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This paper investigates the problem of network partitioning in Distributed Shared
Memory (DSM) systems. We propose an optimistic-based partition-processing approach,
which can make shared pages available when network partitioning occurs. However, this
approach does not guarantee that the same page in different partitions can maintain a
consistent value. To eliminate this problem, a memory-based coordinated checkpoin-
inting scheme is presented to save consistent states at low cost. If there are inconsisten-
cies between two partitions, one saved consistent state is chosen to perform backward
error recovery. Extensive trace-driven simulations have been performed to evaluate the
effects of the proposed approach on system performance.
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1. INTRODUCTION

A Distributed Shared Memory (DSM) system provides a shared memory abstraction
on a network of computers [1]. In such a system model, programmers do not need to be
concerned about data movement between processing nodes. The chore of interprocesor
communication is left to the DSM system. Applications in such a system model can be
easily programmed as if they are executing on a real shared memory machine.

As the number of components in a DSM system and the running time of applica-
tions increase, the probability that a failure will occur during the execution of an applica-
tion also increases. Fault tolerance in DSM systems has been studied extensively [2-12].
Most of the existing approaches only tolerate node failures and make the impractical as-
sumption that the network environment is immune to partitioning. However, the proc-
essing nodes in a DSM system are interconnected through a network. Besides nodes, the
communication links in the network may also fail. In this case, all the processing nodes
may be divided into several disconnected groups (partitions). Nodes in one partition can
not communicate with the nodes in other partitions. This phenomenon is known as net-
work partitioning.
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The network partitioning problem has been extensively discussed with respect to
distributed database systems. The existing partition-processing approaches are classified
into two categories: pessimistic and optimistic [13]. Pessimistic-based approaches pre-
vent inconsistencies between partitions by restricting the availability of data objects. A
data object is allowed to be accessed in one partition only if the consistency of this data
object between partitions can be ensured. In contrast, optimistic-based approaches allow
data objects to be accessed in each partition without considering the consistency between
partitions. When partitions are to be reconnected, optimistic-based approaches need to
eliminate the inconsistency between the partitions. Therefore, consistency is sacrificed to
achieve high data availability. However, the partition-processing approaches for distrib-
uted database systems are not suitable for the DSM system environment. In distributed
database systems, the number of copies of a data object is fixed and is the same for all
data objects. The number of copies for a shared page in DSM systems changes dynami-
cally as the program is being executed .

Up to now, only the approach in [9] has attacked the network partitioning problem
in DSM systems. This approach has a dynamic coherence protocol to guarantee a chosen
degree of data availability based on the paid cost. During the period of network parti-
tioning, the dynamic coherence protocol still provides a degraded degree of data avail-
ability according to the partitioning status. When a data item is allowed to be accessed in
a partition, its consistency between partitions is also ensured. However, this approach
only claims that it is capable of handling the network partitioning problem, but does not
clearly describe how to handle the problem. In addition, each shared page needs to dy-
namically maintain the minimum number of up-to-date copies in order to guarantee a
given degree of data availability. The trade-off between the degree of fault tolerance and
the up-to-date cost has been further studied in [10].

The main goal of this paper is to design an efficient approach to tolerating network
partitioning in DSM systems. Unlike the approach in [9], the proposed approach is based
on the optimistic viewpoint. It consists of a one-copy read and one-copy write access
scheme and a memory-based coordinated checkpointing scheme. The one-copy read and
one-copy write access scheme is used to guide access to the shared pages during the
network partitioning period. The memory-based coordinated checkpointing scheme is
used to resolve inconsistency between partitions. Basically, our approach and the ap-
proach in [9] work from two different viewpoints (the optimistic viewpoint and the pes-
simistic viewpoint) to handle the network partitioning problem. It is hard to determine
which approach is better. Compared to the approach in [9], our approach offers higher
data availability but complicates the task of reconnecting partitions since inconsistencies
between partitions may occur. To evaluate the effect of our approach on system per-
formance, trace-driven simulations were performed to quantify the data availability and
the inconsistency effect.

The remainder of this paper is organized as follows. Section 2 describes the system
model and terminology. Section 3 presents an optimistic partition-processing approach to
allowing data to be available during network partitioning as well as to resolving incon-
sistencies between partitions. Section 4 evaluates the effects of the proposed approach on
system performance. Finally, we give concluding remarks in section 5.
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2. BACKGROUND

This section provides background material on the research on network partitioning
for DSM systems. First, a brief introduction of a DSM system model is given and possi-
ble failures are described. Next, the consistency protocol used in the DSM system is dis-
cussed.

