeat

1.a Perform the selection algorithm of Fig. 5 to select the ibnpcth key. (* The

node which holds the selected key will broadcast the key to every node by

triggering a broadcast prefix computation.* )

1.b Compare each unmarked key in the local memory with the selected key.

Label an unmarked key as i if it is less than or equal to the selected key.

(* If a key is labelled as i, it means that the key belongs to node i. * )
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1.c i ¼ iþ 1

until i ¼ p þ 1

i ¼ 1

2. repeat

2.a Route the key in memory cell i to node r if the key is labelled r.
2.b i ¼ iþ 1

until i ¼ n
p þ 1

Theorem 5.1. Sorting of a distributed file of size n can be distributedly performed

on a p-node coterie structure using OðnÞ messages and suffering a communication delay

of Oðt n
pÞ provided n is polynomial in p and n ¼ Oðp5=2 log nÞ, which is optimal.

Proof. The selection requires Oðp3=2 log nÞ messages and Oðt log pÞ delay, and is

executed for p times. Also, in the worst case, each of the n keys needs to move to its

new home. In total, it thus requires Oðmaxfp5=2 log n; ngÞ ¼ OðnÞ messages provided

n ¼ Oðp5=2 log nÞ. Since each node has n
p keys, it will take n

p time for each node to send

out and receive n
p keys in the worst case. ]

6. CONCLUSIONS

We presented two schemes for selecting and sorting the keys of a large distributed

file. These schemes use the ideas of ranking and restricted sorting. The novelty of our

approach lies in logically organizing the network into coterie structures. The

efficiency of the schemes follows from using the properties of coterie structures in the

algorithm developed. So far, the problems studied on coterie structures are mutual

exclusion, consensus, and multiway rendezvous. Our selection and sorting schemes

complement the application of coterie structures in distributed processing.

With a small modification, our selection and sorting schemes can be adapted to

other types of coteries. Also, the message complexities of our algorithms are given

based on the chosen coteries. There is a hidden cost due to the mapping of a coterie

onto a real network. This hidden cost applies to all the distributed algorithms so far

developed using a coterie. The study of efficient mapping or embedding of a coterie

into the topology of a real network is thus important and would be interesting.
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