
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 21, 239-257 (2005)

239

More Properties of Communication-Induced Checkpointing
Protocols with Rollback-Dependency Trackability

JICHIANG TSAI*, SY-YEN KUO** AND YI-MIN WANG+

*Department of Electrical Engineering
National Chung Hsing University

Taichung, 407 Taiwan
E-mail: jctsai@ee.nchu.edu.tw

**Department of Electrical Engineering
National Taiwan University

Taipei, 106 Taiwan
E-mail: sykuo@cc.ee.ntu.edu.tw

+Microsoft Research, Microsoft Corporation
Redmond, Washington, U.S.A.

E-mail: ymwang@microsoft.com

Rollback-Dependency Trackability (RDT) is a property stating that all rollback de-

pendencies between local checkpoints are on-line trackable using a transitive depend-
ency vector. In this paper, we introduce some properties of communication-induced
checkpointing protocols possessing the RDT property. First, we demonstrate that wher-
ever an RDT protocol detects a PCM-path in the checkpoint and communication pattern
associated with a distributed computation, it can also detect an EPSCM-path there.
Moreover, if this detected PCM-path is non-visibly doubled, its corresponding EPSCM-
path is also non-visibly doubled. Next, we go on to prove that if an RDT protocol breaks
all EPSCM-cycles and non-visibly doubled EPSCM-paths, it breaks all visibly doubled
EPSCM-paths as well. From these results, we find that some RDT protocols actually
have the same behavior for all possible patterns. Furthermore, we also construct patterns
to show that a few RDT protocols are incomparable in terms of the number of forced
checkpoints. Last but not least, we discuss a simulation study to verify our previous
theoretical results.

Keywords: distributed systems, fault tolerance, rollback-dependency trackability, com-
munication-induced checkpointing protocols, rollback-recovery

1. INTRODUCTION

A distributed computation consists of a finite set of processes that communicate and
synchronize with each other only by exchanging messages through a network. The set of
messages and the set of local checkpoints form the checkpoint and communication pat-
tern associated with the distributed computation. In a pattern, a message is called an or-
phan with regard to an ordered pair of local checkpoints if the receiving event of such a
message happens before the latter checkpoint in the pair but its sending event occurs af-
ter the former one. An ordered pair of local checkpoints is said to be consistent if there is

Received April 5, 2004; revised August 3, 2004; accepted August 23, 2004.
Communicated by Chu-Sing Yang.

JICHIANG TSAI, SY-YEN KUO AND YI-MIN WANG

240

no orphan message with respect to this pair. A global checkpoint [1] is a set of local
checkpoints, one from each process. A global checkpoint is consistent if and only if all
the pairs of its constituent checkpoints are consistent [2]. All consistent global check-
points in a distributed computation can be modeled as a partially ordered set, which pos-
sesses the lattice property [1]. The most recent consistent global checkpoint is called the
recovery line. The problem of computing the recovery line is important for guaranteeing
application consistency when a rollback-recovery results from a transient failure.

If local checkpoints are taken independently, there is a risk that no consistent global
checkpoint can ever be formed from them. This is the well-known domino effect problem
[3], in which unbounded, cascading rollback propagation can occur during the process of
finding a consistent global checkpoint. Many protocols have been proposed that selec-
tively employ local checkpoints in order to eliminate the possibility of the domino effect
(see the survey paper in [4]). Coordinated checkpointing [2, 5] is one way to avoid the
domino effect by synchronizing the checkpointing actions of all processes through ex-
plicit control messages. In contrast, communication-induced checkpointing protocols [6]
achieve coordination by piggybacking control information on application messages. In
addition to taking application-specific basic checkpoints, each process can also be asked
by the protocol to take additional forced checkpoints, based on the piggybacked informa-
tion as well as local control variables.

Communication-induced checkpointing protocols can also be used to achieve a
stronger property called Rollback-Dependency Trackability (RDT), proposed by Wang
[7]. In general, that two local checkpoints are not causally related is only a necessary, not
a sufficient condition, for them to belong to the same consistent global checkpoint [1, 8].
They can have hidden, zigzag dependencies that make it impossible for them to belong to
the same consistent global checkpoint. A checkpoint and communication pattern satisfies
RDT if all such hidden dependencies are made on-line trackable by a simple transitive
dependency vector. In addition to preventing the domino effect, RDT has two other
noteworthy properties [7, 9]: (1) it ensures that any set of local checkpoints that are not
pairwise causally related can be extended to form a consistent global checkpoint; (2) it
offers efficient calculations of the minimum and the maximum consistent global check-
points that contain a given set of local checkpoints. These properties allow RDT to have
a wide range of applications, including software error recovery [10], deadlock recovery
[11], nondeterministic computations [12], and so on.

