
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 20, 707-732 (2004)

707

Distributed Fault-Tolerant Embedding of
Several Topologies in Hypercubes*

SHIH-CHANG WANG, YUH-RONG LEU AND SY-YEN KUO+

Department of Electrical Engineering
National Taiwan University

Taipei, 106 Taiwan
+E-mail: sykuo@cc.ee.ntu.edu.tw

Embedding is of great importance in the applications of parallel computing. Every

parallel application has its intrinsic communication pattern. The communication pattern
graph is mapped onto the topology of multiprocessor structures so that the corresponding
application can be executed. To increase the reliability of parallel applications,
fault-tolerant embedding is necessary. In this paper, we propose a distributed approach,
based on the faulty link model, for embedding several topologies into hypercubes with
faulty links and/or faulty nodes. The topologies include the ring, the torus, the binomial
tree, and a hybrid topology which is a combination of rings and binomial trees. The ap-
proach exploits the recursive property of the hypercube, and the proposed algorithms all
have of only O(n) parallel steps. Since the distribution of faulty links is arbitrary, an
embedded graph with no faulty link may not exist. Therefore, we adopt a 2-phase
fault-tolerance strategy to attack this problem. In the first phase, a near-perfect embed-
ding is found, and in the second phase, existing fault-tolerant point-to-point communica-
tion schemes are employed. Based on the 2-phase strategy, applications with associated
communication pattern graphs with the ring, torus, binomial tree, or hybrid topology can
be executed on hypercube multiprocessors with faulty links. For faulty nodes, a tech-
nique called UDD (Uniform Data Distribution) is proposed. Therefore, with the UDD
and the proposed algorithms, both faulty links and faulty nodes can be tolerated.

Keywords: fault-tolerant embedding, hypercube, ring, torus, binomial tree

1. INTRODUCTION

The hypercube is a topology that has received much interest from researchers. Due
to its superior mathematical properties, there are many interesting research topics related
to the hypercube, including communication, task distribution, embedding, parallel proc-
essing application, etc. The hypercube is a symmetric structure and has a high degree of
connectivity. Therefore, in addition to research on fault-free hypercubes, much research
has concentrated on faulty hypercubes. In general, two fault-tolerance strategies widely
used in interconnection networks (IN) can be applied to the hypercube. One strategy is to
incorporate additional nodes and/or links in the normal hypercube to make it more resis-
tant against hardware failures. This strategy can only be adopted in the design phase of a
hypercube system. The other strategy is to design application algorithms that can work

Received April 29, 2002; revised June 23, 2003; accepted August 14, 2003.
Communicated by Gen-Huey Chen.
* This research was supported by the National Science Council, Taiwan, under grant NSC 90-2213-E-002-113.

SHIH-CHANG WANG, YUH-RONG LEU AND SY-YEN KUO

708

on a faulty hypercube. The main disadvantage of this strategy is the performance degra-
dation incurred by fault-tolerant application algorithms. Since there is no fault-tolerance
hardware in most commercial hypercube systems, the latter strategy seems to be more
practical than the former.

Due to the high level of connectivity of a hypercube, many topologies can be em-
bedded into it, e.g., chains, rings, meshes, toruses, binomial trees, binary trees, etc. The
embedding of the above topologies in fault-free hypercubes has been studied extensively.
Fault-tolerant embedding in hypercubes with faulty nodes also has been widely re-
searched extensively [1-6]. However, embedding in hypercubes with faulty links has not
been explored completely [7-9]. In [8], we proposed distributed algorithms for ring em-
bedding and reconfiguration in hypercubes with faulty links, and in [9], a sequential al-
gorithm of complexity O(2n) for binomial-tree embedding was proposed. In this paper,
we further generalize the distributed approach in [8] to deal with embedding of the ring,
the multi-dimensional torus, the binomial tree, and a hybrid topology consisting of rings
and binomial trees in hypercubes with faulty links and/or faulty nodes. We assume first
that only faulty links exist in the hypercube. All algorithms are devised based on this
assumption. Then, the algorithms as well as a technique called UDD (Uniform Data Dis-
tribution) can be utilized to deal with faulty nodes. The details will be given in section 7.

Since the distribution of faulty links is random, an embedded graph without any
faulty link may not always exist. Therefore, we adopt a 2-phase fault-tolerance strategy.
In the first phase, a near-perfect embedding is found, and in the second phase, existing
fault-tolerant point-to-point communication schemes are employed. Based on the 2-phase
strategy, applications with communication pattern graphs of the ring, torus, binomial tree,
or hybrid topology can be executed on hypercube multiprocessors with faulty links.

Our approach is based on the recursion property of the hypercube structure, and it is
bottom-up. An embedded topology in a hypercube is formed by recursively merging
sub-topologies embedded in subcubes. The basic building blocks are rings and binomial
trees. Embedded subrings and sub-binomial trees are then recursively merged into a
multi-dimensional torus, a large ring, a large binomial tree, or a hybrid torus-binomial-
tree topology. The proposed algorithm has O(n) parallel steps, where n is the dimension
of the hypercube.

The organization of this paper is as follows. In section 2, definitions of the topolo-
gies are given. Notations and definitions of terms are also provided. In section 3, we dis-
cuss the fault-tolerant ring and torus embedding approach. In section 4, fault-tolerant
binomial embedding is presented. The generalized algorithm that can handle the embed-
ding of several topologies is described in section 5. In section 6, we compare our works
with several previous research results. Section 7 presents how messages are rerouted in
the second fault-tolerance phase. Additionally, the strategy for handling faulty nodes is
provided in this section. A simulation of ring embedding is presented in section 8. Fi-
nally, conclusions are drawn in section 9.

2. PRELIMINARIES

An n-dimensional hypercube denoted as Qn has 2n nodes and n2n−1 links. Each node
is labeled with an n-bit binary number such that the binary labels of two adjacent nodes

DISTRIBUTED FAULT-TOLERANT EMBEDDING IN HYPERCUBES

709

differ in only one bit position. The bit positions are numbered from 0 to n − 1 with the
least significant bit as bit 0. If the labels of two nodes differ only in bit i, the two nodes
are said to be connected by an i-link, i.e., a link on dimension i. It is easy to see that there
are 2n−1 links on each dimension. Cutting all links on a dimension, a Qn can be parti-
tioned into two subcubes, each with 2n−1 nodes. A subcube is labeled with an n-bit ter-
nary string. Each bit in the string is one of {0, 1, x}, where x stands for don’t care. For
instance, subcube 0xx1 is composed of 4 nodes – 0001, 0011, 0101, and 0111. An
m-dimensional subcube is called an m-subcube. Note that a similar concept can be found
in [17].

An N-node ring has N nodes and N links. Each node has two links to adjacent nodes.
Each node is given an identification between 0 and N − 1. Node i and node (i + 1 mod N)
are adjacent, where 0 ≤ i ≤ N − 1.

A d-dimensional N-node torus has N nodes and dN links. Each node has 2d links to
adjacent nodes, 2 links on each dimension. Each node is identified as a d-tuple (t0, t1, …,
td−1), where 0 ≤ ti ≤ Ni − 1, N = Πi(Ni), and 0 ≤ i ≤ d − 1. Node (t0, t1, …, ti, …, td−1) is
adjacent to nodes (t0, t1, …, ti+1 mod Ni

, …, td−1) and (t0, t1, …, ti−1 mod Ni
, …, td−1).