2.1 System Model

The system model is shown in Fig. 1. There is a virtually memory shared by all the
processing nodes. Each processing node communicates with others via the virtually
shared memory. The address space of the virtually shared memory is organized into a set
of shared pages. A shared page is the basic unit for data transfer and consistency mainte-
nance between processing nodes. An application program is divided into multiple proc-
esses, and each process is executed in a processing node.

MEMORY MEMORY

...
node 1 node 2

Distributed Shared Memory

Interconnection Network

MEMORY

node n

A Shared Memory Abstraction on
Network of Processing Nodes

Fig. 1. System model.

Unlike the previous research on fault tolerance in DSM systems [2-8, 11, 12], the
reliable network assumption is not made in this paper. If a node or a communication link
fails, the whole communication network may be partitioned into several disconnected
groups. The communication network is not immune to partitioning.

2.2 Consistency

Consistency protocols used in DSM systems include the release consistency, weak
consistency, processor consistency, and sequential consistency protocols [9]. The release
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consistency protocol is the least restrictive one of the above protocols, and it allows a
high degree of parallelism by utilizing application program semantics. On the other hand,
the sequential consistency restricts parallelism and sacrifices some degree of perform-
ance. However, in this consistency protocol, no additional program semantic knowledge
is needed. This is the reason why the sequential consistency protocol has been adopted in
some recent studies on of recoverable DSM systems [9, 11, 12].

The consistency among shared pages is assumed to be managed by a fixed distrib-
uted manager (FDM) protocol [14], which is a sequential consistency protocol. The task
of consistency maintenance in the FDM protocol is distributed among all the nodes. The
association between a shared page and its consistency manager is determined statically
by a mapping function. Two pieces of information, the owner and the copyset are re-
corded in a manager. The owner indicates which node owns the shared page. The copyset
lists the identifiers of the nodes which have a copy of the shared page. If node x attempts
to access shared-page p on which it does not have the access right, it will send a
read-fault or a write-fault message to the manager of shared-page p. For a read fault on
shared-page p, the read-fault generating node (the node issuing the read fault) first sends
a read-fault message to the default manager of shared-page p. The manager then asks the
owner of shared-page p to send a copy to the read-fault generating node and includes the
identifier of the generating node in the copyset of shared-page p. For a write fault on
shared-page p, the write-fault generating node (the node issuing the write fault) sends a
write-fault message to the default manager of shared-page p. The manager asks the
owner of shared-page p to send a copy to the write-fault generating node, sends an in-
validation message to each node that has an old copy of shared-page p, sets the copyset
of shared-page p to null, and makes the generating node the new owner of shared-page p.

3. NETWORK PARTITIONING

This section proposes a new partition-processing approach for DSM systems. To
achieve high data availability, a one-copy read and one-copy write protocol is used to
guide access to shared pages as much as possible during network partitioning. However,
since the proposed partition-processing approach is an optimistic based approach, con-
sistency between partitions can not be guaranteed. A memory-based coordinated check-
pointing scheme is also proposed to preserve consistent states at appropriate access
points in advance. If two partitions are to be reconnected, one preserved consistent state
is chosen to eliminate inconsistency between the two partitions.

3.1 Availability

After network partitioning, not all accesses to shared pages can be executed suc-
cessfully. For example, as shown in Fig. 2, due to network partitioning, the system with 5
processing nodes and 2 shared pages is divided into two partitions. Node 1, node 2, and
node 3 are located in Partition 1. Node 4 and node 5 are located in Partition 2. The copies
of shared-page 1 and shared-page 2 are distributed in these two partitions. Partition 1 has
two read-only copies of shared-page 1 and the owner copy of shared-page 2. Partition 2
has the owner copy of shared-page 1 and one read-only copy of shared-page 2. Based on
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Partition 1 Partition 2
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node 2
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Node 1 issues a write on
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shared-page 2

i : owner copy of shared-page i

i : read-only copy of shared-page i

Fig. 2. Partition scenario.

the fixed distributed manager protocol (see Subsection 2.2), if a node in Partition 1 (e.g.,
node 1) has a write-fault on shared-page 2, this write access can not be completed since
one read-only copy of shared-page 2 in Partition 2 can not be invalidated. Similarly, if a
node in Partition 2 (e.g., node 4) has a read-fault on shared-page 2, this read access also
can not be completed since the owner copy of shared page 2 is not in Partition 2. To en-
sure that shared pages can still be accessed after network partitioning, we propose a
shared-page access protocol during network partitioning, called the one-copy read and
one-copy write protocol. This access protocol works as follows.

