
Mobile Networks and Applications 8, 687–697, 2003
 2003 Kluwer Academic Publishers. Manufactured in The Netherlands.

An Efficient Time-Based Checkpointing Protocol for Mobile
Computing Systems over Mobile IP

CHI-YI LIN, SZU-CHI WANG and SY-YEN KUO ∗
Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan

Abstract. Time-based coordinated checkpointing protocols are well suited for mobile computing systems because no explicit coordination
message is needed while the advantages of coordinated checkpointing are kept. However, without coordination, every process has to take a
checkpoint during a checkpointing process. In this paper, an efficient time-based coordinated checkpointing protocol for mobile computing
systems over Mobile IP is proposed. The protocol reduces the number of checkpoints per checkpointing process to nearly minimum, so that
fewer checkpoints need to be transmitted through the costly wireless link. Our protocol also performs very well in the aspects of minimizing
the number and size of messages transmitted in the wireless network. In addition, the protocol is nonblocking because inconsistencies can be
avoided by the piggybacked information in every message. Therefore, the protocol brings very little overhead to a mobile host with limited
resource. Additionally, by taking advantage of reliable timers in mobile support stations, the time-based checkpointing protocol can adapt
to wide area networks.

Keywords: mobile computing, fault tolerance, checkpointing and rollback-recovery

Category: Fault tolerance for IPv6 or IPv4-based mobile computing

1. Introduction

As computer and wireless communication technology ad-
vance, the paradigm of mobile computing becomes close to
reality. Mobile users are able to access and exchange infor-
mation while they are on the move. As a result, collaborative
work can be done easily, no matter where the participating
members are physically located. Moreover, since user mobil-
ity is supported, it is possible that joint workers are distributed
over the wide area network and each of them is connected
to the network via a wireless link. For example, in a sen-
sor network which carries out a real-time scientific compu-
tation, sensors with processing capability can be mobile and
distributed. Traveling salespersons may rely on the gradation
of each other for making an appropriate decision at a partic-
ular time. In these scenarios, the most important thing is to
make sure their work is progressing, and to minimize the lost
work if a failure occurs.

To achieve high reliability, checkpointing and rollback-
recovery techniques are widely used in the parallel and
distributed computing environment [4–6,8,18]. Recently,
checkpointing protocols for mobile computing systems have
also been proposed [1–3,7,9,12,14–17]. A common goal of
checkpointing protocols for mobile environment is to avoid
extra coordination messages and unnecessary checkpoints.
Coordinated checkpointing protocols have the advantage of
simplicity over uncoordinated checkpointing protocols in
terms of recovery and garbage collection. Besides, the for-
mer requires less storage capacity for saving checkpoints.
Traditional coordinated checkpointing protocols synchronize
processes by exchanging coordination messages, but these co-

∗ Corresponding author. E-mail: sykuo@cc.ee.ntu.edu.tw

ordination messages can be avoided by using time-based pro-
tocols [4,10–13,18], which use synchronized clocks or timers
to indirectly coordinate the creation of checkpoints.

However, time-based protocols require every process to
take a checkpoint during a checkpointing process, which is
saved in the local disk of a mobile host or sent to a fixed host.
In this paper, we propose an efficient time-based checkpoint-
ing protocol that tries to reduce the number of checkpoints.
The basic idea is that if a checkpoint initiator does not transi-
tively depend on a process, the process does not have to take
a checkpoint associated with the initiator. So, in our proto-
col, every process takes a soft checkpoint first, and then the
soft checkpoint will be discarded when the process is found
to be irrelevant to the initiator. Soft checkpoints are saved in
the main memory of mobile hosts, and the soft checkpoints
will be saved in the local disk at a later time only if they are
not discarded. As a result, the number of disk accesses in the
mobile hosts can be reduced.

Our protocol achieves the performance that the number of
checkpoints is close to minimum, and the number of coor-
dinating messages is very small compared to other existing
protocols. The protocol is also non-blocking because the in-
consistency between processes is avoided with the aid of the
piggybacked information in each message.

The rest of this paper is organized as follows. Section 2
briefly introduces the related work. Section 3 describes the
system model and the background. In section 4 we show how
the timer synchronization can be improved for time-based
protocols. In section 5 we present our checkpointing protocol
based on the synchronization technique in section 4. Finally,
section 6 concludes our work.

688 C.-Y. LIN ET AL.

2. Related works

Prakash and Singhal [16] first proposed a checkpointing pro-
tocol for mobile computing systems that requires only a
minimum number of processes to take checkpoints (called
min-process property) and does not block the underlying
computation (called non-blocking property) during check-
pointing. However, Cao and Singhal [2] proved that a
min-process nonblocking checkpointing algorithm does not
exist. They also introduced the concept of mutable check-
point [3], which can be saved in the main memory or local
disk of a mobile host, and is neither a tentative nor a perma-
nent checkpoint. In their checkpointing algorithm, the num-
ber of new tentative or permanent checkpoints is minimal,
excluding those mutable checkpoints that are discarded after
a checkpointing process.

Time-based protocols alleviate the need for explicit co-
ordination message when taking a global checkpoint. Since
timers cannot be perfectly synchronized, the consistency be-
tween all the checkpoints can still be a problem. In [11,13],
the consistency problem is solved by disallowing message
sending during a period after a timer expires, but this makes a
checkpointing protocol become a blocking protocol. In [12],
however, processes are nonblocking because the consistency
problem was resolved by the information piggybacked in each
message. Timer synchronization can also be done using the
piggybacked information. But when the transmission delay
between two mobile hosts becomes relatively large, the syn-
chronization result will be less accurate. Since the reliability
of a mobile support station is much higher than that of a mo-
bile host, we can take advantage of the accurate clock or timer
in a mobile support station as a reliable reference for MHs.

3. System model and background

A mobile computing application is executed by a set of N

processes running on several mobile hosts (MHs). Processes
communicate with each other by sending messages. These
messages are received and then forwarded to the destination
host by mobile support stations (MSSs), which are intercon-
nected by a fixed network. The mobility of MHs is supported
by Mobile IP of IPv4 or IPv6, so that messages can be routed
to the destination MH which is moving around in the network.
A MH is associated with a Home Agent (HA) when it is within
its home network, and with a Foreign Agent (FA) when within
a foreign network.