An n-level binomial tree denoted as BTn has 2n nodes and 2n − 1 links. It can be
constructed recursively by connecting the roots of two BTn−1’s and assigning one of the
roots of the BTn−1’s as the root of BTn. Fig. 1 shows examples of the above topologies.

(a) 3-dimensional hypercube. (b) 8-node ring.

(c) 2-dimensional torus. (d) 3-level binomial tree.
Fig. 1. Example topologies.

One divide-and-conque approach to solving the routing problem in Qn is to apply

the concept of supernode partitioning. A supernode is a set of nodes and links. Note that
a supernode is identical to a subcube. The nodes and links inside a supernode can be
connected as any topology. A superlink connecting two supernodes is a set of links
which connect all the nodes in one supernode and all the nodes in another. Two super-

SHIH-CHANG WANG, YUH-RONG LEU AND SY-YEN KUO

710

nodes that can be connected with a superlink must be of the same topology. That is, the
numbers of nodes in the supernodes are identical, and so are the numbers of links in the
supernodes. Moreover, the topologies of the two supernodes are the same. In fact, they
must also be a “mirror image” of each other in our approach. The details will be given in
section 3.

A complex topology can be constructed based on the supernode and superlink con-
cept. For example, a Qn can be constructed by connecting two supernodes, each of which
is a Qn−1, with a superlink. In other words, we say that a Qn can be partitioned into two
Qn−1’s. A fairly complicated hybrid topology can be constructed in this way. For instance,
the supernodes can be connected to form a 3-dimensional torus, while the internal topol-
ogy of each supernode is a binomial tree. A 2-dimensional torus is formed by connecting
the supernodes, each of which is a ring topology, into a ring. On the other hand, we say
that a 2-dimensional torus can be collapsed into a ring, and the ring can be further col-
lapsed into a single supernode.

A level-l superlink is composed of level-(l − 1) superlinks. And a level-0 superlink
is a physical link. A level-l supernode is composed of level-(l − 1) supernodes and
level-(l − 1) superlinks. And a level-0 supernode is a physical node. Level-l collapsing is
the operation that collapses a level-(l − 1) topology consisting of level-(l − 1) supernodes
and superlinks into a level-l topology consisting of level-l supernodes and superlinks.
Level-0 collapsing is a null operation, and the level-0 topology is the original topology.
A topology that can be collapsed l times into a level-l supernode is said to be an l-level
topology. Fig. 2 shows an example of collapsing. It is easy to see that a 2-dimensional
torus is a 2-level topology.

0

1

dimension

collapsed
along dimension 0

collapsed
along dimension 1

real link

superlink

real node

supernode

Fig. 2. An example of collapsing.

Recall that we are studying the embedding of several topologies into faulty hyper-

cubes. In order not to confuse the dimension of a hypercube with the dimension of a to-
rus, the dimension of a torus is called the direction of a torus. Thus, for example, a
3-dimensional torus will be referred to as a 3-directional torus in the rest of this paper.
Similarly, the links of a ring, a torus, a binomial tree, or a hybrid topology are referred as
connections.

A fault-free hypercube (subcube) is also called a healthy hypercube (subcube). A
dimension i is said to be injured if one or more i-links are faulty. The injury degree of a
dimension is defined as the number of faulty links on that dimension. The dimensions

DISTRIBUTED FAULT-TOLERANT EMBEDDING IN HYPERCUBES

711

can then be ranked according to their injury degrees. If all the links on a certain dimen-
sion are fault-free, this dimension is said to be free. A free dimension is the least injured.

The following notations will be used in the rest of this paper:
bi: bit i of word b;
Ii: an n-bit word with bit i = 1 and other bits = 0;
0k: a k-bit word with all bits = 0;
1k: a k-bit word with all bits = 1;
xk: a k-bit word with all bits = don’t care;
pq: a word formed by concatenating two words p and q;
fg: the injury degree of dimension g;
curr: the label of the current node, i.e., the node executing the algorithm;
neib(d): the label of a neighbor of the current node along dimension d;
u-v: a connection between nodes u and v;
H(a, b): the Hamming distance between two words a and b, i.e., H(a, b) = Σjcj = Σj(a ⊕ b)j.

3. RING AND TORUS EMBEDDING

In this section, we discuss the basic ring embedding approach and its extension to
torus embedding. Our method for extending the ring embedding approach involves the
key concepts of the generalized embedding method that will be discussed in section 5.

3.1 Ring Embedding

The basic idea of the ring-embedding algorithm is similar to that in [8]. However,
we exploit the concept of a cost function (described below) to make the idea more gen-
eral, and as a result, our presentations of our algorithms in this paper will be more con-
cise. We assume that each node has the locations of all the faulty links. This assumption
is reasonable because an optimal broadcasting algorithm which takes n + 1 steps in an
injured hypercube with faulty links was developed in [10]. Therefore, it is possible for
nodes in an injured hypercube with faulty links to broadcast the fault information to other
nodes. Thus, each node can make a decision based on the information in its own memory
instead of performing communications with other nodes. Note that each node obtains the
fault information from the received broadcasting-messages, and that the distributed em-
bedding algorithm shown in Fig. 6 is performed using such information in each node.

If faulty links are not allowed to exist in the embedded ring, the number of injured
dimensions of the hypercube must be at most n − 2. That is, at least two free dimensions
exist. If the number of injured dimensions exceeds n − 2, the number of faulty links must
be greater than n − 2, and a fault-free ring can not exist if more than n − 2 faulty links are
incident on one of the nodes. Therefore, a Qn can be partitioned along the two free di-
mensions into 2n−2 healthy 2-subcubes. A 2-subcube is also a 4-node ring. A pair of
4-node rings can be merged into an 8-node ring embedded in a 3-subcube. The merging
process continues recursively until a 2n-node ring embedded in Qn is formed. Since we
adopt a 2-phase strategy, an embedded graph with faulty links is acceptable because
other fault-tolerant point-to-point communication schemes can be utilized to tolerate
these faulty links in the second phase. Consequently, no assumption about the number of
faulty links in the hypercube or the number of injured dimensions is necessary.

SHIH-CHANG WANG, YUH-RONG LEU AND SY-YEN KUO

712

The dimensions are sorted according to the injury degrees and then stored in a stack
called D. The lower the injury degree a dimension has, the higher the position in stack D
in which the dimension resides. Stack D is popped to provide the dimension to be proc-
essed in each merging step. The ring-embedding algorithm has n steps numbered from 0
to n − 1. Subrings are merged dimension by dimension. The dimension processed in step
i is denoted as gi, and fgi

 ≤ fgj
 (0 ≤ i < j ≤ n − 1). In step 0, all nodes are merged across

dimension g0, and 2n−1 1-subcubes are formed. In step 1, two 1-subcubes are merged
across dimension g1, and 2n−2 2-subcubes are formed. The general case is as follows in
step i, 2n−i 2i-node subrings are merged across dimension gi into 2n−i−1 2i+1-node subrings.
Two subrings that can be merged form a merging group.

Four nodes are involved in merging two subrings in each step i. Let nodes a and b
be in one subring, and let c and d be in another. The relationships among them are:

1. H(a, b) = 1; H(c, d) = 1.
2. (a ⊕ b) = (c ⊕ d).
3. (a ⊕ c) = (b ⊕ d) = Igi

.