• A read on shared-page p (rp) in partition i can be executed as long as there is at
least one (owner or read-only) copy of shared-page p in partition i. Otherwise, rp

will be blocked.
• A write on shared-page p (wp) in partition i can be executed as long as there is at

least one copy of shared-page p in partition i. Otherwise, wp will be blocked.

In the protocol, if no copy of shared-page p is in partition i, then none of the nodes
in partition i can supply the data of shared-page p. Based on the access protocol, the
previous two non-executable shared accesses (see Fig. 2) can now be executed.

The accessibility of shared pages during the network partitioning period is based on
an optimistic assumption. The assumption is that two or more partitions seldom access
the same shared page during the partitioning period. Even if a shared page is accessed by
different partitions during the partitioning period, the probability that there will be con-
flicts between accesses to the page is very small. If a program has a small number of
shared-write references, the above assumption is quite realistic since two accesses to the
same page will conflict only if at least one of them is a write. The reference characteris-
tics of programs studied by Eggers and Katz [15] indicate that the ratio of the number of
write accesses to shared data over the total number of memory accesses is very small and
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ranges from 0.00005 to 0.001. Therefore, the optimistic assumption made in the proposed
access scheme is quite reasonable.

In addition, after network partitioning, the consistency of shared pages may not be
maintained. For example, in Fig. 2, the consistency of shared-page 2 is first assumed to
be managed by a node in Partition 2. Now, if a write on shared-page 2 is allowed to be
executed in Partition 1, the new consistency information of shared-page 2 can not be kept
in its default manager. However, the maintenance range of a shared page’s consistency
can be shrunk within a partition. If an access to a shared page is allowed to be executed
in a partition, it is also required that the consistency of this page within the partition be
maintained. There are two different algorithms for maintaining consistency information:
the centralized manager and distributed manager algorithms [14]. The method for main-
taining consistency within a partition using the centralized manager algorithm is similar
to that using the distributed manager algorithm. To conveniently demonstrate how to
maintain consistency within a partition, the centralized manager algorithm is used here.
After network partitioning, each partition specifies one node in itself as the default con-
sistency manager. The manager keeps two pieces of consistency information, the owner
and the copyset, in a table called Info, which has an entry for each shared page. In parti-
tion i, the owner of shared-page p in the Info table (Info[p].owner) indicates which node
in partition i currently owns shared-page p. The copyset of shared-page p in Info
(Info[p].copyset) indicates which nodes in partition i have a copy of shared-page p. The
detailed algorithm for handling both shared accesses and consistency maintenance within
a partition is shown in Fig. 3.

As shown in Fig. 3, the read (write) fault handler is invoked whenever a node in par-
tition i attempts to access a shared page on which it does not have the access privilege.
The read (write) fault handler contacts the manager of partition i to determine whether
the current read (write) fault access can be serviced or not, as follows. The entry of the
requested page in Info is first located. If this entry has not been yet established, a special
message, Locate_Copy, is broadcast in partition i to collect the consistency information
of the requested page within partition i. When a node receives a Locate_Copy message, if
it has a copy of the requested page, it sends the attribute of the copy (owner or copyset)
to the manager. After reconstructing the consistency information of the requested page, if
the fault access is a read fault, the manager can forward this read-fault access to an arbi-
trary node that has a copy of the requested page. If the fault access is a write fault, the
manager can send an invalidation message to every node which has an old copy of the
requested page.