To ensure ordered and reliable message deliveries, each
message is associated with an increasing sequence number.
To provide a computing system with fault tolerance capabil-
ity, every process takes a checkpoint periodically. The pe-
riodicity of taking two consecutive checkpoints is called a
checkpoint period. Each checkpoint is associated with a
monotonically increasing checkpoint number. In a coordi-
nated checkpointing protocol, those checkpoints with the
same checkpoint number from all the processes form a glob-
ally consistent checkpoint. The time interval after taking the

kth checkpoint and before taking the (k+ 1)th checkpoints is
called the kth checkpoint interval.

In a system, each node (including MHs and MSSs) con-
tains a system clock, with typical clock drift rate ρ in the
order of 10−5 or 10−6. The system clocks of MSSs can
be synchronized using Internet time synchronization services
such as Network Time Protocol (NTP), which makes the maxi-
mum deviation σ of all the clocks within tens of milliseconds.
The synchronization of MSSs can be done periodically. How-
ever, in a wide area network environment, MSSs may belong
to different organizations. So, instead of syncing the physi-
cal system clocks of MSSs, we use the clock synchronization
protocol to sync the logical clocks. The clocks of MHs can
be synchronized likewise, but explicit synchronization mes-
sages bring overhead to MHs because of the limited wireless
bandwidth. In addition, the system clocks of MHs may not be
controlled by a user-level application. It is also possible that
there are other applications running concurrently in the MH,
and some of the applications require transactions. The conse-
quence is that modifying system clocks to coordinate between
processes may not be a feasible way. Therefore, to coordinate
with each other, processes use synchronized timers instead of
synchronized clocks. The advantages of using timers to coor-
dinate the creation of checkpoints are that the checkpointing
protocol does not have to rely on synchronized system clocks
of the participating hosts, and no explicit synchronization is
needed.

Before a mobile computing application starts, a predefined
checkpoint period T is set on the timers. When the local
timer expires, the process saves its system state as a check-
point. If all the timers expire at exactly the same time, the
set of N checkpoints taken at the same instant forms a glob-
ally consistent checkpoint. Since timers are not perfectly syn-
chronized, the checkpoints may not be consistent because of
orphan messages. An orphan message m represents an in-
consistent system state with the event receive(m) included in
the system state while the event send(m) not in the state. Or-
phan messages may lead to the domino effect, which causes
unbounded, cascading rollback propagation. As a result, in
designing a checkpointing protocol, we need to ensure that
no orphan message exists in a global checkpoint, so that the
recovery can be free from the domino effect.

4. Improved timer synchronization

In this section we modify the timer synchronization mech-
anism in the adaptive checkpointing protocol proposed by
Neves and Fuchs [12], which makes the mechanism adaptive
to wide area networks.

The mechanism of timer synchronization in [12] uses pig-
gybacked timer information from the sender to adjust the
timer at the receiver. When the sender sends a message,
it piggybacks its “time to next checkpoint” (represented as
timeToCkp) in the message. The receiver then uses the piggy-
backed timeToCkp to adjust its own timeToCkp. The check-
point number of the sender is also piggybacked in the

AN EFFICIENT TIME-BASED CHECKPOINTING PROTOCOL FOR MOBILE COMPUTING SYSTEMS OVER MOBILE IP 689

(a) (b)

Figure 1. Timer synchronization (a) cnMSS > cnS = cnD , and (b) cnMSS < cnS = cnD .

message, so that the receiver can act accordingly to avoid
an orphan message. However, it is clear that if the timer of
the sender is faulty, the erroneous timer information will be
spread to the receiver. Besides, since the transmission delay
between the sender and the receiver is variable, the timer in-
formation from the sender may not reflect the correct situation
when the message finally arrives at the receiver.

To achieve more accurate timer synchronization, we can
utilize the timers in MSSs as an absolute reference because
these timers in fixed hosts are more reliable than those in
MHs. We assume that the timers of the MSSs are synchro-
nized every checkpoint period, which is not a problem for
fixed hosts in a wired network. In our design, the local MSS
of the receiver is responsible for piggybacking its own time-
ToCkp in every message destined to the receiver, because the
MSS is the closest fixed host to the receiver.

In the system every MH and MSS maintains a checkpoint
number. The checkpoint number is incremented whenever the
local timer expires. In the following we use cnS, cnD , and
cnMSS to represent the checkpoint number of the sender, re-
ceiver, and the local MSS of the receiver, respectively. Just
like in [12], the sender piggybacks its own checkpoint num-
ber cnS in each message. When the local MSS of the receiver
receives the message, apart from timeToCkp, it also piggy-
backs cnMSS in the message. So there are three pieces of infor-
mation piggybacked in a message when the message arrives
at the receiver: cnS, cnMSS, and timeToCkp of the local MSS
(represented as m.timeToCkp). Note that in practice messages
take a minimum time tdmin to be delivered from a MSS to a
MH in its cell. So, whenever the local timer of a MH is ad-
justed by m.timeToCkp, substracting tdmin from m.timeToCkp
makes the adjustment more accurate. In the following de-
scription we use the symbol to represent minus tdmin. The
relationship between the checkpoint numbers of the receiver,
the cnD, cnMSS, and cnS determines how the timer is adjusted,
as described in the following cases:

I. Checkpoint numbers of the sender and the receiver are
the same (cnS = cnD):

(1) cnMSS is equal to cnS and cnD (cnMSS = cnS = cnD).
In this case, the receiver resets its timeToCkp to
m.timeToCkp + .

(2) cnMSS is larger than cnS and cnD (cnMSS > cnS =
cnD , see figure 1(a)). It means that the timer of MHD

is late compared to that of MSS2. So as soon as mes-
sage m is processed, MHD takes a checkpoint with
checkpoint number equals to cnMSS. Then MHD re-
sets its timeToCkp to m.timeToCkp + .

(3) cnMSS is smaller than cnS and cnD (cnMSS < cnS =
cnD , see figure 1(b)). It means that the timers of
MHS and MHD are both early compared to that of
MSS2. In order to make the timer of MHD expire at
around the right time, MHD resets its timeToCkp to
checkpoint period T plus m.timeToCkp + .