Merging the two subrings means breaking connections a-b and c-d, and establishing

connections a-c and b-d. Fig. 3 shows a merging example for step 2. In Fig. 3, a = 110, b
= 111, c = 010, and d = 011.

010

011 000

001

110

111

101

100

(a) Before merging. (b) After merging.

broken new connections

010

011 000

001

110

111

101

100

ring connection

cube link

faulty cube link

Fig. 3. Merging two subrings in the presence of faulty links.

Before proceeding with further discussion, we introduce the concept of

pseudo-faulty links. Pseudo-faulty links are introduced to maintain uniformity of the
structures of subrings formed in step i. That is, all node labels of a formed subring must
be identical to those of another subring in bit positions g0 through gi. This property must
be maintained so that we can guarantee that subrings can be recursively merged. If a cer-
tain gi-link is faulty, the corresponding gi-links in all other merging groups are treated as
being pseudo-faulty. That is, a faulty link makes an “image” in each merging group.

DISTRIBUTED FAULT-TOLERANT EMBEDDING IN HYPERCUBES

713

Since each node has the locations of all the faulty links, the pseudo faulty links can be
identified without using internode communications. The ring-embedding algorithm does
not care whether a link is faulty or pseudo-faulty. Fig. 4 illustrates the concept of
pseudo-faulty links. Because (000000-000100)-link is faulty, the corresponding gi-links
in all the other merging groups are treated as being pseudo-faulty. Based on the concept
of pseudo-faulty links, the operations in each merging group are uniform.

faulty

pseudo-faulty

Fig. 4. The concept of pseudo-faulty links for ring embedding.

To obtain a embedded ring without faulty links, the condition for a node Y that can

be involved in the merging operations in step i is as follows:

the gi-links that are connected to node Y and at least one of its ring neighbors are
non-faulty or non-pseudo-faulty.

That is, node Y has to check 3 gi-links. Note that two gi-links are required for the

merging operations in step i because they are used as ring connections in the merged ring.
Let f(Y) = 1 if the gi-link of node Y is faulty or pseudo-faulty; otherwise f(Y) = 0. The two
ring neighbors of node Y are denoted as Y1 and Y2. Then, we define a cost function ac-
cording to the above condition:

).(
2

1
)(

2

1
)()(21 YfYfYfYCOSTR ++=

The range of COSTR is from 0 to 2. A certain node satisfying the condition has
COSTR = 0 or 0.5, and it can be selected to initiate the merging operations. Nevertheless,
a node with COSTR ≤ 0.5 may not exist due to the distribution of faulty links. Thus, we

000000

000001

000010

000011

000111

000100

000110

000101

011000

011001

011010

011011

011111

011100

011110

011101

001000

001001

001010

001011

001111

001100

001110

001101

010000

010001

010010

010011

010111

010100

010110

010101

100000

100001

100010

100011

100111

100100

100110

100101

101000

101001

101010

101011

101111

101100

101110

101101

111000

111001

111010

111011

111111

111100

111110

111101

110000

110001

110010

110011

110111

110100

110110

110101

SHIH-CHANG WANG, YUH-RONG LEU AND SY-YEN KUO

714

choose the node with minimal COSTR to initiate the merging operations. If there are still
several remaining choices, the node with the minimal node label is selected. Obviously,
if the selected node has COSTR > 0.5, faulty links will exist in the embedded ring. Fig. 5
shows the possible values of COSTR.

Y

Y

Y

Y

Y

Y

Y Y

(a) 0. (b) 0.5. (c) 1. (d) 1.5. (e) 2.
Fig. 5. Possible values of COSTR.

The merging operations include establishing and breaking connections. To establish

a connection, a node simply adds a record in its memory for identifying who is its
neighbor in the ring. To break a connection, the corresponding connection record is de-
leted from the memory of a node. For example, in Fig. 3, node 011 (111) has minimal
COSTR (= 0) and it has to initiate the merging operations. It sends a break-ring-
connection message to node 010 (110) to inform this node to delete the connection
011-010 (111-110). Finally, connections 010-110 and 011-111 are established.

Recall that in step i (2 ≤ i ≤ n − 1), 2n−i 2i-node subrings are merged into 2n−i−1
2i+1-node subrings. Furthermore, two gi-links are required to merge two subrings. Con-
sequently, a total of 2n−i gi-links are essential in step i. The number of gi-links required in
step i decreases as the value i increases. So it is desirable that there be fewer faulty links
in dimension gi with smaller i. This is the reason why the top of stack D is the dimension
with the smallest number of faulty links. If the dimensions are not sorted according to the
number of faulty links, then the node chosen to initiate the merging operations in each
step is likely to have COSTR ≥ 0.5 and, thus, the probability that faulty links exist in the
embedded ring is high.

Two nodes are involved in the merging operations in a subring. The node that initi-
ates the operations is said to be active; the other is said to be passive. Nodes which are
neither active nor passive are said to be idle. The active node sends a break-ring-
connection message to the passive node. The passive node receives this message and
then breaks one of its ring connections. The connection record simply stores the dimen-
sion to which the connection belongs. Each node always keeps two ring connection re-
cords in every step except step 0. The ring-embedding algorithm is shown in Fig. 6.

In Algorithm Ring, Procedure Merge_Ring is executed in order to merge rings.
What a node does in a step depends on its status in that step. Procedure Merge_Ring is
shown in Fig. 7. For example, there is a 3-cube with a faulty link 000-100. From Algo-
rithm Ring, it is easy to see that Stack D is composed of 0, 1, and 2 from top to bottom.

DISTRIBUTED FAULT-TOLERANT EMBEDDING IN HYPERCUBES

715

Algorithm Ring;
{Each node keeps two ring connection records. Stack D stores the sorted dimensions.}

begin
for i = 0 to n − 1 do begin

g ← pop (D);
if curr is the minimal node label among the nodes with minimal COSTR

then status ← ACTIVE;
else begin

wait for a break-ring-connection message;
if a break-ring-connection message is received

then status ← PASSIVE;
else status ← IDLE;

endelse;
Merge_Ring(status, g);

endfor;
end.

Fig. 6. Algorithm ring.

Procedure Merge_Ring(status, g)
{The two ring connections are on dimensions d1 and d2, respectively}
{Subrings are merged across dimension g.}

begin
case status of

ACTIVE:
{Node curr is used to initiate the merging operations.}

begin
case of

COSTR(neib(d1)) = COSTR(neib(d2)): r ← min(d1, d2);
COSTR(neib(d1)) < COSTR(neib(d2)): r ← d1;
COSTR(neib(d1)) > COSTR(neib(d2)): r ← d2;

endcase;
Send a break-ring-connection message to node neib(r) via link r;
Break connection curr-neib(r);
Establish connection curr-neib(g);

end;

PASSIVE:
{Node curr receives a break-ring-connection message via link l.}

begin
Break connection curr-neib(l);
Establish connection curr-neib(g);

end;

IDLE:
{Node curr does nothing.}

endcase;
end.

Fig. 7. Procedure Merge_Ring.