Since the RDT property was first proposed, many studies have focused on this prop-
erty [13-17]. In [14], Baldoni et al. investigated RDT at the message level and repre-
sented checkpoint dependencies by Z-paths. Moreover, some RDT characterizations that
together comprise an important subset of Z-paths were addressed in this paper. The two
most crucial characterizations, called PCM-paths and EPSCM-paths, are composed of a
single message and a prime path with particular properties. Based on these two charac-
terizations, the authors introduced a family of RDT communication-induced checkpoint-
ing protocols. This family contains not only existing protocols based on PCM-paths but
also some new ones based on EPSCM-paths [14]. In our previous paper [17], we pro-
posed several interesting properties of RDT protocols based on PCM-paths in this family,
and we also theoretically compared these protocols in terms of the number of forced
checkpoints. Because forcing additional checkpoints results in runtime overhead, it is
desirable to force as few checkpoints as possible while still satisfying the RDT property.

MORE PROPERTIES OF RDT CHECKPOINTING PROTOCOLS

241

Thus, throughout this paper, we compare the performance of protocols in terms of the
number of forced checkpoints.

In this paper, we introduce more interesting properties of RDT protocols in the fore-
going family, and we also give formal proofs to compare the performance of some pro-
tocols in it, which were not compared in [17]. First, we prove that wherever an RDT pro-
tocol detects a PCM-path in a checkpoint and communication pattern, it can also detect
an EPSCM-path there. In addition, if this encountered PCM-path is non-visibly doubled,
the associated EPSCM-path is non-visibly doubled as well. Then we show that a protocol
that breaks all EPSCM-paths actually breaks all PCM-paths, and that a protocol that
breaks all non-visibly doubled EPSCM-paths really breaks all non-visibly doubled
PCM-paths. Next, we go on to show that if a protocol breaks all EPSCM-cycles and
non-visibly doubled EPSCM-paths, it in fact breaks all visibly doubled EPSCM-paths,
too. From these results, we conclude that some RDT protocols proposed in [14] have the
same behavior for all possible patterns. Furthermore, we also build patterns to reveal the
fact that no two RDT protocols in [14] are comparable, even though one protocol has a
stronger checkpoint-inducing condition than the other. That is, for some patterns, the
former outperforms the latter, while for other patterns, the latter is better than the former.
Finally, we present some simulation experiments to verify our theoretical results in this
context. The simulation was performed in the point-to-point environment.

This paper is structured as follows. Section 2 defines the computational model and
introduces the definitions of two important RDT characterizations. In section 3, we in-
vestigate relationships between PCM-paths and EPSCM-paths, and a property of visibly
doubling for EPSCM-paths. Some patterns showing that several RDT protocols are in-
comparable are given in section 4. In section 5, we present a simulation study and discuss
the results of our experiments. Finally, we summarize our findings in section 6.

2. PRELIMINARIES

2.1 Checkpoint and Communication Patterns

A distributed computation consists of a finite set P of n processes {P1, P2, …, Pn}
that communicate and synchronize only by exchanging messages. We assume that each
ordered pair of processes is connected by an asynchronous, reliable, directed logical
channel with unpredictable but finite transmission delays; i.e., no message will be lost in
the channel. Moreover, processes fail according to the fail-stop model.

A process can execute internal, send, and receive statements. An internal statement
does not involve any communication. When Pi executes the statement “send(m) to Pj,” it
puts message m into the channel from Pi to Pj. When Pi executes the statement “re-
ceive(m)”, it is blocked until at least one message directed to Pi has arrived, after which a
message is delivered to Pi. Executions of internal, send, and receive statements are mod-
eled by internal, sending, and receiving events, respectively.

The execution of each process produces a sequence of events, and all the events
produced by a distributed computation can be modeled as a partially ordered set with the
well-known Lamport’s happened-before relation “ hb

��� ”, defined as follows [18].

JICHIANG TSAI, SY-YEN KUO AND YI-MIN WANG

242

Definition 1 The relation “ hb
��� ” on the set of events satisfies the following conditions:

1. If a and b are events of the same process, and if a comes before b, then a hb

��� b.

2. If a is the event send(m) and b is the event receive(m), then a hb
��� b.

3. If a hb
��� b and b hb

��� c, then a hb
��� c.

Given a distributed computation H, its associated checkpoint and communication

pattern consists of the set of messages and the set of local checkpoints in H. Fig. 1 shows
an example checkpoint and communication pattern. Ci,x represents the xth checkpoint of
process Pi, where i is the process id and x the checkpoint index. The sequence of events
occurring at Pi between Ci,x-1 and Ci,x (x > 0) is called a checkpoint interval (or interval
for short), denoted by Ii,x. Moreover, we assume that each process Pi starts to execute
with an initial checkpoint Ci,0.

 Ci,0 Ci,1 Ci,2

 Pi

 m1 m2 m3

 Cj,0 Cj,1 Cj,2

 Pj

 m4 m5

Ck,0 Ck,1 Ck,2

Pk

 Ik,1 Ik,2
Fig. 1. A checkpoint and communication pattern.

2.2 Rollback-Dependency Trackability

A checkpoint and communication pattern satisfies Rollback-Dependency Trackabil-

ity (RDT) if all rollback dependencies between local checkpoints are on-line trackable
[7]. Specifically, if a checkpoint Ci,x needs to be rolled back due to the rollback of
checkpoint Cj,y, then Ci,x must be able to detect this by using a transitive dependency
vector. Equivalently, RDT can be stated based on the notion of Z-paths in [8] and the idea
of causal doubling of Z-paths in [14].