II. Checkpoint number of the sender is smaller than that of
the receiver (cnS < cnD):

(1) cnMSS is equal to cnD (cnS < cnMSS = cnD).
Since MHD and its local MSS are within the same
checkpoint period, MHD just resets its timeToCkp to
m.timeToCkp + .

(2) cnMSS is equal to cnS (cnS = cnMSS < cnD).

cnMSS < cnD means that the timer of MHD expires
too early, so MHD resets its timeToCkp to checkpoint
period T plus m.timeToCkp + .

III. Checkpoint number of the sender is larger than that of the
receiver (cnS > cnD):

(1) cnMSS is equal to cnD (cnS > cnMSS = cnD , see fig-
ure 2(a)). In this case, before MHD can process m,
it has to take a checkpoint with checkpoint number
equal to cnS ; otherwise m becomes an orphan mes-
sage. Then MHD resets its timeToCkp to checkpoint
period T plus m.timeToCkp + .

(2) cnMSS is equal to cnS (cnS = cnMSS > cnD , see
figure 2(b)). This case is basically the same as the
previous one: MHD has to take a checkpoint before
processing m in order not to make m an orphan mes-
sage. Since the timer of MHD is late compared to
that of MSS2 (cnMSS > cnD), MHD then resets its
timeToCkp to m.timeToCkp + .

690 C.-Y. LIN ET AL.

(a) (b)

Figure 2. Timer synchronization (a) cnS > cnMSS = cnD , and (b) cnS = cnMSS > cnD .

From the above discussion, we can find that the receiver’s
timer can be synchronized whenever a message is received.
Since the synchronization information is piggybacked in
every message, the sender’s timer can also be synchronized
with its local MSS as soon as the sender receives the acknowl-
edgement. In other words, both timers of the sender and the
receiver can be synchronized in every message exchange.

In the next section, our checkpointing protocol requires
that at the end of a checkpoint interval, none of the MH’s
timers expires earlier than those of MSSs. To fulfill the re-
quirement, we need to take the clock drifts of MHs and MSSs
into account. The clock drift rates of the timers in MHs and
MSSs are represented as ρMH and ρMSS, respectively. In the
system model we also mentioned that after the clock synchro-
nization, there exists a maximum deviation σ between two
MSSs. In the following lemma, we show how the requirement
is achieved.

Lemma 1. By setting = σ + 2ρMSS × T + ρMH × 2T

− tdmin in the algorithm, for any process that has received a
message in the (cn − 1)th checkpoint interval, its (cn + 1)th
checkpoint interval begins no earlier than that of a MSS.

Proof. Assume a process is in the (cn− 1)th checkpoint in-
terval and it receives a message. It is straightforward that the
maximum time deviation between any two MSSs after a time
period T , is σ + 2ρMSS × T . If receiving the message trig-
gers a new checkpoint to be taken immediately such as cases
I(2), III(1), and III(2), the maximum time to the (cn + 1)th
checkpoint is 2T . As a result, the maximum time deviation
between the process and its MSS is ρMH × 2T − tdmin from
receiving the message to taking the (cn + 1)th checkpoint.
By setting = σ + 2ρMSS × T + ρMH × 2T − tdmin, the
adjustment of timeToCkp makes the local timer expire no ear-
lier than that of a MSS for the cnth checkpoint interval. On
the other hand, if receiving the message does not trigger a
new checkpoint immediately such as all other cases, the max-
imum time to the (cn+ 1)th checkpoint is T . But multiplying
2T with ρMH in ensures that even if the process does not
receive any message during the cnth checkpoint interval, the
process’s (cn +1)th checkpoint interval will not begin earlier
than that of a MSS. �

5. A time-based coordinated checkpointing protocol

In this section, we present our time-based checkpointing pro-
tocol based on the synchronization techniques described in
section 4, which is applicable for mobile computing systems
over Mobile IP.

5.1. Notations and data structures

• SoftCkptcn: The cnth soft checkpoint of a process, which
is saved in the main memory of a MH.

• HardCkptcn: The cnth hard checkpoint of a process, which
is saved in the local disk of a MH or the stable storage of
the MH’s HA or FA.

• PermCkptcn: The cnth permanent checkpoint of a process,
which is saved in the stable storage of the HA or FA. The
system recovery line consists of N consistent permanent
checkpoints, one from each process.

• Cellk: The wireless cell served by MSSk .

• Recvi : An array of N bits of process Pi maintained by Pi ’s
local MSS. In the beginning of every checkpoint interval,
Recvi [j] is initialized to 0 for j = 1 to N , except that
Recvi [i] always equals 1. When Pi receives a message m

from Pj , and the receipt of m is confirmed by Pi’s MSS,
Recvi [j] is set to 1.

• LastRecvi : The Recvi vector of the preceding checkpoint
interval of process Pi , which is also maintained by Pi ’s
local MSS.

• RejectCPi : A variable that saves a checkpoint number for
process Pi , maintained by Pi ’s local MSS. When Pi is try-
ing to transmit its hard checkpoint to the wired network,
the local MSS rejects the transmission if the checkpoint
number equals RejectCPi .

• CkptNumi : The current checkpoint number of Pi in the
local MSS’s knowledge.

5.2. The checkpointing protocol

5.2.1. Checkpoint initiation
A process takes a soft checkpoint whenever its local timer
expires. That is, the checkpointing process is intrinsically ini-

AN EFFICIENT TIME-BASED CHECKPOINTING PROTOCOL FOR MOBILE COMPUTING SYSTEMS OVER MOBILE IP 691

tiated distributedly, by the event of timer expiration in each
mobile host. From section 4 we know that a process may also
be forced to take a soft checkpoint on receiving a message. In
this case, timeToCkp of the process is effectively set to zero on
receiving the message, so a soft checkpoint will be taken im-
mediately. After a soft checkpoint has been taken, Pi resumes
its computation.