SHIH-CHANG WANG, YUH-RONG LEU AND SY-YEN KUO

716

In the i = 0 step, four subrings, (000-001), (010-011), (100-101), and (110-111) along
dimension 0 are established. Moreover, in the i = 1 step, two subrings, (000-001-011-010)
and (100-101-111-110), along dimension 1 are established. In the i = 2 step, the Active
nodes are 011 and 111. Clearly, those two ring connections are on dimensions d1 = 0 and
d2 = 1. From Procedure Merge_Ring, r is min(d1, d2) = 0. Nodes 011 and 111 break con-
nections 011-010 and 111-110 (see Fig. 3 (a)). Finally, two connections 011-111 and
110-010, are established (see Fig. 3 (b)).

Theorem 1 The complexity of Algorithm Ring is O(n) parallel steps.

Proof: The proof proceeds by induction on n. It is obviously true for n = 2. Assume that
it is also true for n = m − 1. Considering n = m, partition Qn = Qm on dimension m − 1
into 2 Qm−1’s, i.e., 1xm−1 and 0xm−1. By the assumption, Algorithm Ring can find a ring in
each Qm−1, and the node label sequences of both rings are the same except for bit m − 1.
Because Algorithm Ring_A is capable of merging subrings, these two 2m−1-node ring can
be merged into a 2m-node ring in iteration m − 1. In addition, according to the operations
in Procedure Merge_Ring, one parallel step (an inter-node communication step) is re-
quired to merge two subrings. Therefore, (m − 1) + 1 = m parallel steps are needed. As a
result, by the principle of mathematical induction, the theorem is proved. �

3.2 Torus Embedding

The ring-embedding approach can be further extended to the embedding of tori in
faulty hypercubes. The torus-embedding algorithm utilizes the concept of collapsing. If
we collapse a d-directional torus along a certain direction, it becomes a (d −
1)-directional torus. That is, all the rings of the torus on this direction become level-1
supernodes (see Fig. 2). To embed the torus in a hypercube, based on the collapsing op-
eration, rings are embedded on the corresponding direction. The collapsing operations
can continue until a level-d supernode is formed. For instance, in Fig. 2, 4 rings are em-
bedded on direction 0 corresponding to level-1 collapsing, and 4 rings are embedded on
direction 1 corresponding to level-2 collapsing. The concept of collapsing will also be
exploited in section 5 to embed hybrid topologies in hypercubes.

Assume that n = m0 + m1 + … + md−1, where d is the direction of a torus to be em-
bedded, and that mi ≥ mj (0 ≤ i < j ≤ d − 1). A Qn can embed a 2m

0 × 2m
1 × … 2m

d−1
d-directional torus. For example, if n = 5, d = 2, m0 = 3, and m1 = 2, then a Q5 can embed
an 8 × 4 2-directional torus.

The dimensions of the hypercube are also sorted based on the injury degrees so that
fgi

 ≤ fgj (0 ≤ i < j ≤ n − 1). Then, the sorted dimensions are divided into d groups so that
group i has mi dimensions, where 0 ≤ i ≤ d − 1. The dividing strategy is as follows:

g0, gd, g2d, … in group 0,
g1, gd+1, g2d+1, … in group 1,

.

.

.
gd−1, g2d−1, g3d−1, … in group d − 1.

DISTRIBUTED FAULT-TOLERANT EMBEDDING IN HYPERCUBES

717

The dimensions in group i are still sorted, and they are stored in stack Di with the
top of the stack being the dimension with the lowest injury degree.

In a d-directional torus, each node has 2d connections to adjacent nodes, 2 connec-
tions on every direction. Thus, each node must keep 2 connection records for each direc-
tion. A connection record also simply stores the dimension to which the connection be-
longs. The torus-embedding algorithm has d iterations. In iteration i, stack Di is popped
to give the dimension to be processed, and Procedure Ring, a modification of Algorithm
Ring, is invoked to embed rings on direction i. Since there are mi dimensions in stack Di,
mi steps are required. Therefore, the total number of steps is n. The torus-embedding al-
gorithm and the related procedures are shown in Figs. 8, 9, and 10.

Algorithm Torus shown in Fig. 8 is very simple. It simply embeds rings on each di-
rection. Procedure Ring shown in Fig. 9 is similar to Algorithm Ring shown in Fig. 6
except that n is changed to mi in line 2 and D is changed to Di in line 3. Furthermore,
Procedure Merge_Ring2 instead of Merge_Ring is called. However, Procedure
Merge_Ring2 shown in Fig. 10 is modified from Merge_Ring shown in Fig. 7. The
merge operations of Procedure Merge_Ring2 only influence the connection records for
direction i, while no direction argument is needed in Procedure Merge_Ring.

Algorithm Torus;
{The direction of the torus is d.}

begin
for i = 0 to d − 1 do

Ring(i);
end.

Fig. 8. Algorithm torus.

Procedure Ring(i);
{Stack Di stores sorted dimensions for direction i.}

begin
for j = 0 to mi − 1 do begin

g ← pop (Di);
if curr is the minimal node label among the nodes with minimal COSTR

then status ← ACTIVE;
else begin

wait for a break-ring-connection message;
if a break-ring-connection message is received

then status ← PASSIVE;
else status ← IDLE;

endelse;
Merge_Ring2(status, g, i);

endfor;
end.

Fig. 9. Procedure ring.

SHIH-CHANG WANG, YUH-RONG LEU AND SY-YEN KUO

718

Procedure Merge_Ring2(status, g, i)
{The two ring connections for direction i are on dimensions d1 and d2.}
{Subrings are merged across dimension g.}

begin
case status of

ACTIVE:
{Node curr is used to initiate the merging operations.}

begin
case of

COSTR(neib(d1)) = COSTR(neib(d2)): r ← min(d1, d2);
COSTR(neib(d1)) < COSTR(neib(d2)): r ← d1;
COSTR(neib(d1)) > COSTR(neib(d2)): r ← d2;

endcase;
Send a break-ring-connection message to node neib(r) via link r;
Break connection curr-neib(r);
Establish connection curr-neib(g);

end;

PASSIVE:
{Node curr receives a break-ring-connection message via link l.}

begin
Break connection curr-neib(l);
Establish connection curr-neib(g);

end;

IDLE:
{Node curr does nothing.}

endcase;
end.

Fig. 10. Procedure Merge_Ring2.

Theorem 2 The complexity of Algorithm Torus is O(n) parallel steps.

Proof: According to our strategy, the dimensions are divided into d groups so that group
i has mi dimensions, where 0 ≤ i ≤ d − 1. Corresponding to each group i, Procedure Ring
is invoked to embed mi-node rings, and O(mi) parallel steps are required (from Theorem
1). Therefore, the complexity of Algorithm Torus is

O(m0) + O(m1) + … + O(md−1)
= O(m0 + m1 + … + md−1)
= O(n)

parallel steps. �

DISTRIBUTED FAULT-TOLERANT EMBEDDING IN HYPERCUBES

719

4. BINOMIAL TREE EMBEDDING

A previous work on relative binomial tree embedding in a Qn was given in [19]. A
simple embedding algorithm was proposed that can embed an n-level binomial tree in Qn
with up to n − 1 faulty links in log(n − 1) steps, and they extended the result to show that
spanning binomial trees exist in a connected Qn with up to 3 1

2
()n− − 1 faulty links.

The major differences between binomial tree embedding and ring embedding lie in
the definition of the cost function and the merging method. Let us first take a look at ex-
amples of merging two 2-level binomial trees that are embedded in two 2-subcubes (see
Fig. 11).