Read Fault Handler
send read-fault request to the manager;
if (this read access can not be completed)

/*a non-service message is received*/
put this read-fault request in pending queues;

else
receive a copy of shared-page p;
set the permission of the copy of shared-page p to read-only;
execute the read-fault access to shared-page p;

end if;

Fig. 3. Algorithm for shared accesses and consistency maintenance within a partition.
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Read Request Handler
if (I am a member of the copyset of shared-page p)

send a copy of shared-page p to the requesting node;
end if;
if (I am the consistency manager)

if (Info[p] has not been established)
/*there is a first access to shared-page p in partition i*/

broadcast a special message Locate_Pagep to each node in partition i;
if (none of the nodes in partition i has a copy of shared-page p)

return a non-service message;
else

establish the entry Info[p];
fill Info[p].owner and Info[p].copyset according to the acknowledgement of
Locate_PageP message;

end if;
end if;
Info[p].copyset ← Info[p].copyset ∪ {requesting node};
ask one member of shared-page p’s copyset to send a copy;

end if;
Write Fault Handler
send a write-fault request to the manager;
if (this write access can not be completed)

/*a non-service message is received*/
put this write-fault request in pending queues;
else
receive a copy of shared-page p;
set the permission of the copy of shared-page p to read-write;
execute the write-fault access to shared-page p;
end if;
Write Request Handler
if (I have a copy of shared-page p)
invalidate the copy of shared-page p;
end if;
if (I am the consistency manager)

if (Info[p] has not been established)
/*there is a first access to shared-page p in partition i*/

broadcast a special Locate_PageP message to each node in partition i;
if (none of the nodes in partition i has a copy of shared-page p)

return a non-service message;
else

establish the entry Info[p];
fill Info[p].owner and Info[p].copyset according to the acknowledgement of
Locate_PageP message;

end if;
end if;
send invalidation messages to all members of Info[p].copyset;
Info[p].owner ← {requesting node};
Info[p].copyset ← {};

end if;

Fig. 3. (Cont’d) Algorithm for shared accesses and consistency maintenance within a partition.
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3.2 Inconsistency Between Partitions

Consistency between partitions can not be guaranteed since an optimistic assump-
tion is made in the one-copy read and one-copy write protocol. To demonstrate this phe-
nomenon, Fig. 2 is used again to show an inconsistency example. If a node in Partition 1
has a write on shared-page 2, this write is allowed to be executed. The read-only copy of
shared-page 2 in Partition 2 can not be invalidated. Thereafter, if a node in Partition 2 has
a read on shared-page 2, it will read an old value of shared-page p. Hence, there is a
write-read conflict between the accesses to shared-page 2. This also implies that there is
inconsistency with respect to shared-page 2 between Partition 1 and Partition 2.

From the above description, we observe that if all the shared accesses executed in
Partition 1 and Partition 2 are traced, the inconsistency between Partition 1 and Partition
2 can be revealed by detecting whether there are conflicts between the two partitions'
shared accesses. The shared-access tracing of Partition 1 and Partition 2 can be integrated
with the consistency management of Partition 1 and Partition 2, respectively. As men-
tioned earlier, each partition uses the Info table to manage consistency within itself. Here,
the Info table is extended to add two fields: read and write. During the network parti-
tioning period, when shared-page p is first read by a node in Partition 1 (Partition 2), a
read-tracing message for shared-page p is sent to the manager of Partition 1 (Partition 2).
The manager then puts a “read” mark in shared-page p’s entry in the Info table
(Info[p].read ← “1”). Similarly, when shared-page p is first written by a node in Partition
1 (Partition 2), a “write” mark is also entered in shared-page p’s entry in the Info table
(Info[p].write ← “1”).

In the following two subsections, we will further discuss how to detect and resolve
inconsistency between partitions using tracing information.

3.2.1 Inconsistency detection

If there is inconsistency with respect to shared-page p between partition i1 and parti-
tion i2, the following two properties must hold:

• Shared-page p has been accessed by both partition i1 and partition i2.
• There is a conflict between the accesses to shared-page p.

The inconsistency between partition i1 and partition i2 is detected as follows:

• Find all the multi-accessed pages between partition i1 and partition i2. (A shared
page is a multi-accessed page if it has been accessed by two or more partitions.)

• Check each multi-accessed page to determine whether there is a conflict between
the accesses to it.

All the multi-accessed pages between partition i1 and partition i2 are found as fol-
lows. Info is used to manage consistency within a partition. If partition i1 and partition i2

are to be reconnected, both Info tables (Infoi1 and Infoi2) first need to be merged in order

to form a new Info table to manage consistency within the new reconnected partition.
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During the merging the two Info tables of partition i1 and partition i2 if shared-page p has
an entry in both Infoi1 and Infoi2, this means that shared-page p has been accessed by both

partition i1 and partition i2. Therefore, shared-page p is a multi-accessed page between
partition i1 and partition i2.