We assume that during each checkpointing process, one
of the N processes will play the role of the checkpoint ini-
tiator. During a checkpointing interval, the initiator sends a
checkpoint request only to its local MSS (denoted by MSSinit).
During the checkpointing process, MSSinit is then responsible
for collecting and calculating the dependency relationship be-
tween the initiator and all other processes. Note that if there
is no checkpoint initiator, the protocol becomes a traditional
time-based checkpointing protocol, which makes no effort to
reduce unnecessary checkpoints.

5.2.2. Maintaining dependency variables in MSSs
Since a MSS is responsible for forwarding messages to/from
the MHs in its cell, we can make use of the MSS to main-
tain the dependency variables (Recv, LastRecv) for those
processes in the cell. For example, process Pi in Cellk re-
ceives a message from Pj and then sends an ACK back to Pj

via MSSk . By inspecting the ACK, MSSk knows that the mes-
sage from Pj has been delivered, so MSSk sets Recvi [j] to 1.
Note that the ACK is piggybacked with the checkpoint num-
ber of Pi , as described in section 4. From the piggybacked
checkpoint number of Pi, MSSk can tell whether Pi has en-
tered the next checkpoint interval or not. As soon as MSSk

finds that Pi has entered a new checkpoint interval, MSSk then
saves the current Recvi as LastRecvi , resets Recvi , and then
modifies Recvi accordingly. At the same time, MSSk also up-
dates CkptNumi for Pi . Note that the variable RejectCP is also
maintained in the MSS. We will explain it in section 5.3.2.

5.2.3. Calculating the dependency relationship
When the local timer of MSSinit expires, MSSinit broadcasts
a Recv_Request message to all MSSs. At Tdefer after receiv-
ing Recv_Request, each MSS sends to MSSinit the dependency
vector (Recv or LastRecv) of every process in its cell. Here
Tdefer is a tunable parameter that the last message sent by a
process before the process’s timer expires is expected to ar-
rive at the local MSS no later than Tdefer after the MSS’s timer
expires. We can choose a proper Tdefer according to the QoS
of the mobile network: the better the QoS, the smaller the
Tdefer. A reasonable upper bound of Tdefer can be one half of
a checkpoint period (T /2), which is normally in the order of
several minutes or more.

After receiving all the dependency vectors, MSSinit con-
structs an N × N dependency matrix D with one row per
process. We adopt the algorithm in [2] that by matrix multi-
plications, all the processes on which the initiator transitively
depends can be calculated. After finishing the calculation,
the final dependency vector Dinit can be obtained, in which
Dinit[i] = 1 represents that the initiator transitively depends
on Pi in the preceding checkpoint interval.

5.2.4. Discarding unnecessary soft checkpoints
A process can discard the newly taken soft checkpoint if
the initiator does not depend on the process in the preced-
ing checkpoint interval. To do that, MSSinit obtains a set
S_Discardcn from Dinit, which consists of any process Pi

such that Dinit[i] = 0, and then MSSinit sends a notification
DISCARDcn to the processes in S_Discardcn. If process Pi

receives DISCARDcn, it deletes the soft checkpoint from its
main memory, and then renumbers the old HardCkptcn−1 as
HardCkptcn. For the MSS that delivers DISCARDcn to Pi , it
sets Recvi = (LastRecvi ∨ Recvi) for Pi .

On the other hand, for those processes that do not re-
ceive DISCARDcn during the cnth checkpoint interval, the
soft checkpoints are kept in the main memory. At the begin-
ning of the (cn+1)th checkpoint interval, the soft checkpoint
is turned into a hard one before a new soft checkpoint can be
taken.

5.2.5. Maintaining permanent checkpoints
In order to ensure the robustness of the recovery line, the hard
checkpoints in a MH’s local disk should be transmitted to the
stable storage of a fixed host periodically. In the mobile com-
puting system based on Mobile IP, the stable storage of the
home agent (HA) or foreign agent (FA) is an ideal place to
store the permanent checkpoints for the processes in a MH.

The initial state of a process can be regarded as the first
permanent checkpoint saved in the HA or FA of the process.
So, there exists an initial recovery line which consists of
N permanent checkpoints with checkpoint number 0. From
5.2.4 we know that a set of N hard checkpoints with check-
point number cn will be formed at the beginning of the
(cn + 1)th checkpoint interval. During the (cn+ 1)th check-
point interval, each process sends its HardCkptcn to either
the HA or FA, depending on its current location. When the
HA/FA receives the checkpoint, it saves HardCkptcn in its sta-
ble storage as a permanent checkpoint PermCkptcn. After the
HA/FA has collected all the checkpoints it should have re-
ceived, it then proposes to advance the recovery line to check-
point number cn. By adopting any feasible total agreement
protocol, when all the HAs and FAs have proposed, the recov-
ery line is advanced to checkpoint number cn.

5.2.6. Handling disconnections and Handoffs
When a MH within its cnth checkpoint interval is about to
disconnect with its local MSS (say MSSp), the processes on
the MH are required to take a hard checkpoint with check-
point cn + 1. Then, the checkpoints are forwarded to the HA
or FA by MSSp. Assume process Pi takes a hard checkpoint
HardCkptcn+1. On receiving HardCkptcn+1, the HA/FA saves
(i, HardCkptcn+1) in the stable storage, but HardCkptcn+1

does not overwrite PermCkptcn+1 of Pi at the moment. The
reason is that HardCkptcn+1 may possibly be discarded during
the (cn + 1)th checkpoint interval if Pi is in S_Discardcn+1.
If HardCkptcn+1 is not discarded during the (cn+1)th check-
point interval, it is turned into a permanent checkpoint during
the (cn+ 2)th checkpoint interval.

692 C.-Y. LIN ET AL.

For a disconnected process, its dependency information
(Recv, LastRecv, RejectCP, CkptNum) is still kept in the MSS.
If the process reconnects with another MSS at a later time,
the old MSS then sends the dependency information of the
process to the new MSS. For the handoff of a MH, the old
MSS also forwards the dependency information of all the

processes in the MH to the new MSS. If the handoff in-
volves a change of agents, the old agent forwards the per-
manent checkpoints of the processes in the MH to the new
agent.