000

011 010

001 100

111 110

101 000

011 010

001 100

111 110

101

(a) (b)

000

011 010

001 100

111 110

101 000

011 010

001 100

111 110

101

(c) (d) ring connection

cube link

faulty cube link
Fig. 11. Examples of merging binomial trees.

In Fig. 11, we illustrate 4 cases of merging, depending on the locations of the faulty

links. Based on the definition of binomial trees, a BTn is constructed by connecting the
roots of two BTn−1’s, and it is easy to see that the number of choices is 2. For example, in
case (a), nodes 000 and 001 are the candidate roots of the left binomial tree while nodes
100 and 101 are the candidate roots of the right binomial tree. We can connect either
000-100 or 001-101 to form a BT3. The candidate root with the smaller node label in each
BT2 is selected to be connected. Therefore, we connect 000-100. In case (b), link 000-100
is faulty, so 001-101 is the only choice. Similarly, in case (c), 000-100 is the only choice.
In case (d), links 000-100 and 001-101 are both faulty; thus, either choice will result in a
BT3 with a connection on a faulty link. No matter what n is, the number of choices for
merging is always 2 with this method of embedding binomial trees. Fig. 12 shows this
limitation.

SHIH-CHANG WANG, YUH-RONG LEU AND SY-YEN KUO

720

BTn 1−

BTn 2−

BTn 1−

BTn 2− BTn 2− BTn 2−

Fig. 12. Merging two binomial trees into one.

Since only candidate roots of binomial trees can be connected for merging, it is im-

portant for a node to check whether it is a candidate root or not. The root of a BTn has n
connections to other nodes, so if a node has n connections, it can be a candidate root.
Note that there are two candidate roots in a BTn.

The concept of pseudo-faulty links is also applied in binomial tree embedding to
maintain the uniformity of the structure of the embedded sub-binomial trees. Fig. 13
shows how the concept of pseudo-faulty links is employed in binomial tree embedding.

faulty

pseudo-faulty

Fig. 13. The concept of pseudo-faulty links applied to binomial tree embedding.

The dimensions of the hypercube are sorted based on the injury degree and then

stored in a stack D. The binomial-tree-embedding algorithm also has n steps, and in step i,
BTi’s are merged across dimension gi into BTi+1’s. If faulty links are not allowed to exist
in the embedded binomial tree, the necessary condition for a node Y to be involved in the
merging operations in step i is as follows:

The number of binomial-tree connections of node Y is i, and the gi-link of node Y is
non-faulty or non-pseudo-faulty.

Let f(Y) = 1 if the gi-link of node Y is faulty or pseudo-faulty; otherwise, f(Y) = 0.

Next, we define a cost function:

DISTRIBUTED FAULT-TOLERANT EMBEDDING IN HYPERCUBES

721

COSTB−T(Y) = f(Y).

The value of COSTB−T is either 0 or 1. The candidate root node with the smaller

COSTB−T is chosen to be connected. If the COSTB−T values of both candidate root nodes
are equal, the one with the smaller node label is chosen. The binomial-tree-embedding
algorithm and the related procedure are shown in Fig. 14.

Algorithm B-Tree;
{Each node keeps binomial-tree connection records. Stack D stores the sorted dimensions.}

begin
for i = 0 to n − 1 do begin

g ← pop (D);
if node curr is a candidate root then

case of
COSTB−T(curr) = COSTB−T(another candidate root):

if curr < the label of another candidate root then Merge_B-Tree(g);
COSTB−T(curr) < COSTB−T(another candidate root): Merge_B-Tree(g);
COSTB−T(curr) > COSTB−T(another candidate root): {Node curr does nothing.};

endcase;
endfor;

end.

Procedure Merge_B-Tree(g)

begin
Establish connection curr-neib(g);

end.

Fig. 14. Algorithm B-Tree.

Theorem 3 The complexity of Algorithm B-Tree is O(n).

Proof: Because no internode communication is necessary for Algorithm B-Tree, it is a
sequential algorithm with n iterations. Therefore, the complexity is, obviously, O(n). �

5. HYBRID TOPOLOGY EMBEDDING

The recursive merging method can be generalized for the embedding of hybrid to-
pologies that are combinations of rings and binomial trees. In section 2, the concepts of
supernodes and superlinks were introduced, and we also described how these concepts
can be exploited to construct hybrid topologies. In section 3.2, we presented the to-
rus-embedding algorithm based on the ring-embedding approach and the collapsing con-
cept. The general embedding algorithm presented in this section is based on Algorithm
Torus and Algorithm B-Tree.

SHIH-CHANG WANG, YUH-RONG LEU AND SY-YEN KUO

722

Fig. 15 shows a hierarchical view of a 3-level hybrid topology. The internal topol-
ogy of level-2 and level-1 supernodes is BT2, and the level-2 supernodes are connected to
form a ring. There are 64 nodes in this hybrid topology, and it can be embedded in a Q6.

The internal topology of a supernode is either a ring or a binomial tree. Therefore, a
variable “protocol” is required to keep the information of the merging approach (ring or
binomial tree) used for each level in the process of merging operations. Assume that n =
m1 + m2 + … + ml, where l is the level of the hybrid topology to be embedded and mi ≥ mj
(1 ≤ i < j ≤ l). A Qn can embed a 2m

1 × 2m
2 × … 2m

l -node hybrid topology. For example,
in Fig. 15, l = 3, m1 = 2, m2 = 2, and m3 = 2; and a Q6 can embed this topology.

Fig. 15. Hierarchical view of a hybrid topology.

The dimensions of the hypercube are sorted according to the injury degree so that fgi

≤ fgj

 (0 ≤ i < j ≤ n − 1). Then, the sorted dimensions are divided into l groups, and group i
has mi dimensions, where 1 ≤ i ≤ l. The dividing strategy is as follows:

g0, gl, g2l, … in group 1,
g1, gl+1, g2l+1, … in group 2,

.

.

.
gl−1, g2l−1, g3l−1, … in group l.

The dimensions in group i are still sorted, and then are stored in stack Di with the

top of the stack being the dimension with the lowest injury degree.
Each node must keep connection records for every level of the hybrid topology. If

the protocol of a certain level is “ring”, then each node must keep two ring connection
records for this level. If the protocol of level i is “binomial tree”, then at most mi bino-
mial-tree connection records are kept in each node. Algorithm General shown in Fig. 16
calls the existing procedures used for ring and binomial tree embedding. Fig. 17 shows
Procedure B-Tree called in Algorithm General.

DISTRIBUTED FAULT-TOLERANT EMBEDDING IN HYPERCUBES

723

Algorithm General;
{The level of the hybrid topology is l.}

begin

for i = 1 to l do begin
case protocoli of
RING:

Ring(i);
BINOMIAL TREE:

B-Tree(i);
endcase;

endfor;
end.

Fig. 16. Algorithm general.

Procedure B-Tree(i);
{Each node keeps binomial-tree connection records for level i.}

begin

for j = 0 to mi − 1 do begin
g ← pop (Di);
if node curr is a candidate root then

case of
COSTB−T(curr) = COSTB−T(another candidate root):

if curr < the label of another candidate root then Merge_B-Tree2(g, i);
COSTB−T(curr) < COSTB−T(another candidate root): Merge_B-Tree2(g, i);
COSTB−T(curr) > COSTB−T(another candidate root): {Node curr does nothing.};

endcase;
endfor;

end.