The next step is to determine the multi-accessed pages that have introduced incon-
sistency between partition i1 and partition i2. This task can be done by applying the fol-
lowing conflict-detection function f to each multi-accessed page:

f(Infoi1[p], Infoi2[p]) = (Infoi1[p].read ∧ Infoi2[p].write) → read-write conflict

or (Infoi1[p].write and Infoi2[p].read) → write-read conflict

or (Infoi1[p].write and Infoi2[p].write) → write-write conflict,

where p is the identifier of a multi-accessed paged, Infoi1[p] represents the entry of
shared-page p in the Info table of partition i1, and Infoi2[p] represents the entry of
shared-page p in the Info of partition i2.

If function f returns the value “0”, this means that all the accesses to the
multi-accessed page p in both partition i1 and partition i2 are “read” operations. Hence,
there is no conflict between the accesses to the multi-accessed page p. In this case, the
entry of shared-page p in the new Info table can be formed by directly combining two
entries: Infoi1[p] and Infoi2[p]. On the other hand, if function f returns the value “1”, then
there is at least one conflict (read-write conflict, write-read conflict, or write-write con-
flict) between the accesses to shared-page p. In this case, shared-page p is an inconsistent
page between partition i1 and partition i2 (the value of shared-page p in partition i1 may
not be the same as that in partition i2). The entry of shared-page p in the new Info table
can not be formed.

3.2.2 Inconsistency resolution

To resolve inconsistency between partition i1 and partition i2, an intuitive idea is to
reconstruct the consistency of each inconsistent page between partition i1 and partition i2.
However, an inconsistent page may further propagate its own inconsistency. For example,
in Fig. 4, shared-page 1 propagates its inconsistency to shared-page 2 and shared-page 3
since the data written on both shared-page 2 and shared-page 3 is dependent on the data
of shared-page 1. In this situation, although shared-page 2 and shared-page 3 are not de-
tected as inconsistent pages, the data written in them is incorrect. The inconsistency
propagation problem needs to be considered in inconsistency resolution. The idea for
resolving the inconsistency between partition i1 and partition i2 is thus modified as fol-
lows: roll back all nodes in partition i1 and partition i2 to a state without any inconsis-
tency dependency with partition i1 and partition i2, respectively.

To achieve the above goal, a coordinated checkpointing scheme is employed to save
consistent states at appropriate access points. Whenever shared-page p is first accessed in
partition i, the current consistent state with respect to shared-page p in partition i is also
saved. The saved consistent state can form a recovery line with respect to shared-page p
in partition i. When partition i and other partitions are to be reconnected, if shared-page p �



JENN-WEI LIN AND SY-YEN KUO862

Fig. 4. Example inconsistency propagation.

is detected as an inconsistent page between partition i and other partitions, then all its
introduced accesses (first access, second access etc.) and inconsistency propagation in
partition i can be nullified by rolling back all the nodes in partition i to the recovery line
with respect to shared-page p. After rolling back, the original accesses to shared-page p
in partition i can be re-executed in the new reconnected partition under a safe execution
sequence.

There are two techniques for saving a consistent state: asynchronously coordinated
checkpointing and synchronously coordinated checkpointing [16]. With the first tech-
nique, the consistent state of a partition is incrementally maintained in each node. When
shared-page p is first accessed in a partition, only the accessing node generates a check-
point. Other nodes in the same partition do not generate checkpoints until they have a
dependency on the accessing node (they read a shared page from the accessing node or
send an invalidation message to the accessing node). With the second technique, when
shared-page p is first accessed in a partition, all the nodes in the partition simultaneously
generate checkpoints to maintain the consistent state with respect to shared-page p. To
avoid taking unnecessary checkpoints in some nodes, we adopt the asynchronously coor-
dinated checkpointing technique. Fig. 5 illustrates how the inconsistency shown in Fig. 4
can be resolved using the asynchronously coordinated checkpointing technique. In Fig. 5,
when shared-page 1 is first accessed in Partition 1 at time t1, only node B generates a
checkpoint to maintain the recovery line with respect to shared-page 1. Node A does not
generate the consistent checkpoint until it reads shared-page 2 from node B at time t3.
The recovery line with respect to shared-page 1 in Partition 2 can also be obtained simi-
larly. Finally, when Partition 1 and Partition 2 are to be reconnected at time t4,
shared-page 1 is detected as an inconsistent page between both. All the nodes in Partition
1 and Partition 2 are rolled back to the respective recovery line with respect to
shared-page 1.
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Fig. 5. Inconsistency elimination example.