In the following we present a formal description of our
checkpointing algorithm:

I. Action at the initiator Pj :
01 send Checkpoint_Request to the local MSS; /* The MSS becomes MSSinit ∗ /

II. Actions at the MSSinit:
01 wait until the local timer expires; /* Enters a new checkpoint interval */
02 cn← cn + 1; timeToCkp← T;
03 send Recv_Request to all MSSs;
04 while (not receiving all Recv vectors from each MSS)
05 if (timeToCkp = 0)
06 exit; /* Abort checkpointing process for this time */
07 construct matrix D;
08 Dinit ← calculate(Recvinit, D);/ ∗ Recvinit is the Recv variable of the initiator */
09 S_Discardcn ← φ;
10 for each Pi:
11 if (Dinit[i] = 0)
12 S_Discardcn ← S_Discardcn ∪ Pi;
13 send DISCARDcn to all processes ∈ S_Discardcn;
III. Actions at process Pi when Timeout_Event is triggered for checkpoint interval cn:
01 if (SoftCkptcn = NULL)
02 turn SoftCkptcn into HardCkptcn;
03 take SoftCkptcn +1;
04 cn← cn + 1; timeToCkp← nextTimeToCkp;
IV. Actions executed at an MSS, say MSSk, in the checkpoint interval cn:
01 upon relaying message m from Pi ∈ Cellk to Pj: /∗ Note that m can also be an ACK */
02 if (m.cni > CkptNumi) / ∗ Pi has entered next ckpt interval but MSSk is not aware of that*/
03 {
04 CkptNumi← m.cni;
05 LastRecvi← Recvi;
06 reset Recvi;
07 modify Recvi if necessary, then send m to Pj;
08 }
09 else if (m.ni = CkptNumi)
10 modify Recvi if necessary, then send m to Pj;
11 else /* m.cni < CkptNumi ∗ /

12 send m to Pj;
13 upon receiving Recv_Request from MSSinit:
14 wait (Tdefer);
15 for each i that Pi ∈ Cellk:
16 if (CkptNumi = cn)
17 send LastRecvi to MSSinit;
18 else /* CkptNumi < cn, and CkptNumi cannot be larger than cn */
19 {
20 for any j that a message from Pj is unacknowledged:
21 Recvi[j]← 1;
22 send Recvi to MSSinit;
23 LastRecvi← Recvi; reset Recvi;
24 CkptNumi← cn;
25 }
26 upon receiving DISCARDcn for Pi in Cellk from MSSinit:
27 if (Pi is disconnected)
28 forward DISCARDcn to the HA/FA of Pi;
29 else
30 forward DISCARDcn to Pi;
31 Recvi← LastRecvi ∨ Recvi;
32 upon receiving Disconnect_Request from MHq in Cellk:
33 for each Pi in MHq: /* HardCkpt cn+1 is included in the request */
34 send HardCkptcn+1 to the HA/FA of Pi;
35 upon receiving Handoff_Request from MHq in Cellk:
36 for each Pi in MHq: /∗ The id of the new MSS is included in the request */
37 send (Recvi, LastRecvi, RejectCPi, CkptNumi) to the new MSS of Pi;
38 upon the local timer expires:

AN EFFICIENT TIME-BASED CHECKPOINTING PROTOCOL FOR MOBILE COMPUTING SYSTEMS OVER MOBILE IP 693

39 for any i such that DISCARDcn for Pi ∈ Cellk is undelivered:
40 RejectCPi← cn;
41 cn← cn + 1; timeToCkp← nextTimeToCkp;
42 upon receiving ForwardCP_Request(cn−1) from Pi ∈ Cellk:
43 if (cn−1 = RejectCPi)
44 receive and then forward the checkpoint to the HA/FA of Pi;
45 else
46 reject the transmission;
V. Actions for any process Pi in the checkpoint interval cn:
01 upon sending HardCkptcn-1 to the HA or FA:
02 send ForwardCP_Request(cn-1) to the local MSS;
03 if (request not rejected)
04 send HardCkptcn-1 to the HA or FA;
05 upon receiving DISCARDcn:
06 discard SoftCkptcn; renumber HardCkptcn-1 as HardCkptcn;
07 upon expiration of the local timer:
08 nextTimeToCkp← T; trigger Timeout_Event;
09 upon receiving a message m from Pj:
10 if (m.cnj = cn)
11 {
12 deliverMsgToProcess(m);
13 if (m.cnMSS = m.cnj)
14 timeToCkp← m.timeToCkp + ;
15 else if (m.cnMSS > m.cnj)
16 {
17 cn← m.cnMSS; nextTimeToCkp← m.timeToCkp + ;
18 trigger Timeout_Event; /* A soft ckpt will be taken now */
19 }
20 else
21 timeToCkp← T + m.timeToCkp + ; /* m.cnMSS < m.cnj ∗ /

22 }
23 else if (m.cnj < cn)
24 {
25 deliverMsgToProcess(m);
26 if (m.cnMSS = cn)
27 timeToCkp← m.timeToCkp + ;
28 else
29 timeToCkp← T + m.timeToCkp + ; /* m.cnMSS = m.cnj ∗ /

30 }
31 else /* m.cnj > cn ∗ /

32 {
33 if (m.cnMSS = cn)
34 nextTimeToCkp← T + timeToCkp+ ;
35 else
36 nextTimeToCkp← m.timeToCkp+ ; /* m.cnMSS = m.cnj ∗ /

37 cn← m.cnj;
38 trigger Timeout_Event; /* A soft ckpt will be taken now */
39 wait until SoftCkptcn is taken:
40 deliverMsgToProcess (m);
41 }

5.3. Handling untimely delayed messages

Since inherent uncertainty of message delivery time exists in
the wired and wireless network, we have to deal with untimely
delayed messages in the checkpointing algorithm carefully.

5.3.1. Untimely delayed Recv vectors
When MSSinit is collecting the Recv vectors, it is possible that
because of network congestions or link failures in the wired
network, at the end of the checkpoint interval, some of the
Recv vectors have not been received yet. In this case, the
checkpointing process for this time has to be aborted (see
code II, lines 04–06). In effect, aborting the checkpointing
process does not stop the progression of the recovery line

since every process has taken a soft checkpoint, and these soft
checkpoints will be turned hard at the beginning of the next
checkpoint interval.