Fig. 17. Procedure B-Tree.

Procedure Ring called in Algorithm General is identical to the procedure called in

Algorithm Torus. However, in Algorithm Torus, stack Di stores the dimensions for direc-
tion i (0 ≤ i ≤ d − 1) of the torus, but stack Di stores the dimensions for level i (1 ≤ i ≤ l)
in Algorithm General. Procedure B-Tree is modified from Algorithm B-Tree, and the
modification is similar to that applied to Algorithm Ring to obtain Procedure Ring. In
addition, the modification made to Procedure Merge_B-Tree to obtain Merge_B-Tree2 is
also similar to that made to Procedure Merge_Ring to obtain Merge_Ring2.

All the previous embedding algorithms are incorporated into Algorithm General.
That is, they are subcases of Algorithm General. Table 1 gives a summary of Algorithm
General. Note that the directions of a torus are numbered from 0 to d − 1, but that if Al-
gorithm General is invoked for torus embedding, variable i ranges from 1 to d. A torus
may be viewed as a Multi-level ring-connected ring. We can also have an interesting

SHIH-CHANG WANG, YUH-RONG LEU AND SY-YEN KUO

724

Table 1. Summary of algorithm general.

Topology l protocoli

Ring 1 RING

Torus d RING for all i

Binomial tree 1 BINOMIAL TREE

Multi-level binomial tree
connected binomial tree

> 1 BINOMIAL TREE for all i

Hybrid topology > 1 variable for each i

Fig. 18. 2-level binomial-tree-connected binomial tree.

topology called a Multi-level binomial-tree-connected binomial tree if the protocol is
BINOMIAL TREE for all i and l > 1. Fig. 18 shows a 2-level binomial-tree-connected
binomial tree that can be embedded in a Q5. The level-1 topology is BT2, and the level-2
topology is BT3.

Theorem 4 The complexity of Algorithm General is O(n) parallel steps.

Proof: According to our strategy, the dimensions are divided into l groups so that group i
has mi dimensions, where 1 ≤ i ≤ l. Corresponding to each group i, Procedure Ring or
B-Tree is invoked, and O(mi) parallel steps are required (from Theorem 1) if Procedure
Ring is invoked, while no parallel steps are needed if Procedure B-Tree is invoked.
Therefore, the complexity is

 O(m1) + O(m2) + … + O(ml)
 = O(m1 + m2 + … + ml)
 = O(n)

parallel steps. �

DISTRIBUTED FAULT-TOLERANT EMBEDDING IN HYPERCUBES

725

6. COMPARISONS

As mentioned in the Introduction, fault-tolerant embedding in hypercubes with
faulty nodes has been researched extensively, but embedding with faulty links has not yet
been explored completely. A stronger existence theorem of Chan and Lee [18]. Any Qn
with at most 2n − 5 faulty edges, in which each node is incident to at least two nonfaulty
links, has a Hamiltonian cycle consisting of only nonfaulty edges. This theorem is non-
constructive, but it nearly doubles the number of faulty edges. Future research might try
to design a polynomial time algorithm to find the circuit guaranteed by [2]. In [7], Latifi
et al. proposed centralized sequential algorithms for ring embedding in hypercubes with
faulty links. O(n2) time is required to compute the characterization of a Hamiltonian cy-
cle, and O(2n) time is then needed to construct a Hamiltonian cycle. A Hamiltonian cycle
is a ring embedded in a hypercube. Their approach is centralized since the computations
are performed on the host of the hypercube. Our approach is, on the contrary, distributed
such that each node makes decisions by itself. Moreover, their algorithms are based on
the assumption that the number of faulty links is at most n − 2, while this assumption is
not necessary for our approach thanks to the 2-phase strategy. Table 2 shows a compari-
son of the results obtained using the proposed ring-embedding algorithm and the ap-
proach in [7]. Let the number of faulty links in a Qn be z, where 0 ≤ z ≤ n × 2n−1. If no
isolated node exists, then an embedded ring generated as shown in Fig. 6 can work
through the 2-phase strategy if needed. In fact, the adoption of 2-phase routing will cause
performance degradation. The performance of the proposed algorithm depends on z and
the distribution of faulty links.

Table 2. Comparison 1 (for ring embedding).

 Proposed Approach in [7]

Fault model Link fault Link fault

Algorithm Distributed Centralized

Based on
Injury Degrees of dimensions &

Recursion property of hypercubes
Gray codes

Time complexity O(n) parallel steps
O(n2 + 2n) sequential time

or,
O(n2) parallel time

Can handle more
than n − 2 faulty

links?
Yes No

Suitable for MIMD SIMD

Yang et al. proposed the concept of free dimensions, and this concept as well as the

Gray code have been applied to ring and torus embedding in hypercubes with faulty
nodes [3-5]. Based on free dimensions, a hypercube can be partitioned into 3-subcubes,
and there is at most one faulty node in each 3-subcube. An 8-node subring is embedded
in each healthy 3-subcube, and a 6-node subring is embedded in each faulty 3-subcube.

SHIH-CHANG WANG, YUH-RONG LEU AND SY-YEN KUO

726

Then, these subrings are merged into a ring. However, the internode communication de-
tails were not presented. Their method for embedding a torus in a faulty hypercube is to
embed the first direction of the torus, and then use the Gray code sequence to embed
other directions. Table 3 shows a comparison of the results obtained using the proposed
ring-embedding and torus-embedding algorithms and the approach in [3-5].

Table 3. Comparison 2 (for ring and torus embedding).

 Proposed Approach in [3-5]

Fault model Link fault Node fault

Algorithm Distributed Distributed

Based on
Injury Degrees of dimensions &

Recursion property of hypercubes
Free dimensions &

Gray codes

Time complexity O(n) parallel steps O(n) parallel steps

Suitable for MIMD MIMD

We have previously proposed a centralized sequential algorithm that runs in O(2n)

time for binomial tree embedding in hypercubes with faulty links [9]. The bino-
mial-tree-embedding algorithm proposed in this paper is, instead, a distributed algorithm
and, thus, is more efficient. A comparison of the results obtained using the two works is
shown in Table 4.

Table 4. Comparison 3 (for binomial tree embedding).

 Proposed Approach in [9]

Fault model Link fault Link fault

Algorithm Distributed Centralized

Based on
Injury Degrees of dimensions &

Recursion property of hypercubes
Cost function defined in [9]

Time complexity O(n) sequential time O(2n) sequential time

Suitable for MIMD SIMD

7. SECOND FAULT-TOLERANCE PHASE AND STRATEGY
FOR FAULTY NODES

In this section, the rerouting of messages performed in the second fault-tolerance
phase is discussed. In addition, we explore how our embedding algorithms deal with
faulty nodes. Note that if an embedded ring with faulty links is obtained due to the larger
number of faulty links, then a second phase rerouting is needed to bypass the embedded
faulty links.

Recall that the proposed approach is 2-phase, and in the second phase, existing
fault-tolerant point-to-point communication schemes are invoked to reroute messages if

DISTRIBUTED FAULT-TOLERANT EMBEDDING IN HYPERCUBES

727

faulty links exist on the embedded graph. Since the general embedding algorithm is
based on the ring-embedding and the binomial-tree-embedding algorithms, we present in
this section a method for rerouting messages for ring embedding. A method for run-time
message rerouting for binomial tree embedding can be found in [9].