3.2.3 Implementation issues

The consistent states saved to resolve inconsistency can be put in the memory space
since they will not be used to handle node failures. If a node accesses an inconsistent
page or suffers form inconsistency propagation, the consistent states saved in its main
memory are still valid. However, the amount of memory space required to save all the
states of nodes may be large. To reduce the size of the required memory space, the
copy-on-write technique [17] is applied here. The copy-on-write technique can reduce
the amount of information saved in the consistent state and overlap execution of the tar-
get program with generation of the consistent state. The main idea is to break up the con-
sistent state into small pieces, and to then work on one piece at a time only when neces-
sary. The detailed procedure is described as in the following.

• When a node is required to generate a checkpoint to maintain a consistent state
with respect to a shared page, the current state of the node is first divided into the
CPU state and the memory state. The CPU state indicates the current values of the
node’s registers.

• A fixed size pool of pages is allocated from the memory space. Execution of the
node is frozen, and the CPU state is entirely copied to the page pool. At the same
time, the protection bits of all the pages in main memory are set to be “read-only.”

• Then, execution of the node is restarted, and a copy thread is initiated. The copy
thread copies a page to the page poll only if the protection bit of the page is vio-
lated (one process in the node writes on the page). If a page is not written by any
process, it is not required that it be copied to the page pool. Once the page pool is
full, a writer thread is started to write the page pool to stable storage. The page
pool is then emptied. The memory state is saved incrementally.

4. EVALUATION

This section evaluates the effects of the proposed partition-processing approach on
system performance. We first introduce the simulation environment and then present the
simulation results.
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4.1 Trace-Driven Simulation

Trace-driven simulations are used in studies of system performance to avoid build-
ing expensive prototypes [18-20]. These simulations are driven by using address traces.
The address traces of a program are the memory references while it is being executed.
The three programs used in the trace-driven simulations were: FFT, Simple and Weather.
The FFT program is a radix-2 fast Fourier transform. The Simple program models the
behavior of fluids and employs the finite difference method to solve equations describing
hydrodynamic behaviors. The Weather program partitions the atmosphere into a
three-dimensional grid and employs the finite difference method to solve equations de-
scribing the states of the system. The three programs show a wide range of difference in
load balancing. The various patterns of communication between nodes can be extensively
derived by the three programs. The characteristics of the three traces are summarized in
Table 1. The total number of memory references for each of the three programs is the
total sum of the number of data reads, the number of data writes, and the number of code
reads.

Table 1. Trace characteristics.

Number of data reads Number of data writes
Application

Program

Total number of

references
total shared total shared

Number of code

reads

FFT 7,440,001 2,936,935 528,604 1,390,178 516,961 3,112,888

Simple 27,030,092 11,541,252 5,048,671 3,894,668 451,207 11,594,172

Weather 31,764,036 15,579,599 4,531,576 2,546,230 484,724 13,638,207

The effects of the proposed partition-processing approach on system performance
were evaluated in terms of the following metrics:

• How many operations are executed correctly in a node during network partitioning?
An operation is said to be executed correctly in a node if it neither accesses any
inconsistent page nor suffers from inconsistency propagation.

• How many checkpoints are taken in a node to resolve inconsistency?
• What percentage of operations is rolled back to resolve inconsistency?

The first metric was treated as the advantage of the proposed approach. The second
metric was regarded as the failure-free overhead incurred by the proposed approach. The
third metric was regarded as the effect of the inconsistency introduced by the proposed
approach.

The workload parameters used in the simulations were specified as follows:

• The numbers of partitions varied from 2 to 16 to illustrate the effects of various
partition sizes on the above three performance metrics.

• The average number of cycles required for a local operation was set to 4 cycles.
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• The average number of cycles required for a page fault operation was set to 6 cy-
cles.

• The page size used in the simulations was 1 kilobytes.
• Each of the following simulation results is the average of 100 simulation runs.