5.3.2. Untimely delayed DISCARDcn notifications
There is a chance that the discard notifications DISCARDcn

cannot be delivered to some of the processes before their cnth
checkpoint interval is over. For example, the scenario in fig-
ure 3 can happen for any Pi and Pj both in S_Discardcn:
at the end of the cnth checkpoint interval, Pi has received
DISCARDcn but Pj has not. The consequence is that Pi will
renumber its HardCkptcn−1 as HardCkptcn and Pj will turn
its SoftCkptcn into HardCkptcn. If there exists a message m

694 C.-Y. LIN ET AL.

sent by Pi after Pi ’s HardCkptcn−1 and received by Pj before
Pj ’s SoftCkptcn, then m becomes an orphan message with re-
spect to Pi ’s HardCkptcn and Pj ’s HardCkptcn. However, the
local MSS of Pj is aware that Pj does not receive DISCARDcn

during the cnth checkpoint interval, so it sets RejectCPj to cn.
During the (cn+1)th checkpoint interval, the MSS rejects the
transmission of Pj ’s HardCkptcn (see code IV, lines 38-46) so
that the permanent checkpoint of Pj is not overwritten by the
wrongly taken hard checkpoint. On Pj ’s part, if the transmis-
sion of its HardCkptcn is rejected by the local MSS, Pj deletes
HardCkptcn.

5.3.3. Untimely Delayed Acknowledgements
In our algorithm, Pi’s dependency vectors Recvi and
LastRecvi are maintained by the local MSS (say MSSk). MSSk

maintains these variables by inspecting the piggybacked in-
formation in an ACK sent by Pi , but an untimely delayed ACK
could be a problem during the checkpointing process. Take
figure 4 as an example, when MSSk is about to send Recvi

to MSSinit, ACK.m has not arrived so that MSSk cannot tell
whether or not to include the receipt of m in Recvi at the in-
stant. In the proposed algorithm we take the following policy
(see code IV, lines 18–25): when MSSk is about to send Recvi

to MSSinit and it finds that such an unacknowledged message
exists, Recvi[j] is set to 1. That is, MSSk presumes the case
figure 4(a) always happens. But if ACK.m finally arrives and
shows that figure 4(b) is true instead, the receipt of m is then
included in Recvi of the cnth checkpoint interval.

5.4. Rollback recovery

When a failure occurs, all the processes should roll back to the
latest recovery line. Assume the latest recovery line is num-

Figure 3. A possible scenario that the delivery of DISCARDcn for Pj is
delayed.

bered as cn. Each process first checks whether its HardCkptcn

is still in the local disk. If HardCkptcn is found, the process
can roll back to the state of HardCkptcn because the con-
tent of HardCkptcn is identical to PermCkptcn. Otherwise,
the process requests its PermCkptcn from the HA or FA. Note
that a wrongly taken HardCkptcn of a process, as described
in section 5.3.2, will not be used for recovery because the
process will delete the checkpoint as soon as the transmission
of HardCkptcn is rejected.

From the above description, we can see that with the help
of local hard checkpoints, some of the processes can be re-
covered locally so that the recovery can be done efficiently.

5.5. Proof of correctness

Lemma 2. If a process Pi receives a message from another
process Pj during the (cn−1)th checkpoint interval and Pj ∈
S_Discardcn, then Pi ∈ S_Discardcn.

Proof. If Pi /∈ S_Discardcn, from the proposed algorithm,
the initiator transitively depends on Pi during the (cn − 1)th
checkpoint interval. Since Pi depends on Pj , the initiator also
transitively depends on Pj during the (cn − 1)th checkpoint
interval. From the proposed algorithm, Pj /∈ S_Discardcn.
A contradiction. �

Lemma 3. N permanent checkpoints with the same check-
point number form a globally consistent checkpoint.

Proof. We prove it by induction. In the beginning, the N

permanent checkpoints with checkpoint number 0 obviously
form a globally consistent checkpoint. Assume there are N

permanent checkpoints with checkpoint number k and they
form a globally consistent checkpoint. In the proposed al-
gorithm, if a process Pi receives a message m from another
process Pj during the kth checkpoint interval, there are two
possibilities:

Case 1: If Pj ∈ S_Discardk+1, there are two possibilities
for Pj :

(1.1) Pj does not receive DISCARDk+1 during its (k+1)th
checkpoint interval. From lemma 1 we know Pj ’s
local MSS does not receive the ACK of DISCARDk+1

(a) (b)

Figure 4. The ACK of m arrives later than MSSk has sent Recvi to MSSinit (a) receipt of m is in (cn− 1)th checkpoint interval of Pi ; (b) receipt of m is in the
cnth checkpoint interval of Pi .

AN EFFICIENT TIME-BASED CHECKPOINTING PROTOCOL FOR MOBILE COMPUTING SYSTEMS OVER MOBILE IP 695

at the end of its (k + 1)th checkpoint interval. As a
result, RejectCPj is set to k + 1 and the preceding

permanent checkpoint PermCkptk of Pj is renum-
bered as PermCkptk+1.

(1.2) Pj receives DISCARDk+1 during its (k + 1)th
checkpoint interval. In this case, Pj discards its
SoftCkptk+1 and the preceding permanent check-
point PermCkptk of Pj is renumbered as
PermCkptk+1.

From lemma 2 we know Pi ∈ S_Discardk+1. Through
the above discussion, we know no matter if Pi receives
DISCARDk+1 during its (k + 1)th checkpoint interval or
not, the preceding permanent checkpoint PermCkptk of
Pi is renumbered as PermCkptk+1. Since the permanent
checkpoints with checkpoint number k form a globally
consistent checkpoint, there is no orphan message between
the (k+1)th permanent checkpoint of Pi and the (k+1)th
permanent checkpoint of Pj .

Case 2: If Pj /∈ S_Discardk+1, Pj does not receive
DISCARDk+1 and turns its SoftCkptk+1 into HardCkptk+1

at the end of its (k + 1)th checkpoint interval. After that,
Pj ’s HardCkptk+1 is saved as Pj ’s PermCkptk+1. From
the proposed algorithm, Pj must send m before it takes
SoftCkptk+1. Otherwise, Pi will take SoftCkptk+1 before
processing m, which makes m been received within Pi ’s
(k + 1)th checkpoint interval. As a result, no matter Pi ’s
PermCkptk is renumbered as PermCkptk+1 or Pi ’s Hard-
Ckptk+1 is saved as PermCkptk+1, there is no orphan mes-
sage between Pi ’s PermCkptk+1 and Pj ’s PermCkptk+1.