The main idea in rerouting messages for a embedded ring with faulty links is to ap-
ply one of the fault-tolerant point-to-point communication schemes proposed in the lit-
erature [6, 8]. Because two neighboring nodes connected to a faulty link can not commu-
nicate with each other in a faulty embedded ring, these two nodes use an existing
fault-tolerant routing algorithm to communicate each other. It is clear that every node in
the embedded ring can send messages to any other node based on the rerouting scheme.

Theorem 5 For a faulty embedded ring without any isolated node, every node can send
messages to its two neighbors in the second phase of the algorithm.

Proof: If no isolated node exists, a fault-tolerant point-point routing algorithm in [6, 8]
can be applied. A node with faulty link can communicate to its neighbors through the
fault-tolerant routing algorithm. It is straightforward to show that every node can send
messages to any neighbor in the second phase. �

Fig. 19 shows an example of rerouting in the second fault-tolerance phase. In this

example, since link 000-100 is faulty, ring connection 000-100 is not available. Nodes
100 and 000 must communicate with each other via a 3-hop path, e.g., 000-001-101-100.
The 3-hop path can be found using existing fault-tolerant point-to-point communication
schemes.

dimension
0

1
2

111

011

101

000

001

010

100

110 000

100

101

111

110

010

011

001

(a) Cube view. (b) Ring view.

link
faulty link
1-hop ring connection
3-hop path

node

Fig. 19. Example of rerouting in the second fault-tolerance phase.

A faulty node can be treated as if all the links incident to this node are faulty. For

example, in Fig. 20 (a), if node 000 is faulty, then this situation is equivalent to the case

SHIH-CHANG WANG, YUH-RONG LEU AND SY-YEN KUO

728

where links 000-001, 000-100, and 000-010 are all faulty. The resulting embedded ring
found by the ring-embedding algorithm is shown in Fig. 20 (b). Inevitably, there will be
faulty links in the embedded ring; thus, the rerouting of messages is necessary when the
ring is used in some applications. To use this ring, data for computation is distributed to
all the non-faulty nodes. This technique is called UDD (Uniform Data Distribution) [10].
As node 000 is faulty, ring connections 000-100 and 000-001 cannot be used to route
messages. Therefore, nodes 100 and 001 should route messages to each other. However,
there is no link between these two nodes, so messages must be routed via a 2-hop path,
e.g., 100-101-001. How do nodes 100 and 001 know that they should communicate with
each other? The answer is simple. Nodes 100 and 001 broadcast messages saying that
they are the two end-nodes of a broken ring; hence, they know about that they should
communicate with each other.

dimension
0

1
2

111

011

101

000
001

010

100

110 000

100

101

111

110

010

011

001

(a) Cube view. (b) Ring view.

link
faulty link
1-hop ring connection
2-hop path

faulty node
node

Fig. 20. Example of a case with faulty nodes.

Most algorithms for achieving fault-tolerance of hypercubes are based on the faulty

node model (i.e., only faulty nodes are considered). If such algorithms are required to
handle faulty links, a faulty link is modeled as if the two end-nodes of this link are faulty.
The cost overhead is, thus, significantly based on this fault model since nodes are active
components but links are passive components. On the other hand, modeling a faulty node
as if all incident links to this node are faulty is quite natural because a faulty node will
disable its adjacent neighbors from routing messages through these links. Accordingly,
we believe the faulty link model is more general than the faulty node model.
Fault-tolerance algorithms based on the faulty link model can handle both faulty links
and/or nodes more efficiently. Fig. 21 shows a comparison between the faulty link model
and the faulty node model.

DISTRIBUTED FAULT-TOLERANT EMBEDDING IN HYPERCUBES

729

(a) Modeling a faulty node by means
of faulty links.

(b) Modeling a faulty link by means
of faulty nodes.

Fig. 21. The faulty link model vs. the faulty node model.

8. SIMULATION RESULTS OF RING EMBEDDING

Fault-tolerant ring embedding was simulated on a 10-dimensional hypercube. The
routing algorithms “Ring” shown in Fig. 6 and “Merge_Ring()” shown in Fig. 7 were
implemented. The assignments of faulty links were randomly selected, and the range of
the number of faulty links was varied from 1 to 50. Moreover, the COSTR function for
each node was adopted as shown in Fig. 5. To assign the status of each node in the em-
bedding process, the node with the lowest COSTR and the lowest label in each subring
was taken as the “ACTIVE” node. In addition, the neighboring node of the active node
with the lowest COSTR and the lowest label was taken as the “PASSIVE” node. Nodes
which were neither “ACTIVE” nor “PASSIVE” were considered as the “IDLE” nodes.
This simulation was performed to evaluate the relationship between “the number of
faulty links” and “the perfect ring embedding.” Note that the perfect ring embedding
means that there is no faulty link in the embedded ring. Two relative symbols used in the
simulation are as follows:

FN: the number of faulty links in the 10-dimensional hypercube;
RFN: the ratio used to obtain a non-perfect embedding under some FN.

We let FN be 1, 5, 10, 15, 20, 25, 30, 35, 40, 45, and 50 in the simulation, respec-

tively. For each FN, algorithm “Ring” shown in Fig. 6 was executed repeatedly for 100
runs. Clearly, we could assume that: RFN = (the number of non-perfect embeddings in
100 runs)/100. The simulation results are shown in Fig. 22.

From Fig. 22, it is clear that there is no non-perfect embedding when FN is not
greater than n (note that n was equal to 10 in our simulation, i.e., the dimension of a hy-
percube.). When FN is greater than 1.5n, the probability of obtaining a non-perfect em-
bedding is over 20%. The probability curve grows quickly from FN = 1.5n to FN = 2.5n.
When FN is greater than 5n, it is difficult to find a perfect ring embedding. Therefore, if
the fault-assignments are made randomly, we can conclude that:

1. There is near 100% probability of obtaining a perfect ring embedding when FN is not

greater than n.
2. There is near 50% probability of obtaining a perfect ring embedding when FN is about

2n.
3. There is near 0% probability of obtaining a perfect ring embedding when FN is greater

than 5n.

SHIH-CHANG WANG, YUH-RONG LEU AND SY-YEN KUO

730

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40 50 60

RFN

30
FN

Fig. 22. The simulation results of ring embedding in a 10-dimensional hypercube.

9. CONCLUSIONS

In this paper, we have studied the fault-tolerant embedding of several topologies
into hypercubes, including the ring, the torus, the binomial tree, and a hybrid topology,
which is a combination of rings and binomial trees. Although these algorithms are based
on the faulty link model, they can also be utilized to deal with faulty nodes. The com-
plexity of all the algorithms except for the sequential Algorithm B-Tree is O(n) parallel
steps, where n is the dimension of the hypercube, and the complexity of Algorithm
B-Tree is O(n).

Communication is unavoidable in parallel computing applications, and the commu-
nication patterns are intrinsically associated with the applications themselves. Therefore,
the embedding of communication pattern graphs into the topologies of multiprocessor
structures is of great importance. In some cases, a 100-percent fault-tolerant embedding
is possible. That is, there are no faulty nodes or links in the mapping of the communica-
tion pattern graph on the multiprocessor structure. However, in many cases, a perfect
mapping is not achievable because of the distribution of faulty links/nodes. Under such
circumstances, an efficient way to increase the reliability of the applications is to adopt a
two-phase fault-tolerance strategy. First, a near-perfect embedding is found, and then
fault-tolerant point-to-point communication schemes are applied to for the embedded
communication pattern graph. We believe that combining fault-tolerant embedding and
fault-tolerant communication is a better strategy than just using one of them alone.