The reference patterns (address traces) used in each simulation run were different
from those used in others. Therefore, the simulation results were not dependent on
any specific reference pattern. The network partitioning interval (the time period
between the occurrence of network partitioning and the moment when the network
was fully reconnected) in each simulation run was generated randomly.

4.2 Simulation Results

Fig. 6 shows the advantage achieved by the proposed partition-processing approach,
with the number of partitions varying from 2 to 16. As shown in Fig. 6, the number of
operations executed correctly ranged from 782 to 1670. The average network partitioning
interval among 100 simulation runs was 10,000 cycles. Based on the second workload
parameter, we can further infer that the average maximum number of operations executed
during the partitioning period in 100 simulation runs was 2500 (10000/4). The percent-
age ratio of the number of correct operations over the maximum number of operations
executed during the partitioning period ranged from 31% to 67%. The percentage advan-
tage is dependent on the access point of the node's first inaccessible page since if a node
can not access a shared page from its partition, its execution will be blocked. In addition,
if a node has accessed an inconsistent page or suffered from inconsistency propagation, it
is also required that it be rolled back. Therefore, the percentage advantage is also de-
pendent on the rollback point for resolving inconsistency. In conclusion, if the first inac-
cessible point or rollback point of a node is closer to the point of partitioning, the node
will have a smaller percentage advantage. Conversely, if most of a node's shared accesses
during partitioning period can be executed correctly, the node will have a larger percent-
age advantage.

1010

782

1135

914 914

1442

1126 1082 1094

1298
1428

1670

0

200

400

600

800

1000

1200

1400

1600

1800

2 4 8 16

Number of partitions

N
um

be
r

of
co

rr
ec

to
pe

ra
tio

ns

FFT
Simple
Weather

Fig. 6. Advantage of the proposed partition-processing approach with the partitioning period =
2500 time units (references).
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Fig. 7 shows the failure-free overhead incurred by the proposed partition-processing
approach, with the number of partitions varying from 2 to 16. The number of checkpoints
taken for resolving inconsistency was rather small. The percentage of the number of
checkpoints over the maximum number of operations (2,500 operations) allowed during
the partitioning period ranged from 0.4% to 3.2%. The number of checkpoints taken to
resolve inconsistency depends on how many shared pages are accessed in a partition. In a
program, references to shared pages usually exhibit temporal locality (shared pages cur-
rently being accessed will likely be accessed again in the near future). This property im-
plies that few shared pages are accessed during the partitioning period. Therefore, the
number of checkpoints taken to resolve inconsistencies is small. Here, the checkpoints
taken are incrementally saved in memory (see subsection 3.3) based on the copy-on-write
technique. The size of a checkpoint is dependent on the CPU state plus the number of
write operations issued during network partitioning, not the size of a full node’s state. If
few write operations are executed during network partitioning, the size of a taken check-
point is small.
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Fig. 7. Overhead of the proposed partition-processing approach with the partitioning period = 2,500
time units (references).

Fig. 8 shows the effect of the inconsistency introduced by the proposed parti-
tion-processing protocol, with the number of partitions varying from 2 to 16. The incon-
sistency effect (the percentage of the number of operations required to be rolled back
over the number of operations allowed to be executed) ranged from 7.7% to 24.7%. In
other words, up to 92.3% (7.7%) of the operations executed during network partitioning
did not introduce any inconsistency. In the worst case, 75.3% of the operations still did
not introduce any inconsistency during network partitioning.

5. CONCLUSIONS

The basic idea of the proposed approach is derived from one the DSM’s own prop-
erties: each shared page in the DSM system usually has several copies in distinct nodes.
Therefore, after network partitioning, if a node wants to access a shared page, one or
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Fig. 8. Inconsistency of the proposed partition-processing approach with the partitioning period =
2500 time units (references).

more copies of the page may exist in the node’s located partition. The one-copy read and
one-copy write protocol has been proposed and used to show how the accessibility re-
quirement of shared pages can be well satisfied. However, the proposed approach is an
optimistic-based partition-processing approach. If two partitions are to be reconnected,
there may be inconsistencies between them. To resolve inconsistencies, a memory-based
coordinated checkpointing scheme has also been presented. Finally, simulation results
were been obtained and used to show that the level of data availability provided ranges
from 31% to 67%, and that the level of the introduced inconsistency ranges from 7.7% to
24.7%.
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