Thus, if the N permanent checkpoints with checkpoint
number k form a globally consistent checkpoint, there is no
orphan message between the (k+1)th permanent checkpoints
of any two processes. That is, N permanent checkpoints with
checkpoint number k + 1 form a globally consistent check-
point. �

Theorem. The proposed algorithm always creates a consis-
tent global checkpoint.

Proof. In the beginning there are N permanent checkpoints
with checkpoint number 0, and they form the initial recovery
line. Suppose there exists N permanent checkpoints with the
same checkpoint number k. In the proposed algorithm, we
advance the recovery line to checkpoint number k + 1 only
when all processes’ permanent checkpoints PermCkptk+1 are
collected. From lemma 3, N permanent checkpoints with the
same checkpoint number form a globally consistent check-
point. Therefore, there always exists a consistent global
checkpoint. �

5.6. Performance of our algorithm

In this section we discuss the performance of our checkpoint-
ing algorithm, including the blocking time, the number of

permanent checkpoints, and the number of coordinating mes-
sages. Then we show the comparison with other protocols in
a table. Here are the notations used in the following text:

– Nmin: the number of processes that need to take check-
points using the Koo–Toueg algorithm [8].

– Ndep: the average number of processes on which a process
depends (1 � Ndep � N − 1).

– Cwireless: cost of sending a message in the wireless link.

– Cwired: cost of sending a message in the wired link.

– Cbroad: cost of broadcasting a message to all processes.

– Tckpt: the checkpointing time, including the delays in-
curred in transferring a checkpoint from a MH to its MSS
and saving the checkpoint in the stable storage in the MSS
or a fixed host.

5.6.1. Blocking time
It is very clear that the blocking time of our protocol is 0.

5.6.2. Number of new permanent checkpoints
In section 5.3.3, we described that if there is an unacknowl-
edged message like the scenario depicted in figure 4, the MSS
presumes the case in figure 4(a) always happens. That is, the
receipt of message m from Pj is included in the Recv vector
of Pi ’s (cn− 1)th checkpoint interval. If it turns out later that
figure 4(b) is true instead, then there is a chance that Pj and
Pj -dependent processes should not have been included in the
final dependency with the initiator. The consequence is that
there may be additional soft checkpoints be turned into hard
ones, so as to increase the number of new permanent check-
points. If we choose a proper Tdefer such that the untimely
delayed ACKs are very rare, the number of new permanent
checkpoints is then close to minimum.

5.6.3. Number of coordinating messages
In the algorithm, the only coordinating message transmitted
in the wireless link is the discard notification to a process in
the set S_Discardcn. The approximate number of discard no-
tifications is N − Nmin. Messages sent in the wired link are
N Recv vectors from each MSS to MSSinit, and N − Nmin

discard notifications from MSSinit to MSSs that serve the
processes in S_Discardcn.

5.6.4. Comparison with other algorithms
Table 1 compares the performance of our algorithm with the
algorithms in [3,8,13]. Compared to the Neves–Fuchs algo-
rithm which is also time-based, our algorithm reduces the
number of checkpoints to nearly minimum, so that the to-
tal number of checkpoints transmitted onto the fixed network
is reduced. Fewer checkpoints transmitted also means less
power consumption for mobile hosts. For a mobile comput-
ing system, it is also very critical to minimize the number and
size of the messages transmitted in the wireless link. So, if
we only consider the number of coordinating messages sent
in the wireless link, our algorithm performs fairly well. For
the size of the piggybacked information and the coordination

696 C.-Y. LIN ET AL.

Table 1
Performance comparison.

Algorithm Blocking time Checkpoints Messages

Koo–Toueg [8] Nmin × Tckpt Nmin 3 ×Nmin ×Ndep × (Cwired + Cwireless)

Neves–Fuchs [13] σ + 2ρMHT − tdmin N 2 ×N × Cwireless
Cao–Singhal [3] 0 Nmin ≈ 2×Nmin × (Cwired + Cwireless)

+min(Nmin × (Cwired + Cwireless), Cbroad)

Our algorithm 0 ≈ Nmin ≈ N × Cwired + (N − Nmin)× (Cwired + Cwireless)

message in the wireless link, our protocol outperforms Cao–
Singhal algorithm with O(1) to O(N). On the other hand, the
cost of transmitting a message in the wired link is far less than
transmitting in the wireless link. So, although our protocol re-
quires O(N) coordinating messages in the wired network, the
cost is affordable for the wired network with high bandwidth.

6. Conclusions

In this paper we proposed a time-based checkpointing proto-
col for mobile computing systems over Mobile IP. Our pro-
tocol reduces the number of checkpoints compared to the
traditional time-based protocols. We also make use of the ac-
curate timers in the MSSs to adjust the timers in the MHs,
so that our protocol is well suited to a large mobile com-
puting system with MHs spread across a wide area network.
We also take advantage of the infrastructure provided by Mo-
bile IP, so that the permanent checkpoints of the participat-
ing processes can be saved in the HA or FA depending on
the process’s current location. Compared to other protocols,
our protocol performs very well in the aspects of minimizing
the number and size of messages transmitted in the wireless
media. Tracking and computing the dependency relationship
between processes are performed in the MSSs, so that MHs
are free from additional tasks during checkpointing.

References

[1] A. Acharya and B.R. Badrinath, Checkpointing distributed applications
on mobile computers, in: Proceedings of International Conference
on Parallel and Distributed Information Systems (September 1994)
pp. 73–80.

[2] G. Cao and M. Singhal, On the impossibility of min-process non-
blocking checkpointing and an efficient checkpointing algorithm for
mobile computing systems, in: Proceedings of the 27th International
Conference on Parallel Processing (August 1998) pp. 37–44.