REFERENCES

1. M. Y. Chan and S. J. Lee, “Distributed fault-tolerant embedding of rings in hyper-
cubes,” Journal of Parallel and Distributed Computing, Vol. 11, 1991, pp. 63-71.

2. F. J. Provost and R. Melhem, “Distributed fault-tolerant embedding of binary trees
and rings in hypercubes,” in Proceedings of International Workshop on Defect and
Fault Tolerance in VLSI Systems, 1988.

DISTRIBUTED FAULT-TOLERANT EMBEDDING IN HYPERCUBES

731

3. P. J. Yang, S. B. Tien, and C. S. Raghavendra, “Embedding of rings and meshes
onto faulty hypercubes using free dimensions,” IEEE Transactions on Computers,
Vol. 43, 1994, pp. 608-613.

4. C. S. Raghavendra, P. J. Yang, and S. B. Tien, “Free dimension − an effective ap-
proach to achieving fault tolerance in hypercubes,” in Proceedings of IEEE 22th In-
ternational Symposium on Fault-Tolerant Computing, 1992, pp. 170-177.

5. P. J. Yang, S. B. Tien, and C. S. Raghavendra, “Embedding of multidimensional
meshes onto faulty hypercubes,” in Proceedings of International Conference on
Parallel Processing, 1991, pp. I571-I574.

6. M. S. Chen and K. G. Shin, “On hypercube fault-tolerant routing using global in-
formation,” in Proceedings of Conference on Hypercubes, Concurrent Computers
and Applications, 1989, pp. 83-86.

7. S. Latifi, S. Q. Zheng, and N. Bagherzadeh, “Optimal ring embedding in hypercubes
with faulty links,” in Proceedings of IEEE 22th International Symposium on
Fault-Tolerant Computing, 1992, pp. 178-184.

8. Y. R. Leu and S. Y. Kuo, “Distributed fault-tolerant ring embedding and reconfigu-
ration in hypercubes,” IEEE Transactions on Computers, Vol. 48, 1999, pp. 81-86.

9. Y. R. Leu and S. Y. Kuo, “A fault-tolerant tree communication scheme for hyper-
cube systems,” IEEE Transactions on Computers, Vol. 45, 1996, pp. 641-650.

10. S. Park and B. Bose, “Broadcasting in hypercubes with link/node failures,” in Pro-
ceedings of 4th Symposium on the Frontiers of Massively Parallel Computation,
1992, pp. 286-290.

11. A. C. Elster, M. U. Uyar, and A. P. Reeves, “Fault-tolerant matrix operations on hy-
percube multiprocessors,” in Proceedings of International Conference on Parallel
Processing, 1989, pp. III 169-177.

12. M. S. Chen and K. G. Shin, “Processor allocation in an n-cube multiprocessor using
gray codes,” IEEE Transactions on Computers, Vol. c-36, 1987, pp. 396-407.

13. G. Fox et al., Ch. 9, Long Range Interactions, Solving Problems on Concurrent
Processors, Prentice-Hall, Inc., Vol. 1, 1988, pp. 155-165, 1988.

14. Y. Saad and M. H. Schultz, “Topological properties of hypercube,” IEEE Transac-
tions on Computers, Vol. C-37, 1988, pp. 867-872.

15. T. C. Lee, “Quick recovery of embedded structures in hypercube computers,” in
Proceeding of 5th Memory Computing Conference, 1990, pp. 1426-1435.

16. E. M. Reingold, J. Nievergelt, and N. Deo, Combinatorial Algorithms, Prentice-Hall,
Inc. 1977.

17. J. Bruck, R. Cypher, and D. Soroker, “Tolerating faults in hypercubes using subcube
partitioning,” IEEE Transactions on Computers, Vol. 41, 1992, pp. 599-605.

18. M. Y. Chan and S. J. Lee, “On the existence of Hamiltonian circuits in faulty hyper-
cubes,” SIAM Journal on Discrete Mathematics, 1991, pp. 511-527.

19. J. Wu, E. B. Fernandez, and Y. Luo, “Embedding of binomial trees in hypercubes
with link faults,” Journal of Parallel and Distributed Computing, 1998, pp. 59-74.

SHIH-CHANG WANG, YUH-RONG LEU AND SY-YEN KUO

732

Shih-Chang Wang (汪世昌) received the B.S. (1992) de-
gree in Computer Science and Engineering from the Tatung Uni-
versity, the M.S. (1994) and Ph.D. (2000) degrees in Electrical
Engineering from the National Taiwan University, Taipei, Taiwan.
Since 2000 he has joined the Telecommunication Lab.,
Chunghwa Telecom Co., Ltd., where he is currently an associate
researcher. His current research interests include fault tolerance,
enterprise resource planning, management information system,
Java technology, and computer networks.

Yuh-Rong Leu (呂毓榮) graduated with an Electrical En-

gineering degree from National Taiwan University, Taiwan, in
1991 and received the Ph.D. in Electrical Engineering also from
National Taiwan University in 1996. During 1996 to 2000, he
worked for the government-supported Institute for Information
Industry, Taiwan as a senior software engineer. Currently he is
the CTO of InterEpoch Technology, Taiwan (http://www.in-
terepoch.com.tw), which is focused on wireless LAN and AAA
(Authentication, Authorization, and Accounting) technologies.

Sy-Yen Kuo (郭斯彥) received the B.S. (1979) in Electrical

Engineering from National Taiwan University, the M.S. (1982) in
Electrical and Computer Engineering from the University of
California at Santa Barbara, and the Ph.D. (1987) in Computer
Science from the University of Illinois at Urbana-Champaign.
Since 1991 he has been with National Taiwan University, where
he is currently a professor and the Chairman of Department of
Electrical Engineering. He spent his sabbatical year as a visiting
researcher at AT&T Labs-Research, New Jersey from 1999 to
2000. He was the Chairman of the Department of Computer Sci-
ence and Information Engineering, National Dong Hwa Univer-

sity, Taiwan from 1995 to 1998, a faculty member in the Department of Electrical and
Computer Engineering at the University of Arizona from 1988 to 1991, and an engineer
at Fairchild Semiconductor and Silvar-Lisco, both in California, from 1982 to 1984. In
1989, he also worked as a summer faculty fellow at Jet Propulsion Laboratory of Cali-
fornia Institute of Technology. His current research interests include mobile computing
and networks, dependable distributed systems, software reliability, and optical WDM
networks.

Professor Kuo is an IEEE Fellow. He has published more than 200 papers in jour-
nals and conferences. He received the distinguished research award (1997-2005) from
the National Science Council, Taiwan. He was also a recipient of the Best Paper Award
in the 1996 International Symposium on Software Reliability Engineering, the Best Pa-
per Award in the simulation and test category at the 1986 IEEE/ACM Design Automa-
tion Conference (DAC), the National Science Foundation’s Research Initiation Award in
1989, and the IEEE/ACM Design Automation Scholarship in 1990 and 1991.