[3] G. Cao and M. Singhal, Mutable checkpoints: A new checkpointing ap-
proach for mobile computing, IEEE Transactions on Parallel and Dis-
tributed Systems 12(2) (2001) 157–172.

[4] F. Cristian and F. Jahanian, A timestamp-based checkpointing protocol
for long-lived distributed computations, in: Proceedings of the IEEE
International Symposium on Reliable Distributed Systems (September
1991) pp. 12–20.

[5] E.N. Elnozahy, D.B. Johnson and W. Zwaenepoel, The performance of
consistent checkpointing, in: Proceedings of the 11th Symposium on
Reliable Distributed Systems (October 1992) pp. 39–47.

[6] E. Elnozahy, L. Alvisi, Y.M. Wang and D.B. Johnson, A survey of roll-
back recovery protocols in message passing systems, Technical report
CMU-CS-99-148, School of Computer Science, Carnegie Mellon Uni-
versity (June 1999).

[7] H. Higaki and M. Takizawa, Checkpoint-recovery protocol for reliable
mobile systems, in: Proceedings of the IEEE Symposium on Reliable
Distributed Systems (October 1998) pp. 93–99.

[8] R. Koo and S. Toueg, Checkpointing and rollback-recovery for dis-
tributed systems, IEEE Transactions on Software Engineering (January
1987) 23–31.

[9] Y. Morita and H. Higaki, Hybrid checkpoint protocol for support-
ing mobile-to-mobile communication, in: Proceedings of the IEEE
International Conference on Information Networking (January 2001)
pp. 529–536.

[10] S. Neogy, A. Sinha and P.K. Das, Checkpoint processing in distributed
systems software using synchronized clocks, in: International Confer-
ence on Information Technology: Coding and Computing (April 2001)
pp. 555–559.

[11] N. Neves and W.K. Fuchs, Using time to improve the performance
of coordinated checkpointing, in: Proceedings of the IEEE Interna-
tional Computer Performance and Dependability Symposium (Septem-
ber 1996) pp. 282–291.

[12] N. Neves and W.K. Fuchs, Adaptive recovery for mobile environments,
Communications of the ACM (January 1997) 68–74.

[13] N. Neves and W.K. Fuchs, Coordinated checkpointing without sirect
coordination, in: Proceedings of the IEEE International Computer Per-
formance and Dependability Symposium (September 1998) pp. 23–31.

[14] T. Park and H.Y. Yeom, An asynchronous recovery scheme based on
optimistic message logging for mobile computing systems, in: Pro-
ceedings of the International Conference on Distributed Computing
Systems (April 2000) pp. 436–443.

[15] T. Park, N. Woo and H.Y. Yeom, An efficient recovery scheme for mo-
bile computing environments, in: IEEE International Conference on
Parallel and Distributed Systems (June 2001) pp. 53–60.

[16] R. Prakash and M. Singhal, Low-cost checkpointing and failure recov-
ery in mobile computing systems, IEEE Transactions on Parallel and
Distributed Systems 7(10) (1996) 1035–1048.

[17] K.F. Ssu, B. Yao, W.K. Fuchs and N. Neves, Adaptive checkpointing
with storage management for mobile environments, IEEE Transactions
on Reliability 48(4) (December 1999) 315–324.

[18] Z. Tong, R.Y. Kain and W.T. Tsai, A low overhead checkpointing and
rollback recovery scheme for distributed systems, in: Proceedings of
the 8th Symposium on Reliable Distributed Systems (October 1989)
pp. 12–20.

Chi-Yi Lin received the B.S. degree in electri-
cal engineering from National Taiwan University,
Taipei, Taiwan, in 1995. From August–December
2000, he was a visiting researcher in AT&T Labs-
Research at New Jersey. He is currently work-
ing toward the Ph.D. degree at the Department of
Electrical Engineering, National Taiwan University.
His research interests include fault tolerant distrib-
uted/mobile computing systems, and the dissemina-
tion of information in wireless networks. He is a stu-

dent member of IEEE.
E-mail: cylin@cc.ee.ntu.edu.tw

AN EFFICIENT TIME-BASED CHECKPOINTING PROTOCOL FOR MOBILE COMPUTING SYSTEMS OVER MOBILE IP 697

Szu-Chi Wang received the B.S. degree in computer
science and information engineering from National
Taiwan University in 1995. He is a Ph.D. candi-
date in the Department of Electrical Engineering at
National Taiwan University. His research interests
include distributed systems, fault-tolerant systems,
and the dissemination of information in wireless net-
works.
E-mail: wsc@lion.ee.ntu.edu.tw

Sy-Yen Kuo received the B.S. (1979) in electrical
engineering from National Taiwan University, the
M.S. (1982) in electrical and computer engineering
from the University of California at Santa Barbara,
and the Ph.D. (1987) in computer science from the
University of Illinois at Urbana-Champaign. Since
1991 he has been with National Taiwan University,
where he is currently a professor and the Chairman
of Department of Electrical Engineering. He spent
his sabbatical year as a visiting researcher at AT&T

Labs-Research, New Jersey from 1999 to 2000. He was the Chairman of
the Department of Computer Science and Information Engineering, National
Dong Hwa University, Taiwan from 1995 to 1998, a faculty member in the
Department of Electrical and Computer Engineering at the University of Ari-
zona from 1988 to 1991, and an engineer at Fairchild Semiconductor and
Silvar-Lisco, both in California, from 1982 to 1984. In 1989, he also worked
as a summer faculty fellow at Jet Propulsion Laboratory of California Insti-
tute of Technology. His current research interests include mobile computing
and networks, dependable distributed systems, software reliability, and opti-
cal WDM networks.

Professor Kuo is an IEEE Fellow. He has published more than 180 papers
in journals and conferences. He received the distinguished research award
(1997–2001) from the National Science Council, Taiwan. He was also a
recipient of the Best Paper Award in the 1996 International Symposium on
Software Reliability Engineering, the Best Paper Award in the simulation and
test category at the 1986 IEEE/ACM Design Automation Conference (DAC),
the National Science Foundation’s Research Initiation Award in 1989, and the
IEEE/ACM Design Automation Scholarship in 1990 and 1991.
E-mail: sykuo@cc.ee.ntu.edu.tw