First, a Z-path is defined as following [14].

Definition 2 A Z-path is a sequence of messages [m1, m2, …, mq] (q ≥ 1) such that, for
each i, 1 ≤ i ≤ q − 1, we have: receive(mi) ∈ Ik,s ∧ send(mi+1) ∈ Ik,t ∧ s ≤ t.

That is, in a Z-path, every message is received in the same interval in which the suc-
ceeding message is sent or in an earlier interval. Furthermore, we say that a Z-path [m1,

MORE PROPERTIES OF RDT CHECKPOINTING PROTOCOLS

243

m2, …, mq] extends from interval Ii,x to interval Ij,y if send(m1) ∈ Ii,x and receive(mq) ∈ Ij,y.
For example, in the pattern shown in Fig. 1, both message sequences [m5, m2] and [m5, m3]
are Z-paths from Ik,2 to Ii,2. However, message sequence [m5, m1] is not a Z-path.

In addition, a Z-path is causal if the receiving event of each message (except for the
last one) precedes the sending event of the next message in the sequence. A Z-path is
non-causal if it is not causal. A Z-path with only one message is trivially causal. For the
sake of neatness, a causal Z-path is also called a causal path. We present a definition of
causally doubling in the following.

Definition 3 A Z-path from Ii,x to Ij,y is causally doubled if i = j ∧ x ≤ y or if there exists
a causal path µ from Ii,x' to Ij,y', where x ≤ x' and y' ≤ y [14].

From the previous definition, every causal path is obviously causally doubled by it-
self. As an instance, Z-path [m5, m2] in the pattern shown in Fig. 1 is non-causal and is
causally doubled by the causal path [m5, m3]. Next, the RDT property can be defined as
follows.

Definition 4 A checkpoint and communication pattern satisfies RDT if and only if all
Z-paths in it are causally doubled [14].

In the rest of this paper, we will use the following notation: the first (last) message
of a Z-path ζ is denoted by ζ.first (ζ.last). Given two Z-paths ζ and ζ ' , if their concate-
nation is also a Z-path, then we denote the concatenation as ζ ⋅ ζ ' .

2.3 RDT Characterizations

Given a checkpoint and communication pattern, it is not necessary to check that

every non-causal Z-path is causally doubled to ensure that such a pattern satisfies RDT.
Causally doubling a certain subset of non-causal Z-paths may suffice. Such a subset is
called an RDT characterization in [14]. Before introducing some crucial RDT charac-
terizations discussed in the present context, we will introduce the notion of prime paths
first because every considered RDT characterization contains a prime path with a special
property.

Definition 5 A causal path µ from Ii,x to Pj is prime if every causal path ν from Ii,x' to Pj

with x ≤ x' satisfies that receive(µ.last) hb
��� receive(v.last) or µ.last and ν.last are the

same message [14].

Intuitively, a prime path from Ii,x to Pj is the first causal path that includes the inter-
val Ii,x in Pj’s causal past. In Fig. 1, Z-path [m5] is prime, but [m3] is not prime. For sim-
plicity, a prime causal path is called a prime path in the present context.

Next, an important RDT characterization, called a PCM-path, will be introduced in
the following.

Definition 6 A PCM-path µ ⋅ m is a Z-path that is the concatenation of a causal path µ
and a single message m, where µ is prime and send(m) hb

��� receive(µ.last) [14].

JICHIANG TSAI, SY-YEN KUO AND YI-MIN WANG

244

For instance, Z-path [m5, m2] in Fig. 1 is a PCM-path. The following theorem fol-
lows directly from the results given in [14].

Theorem 1 A checkpoint and communication pattern satisfies the RDT property if and
only if all PCM-paths in it are causally doubled.

According to Theorem 1, in order to satisfy the RDT property, any PCM-path that is
not causally doubled needs to be broken by a forced checkpoint. In particular, for the
checkpointing decision of an on-line RDT protocol based only on the causal history, such
information must be contained in the causal past of a process when it detects a PCM-path.
This results in the notion of visible doubling1. Moreover, it has been shown that a visibly
doubled PCM-path has the following property [14].

Theorem 2 A PCM-path µ ⋅ m is visibly doubled if and only if it is causally doubled by

a causal path µ' with receive(µ'.last) hb
��� send(µ.last), as in the scenario shown in Fig. 2.

 m

 µ′

 µ–µ.last

Fig. 2. Visibility of causal doubling.

Note that a causally doubled PCM-path is not necessarily visibly doubled, but that a

non-causally doubled one must be non-visibly doubled. Based on the foregoing discus-
sion and Theorem 1, we can deduce the following corollary for on-line protocols [14].

Corollary 1 A checkpoint and communication pattern produced by an on-line protocol
satisfies the RDT property if all PCM-paths in it are visibly doubled.

In [14], the authors proposed another, more constrained RDT characterization,
called an EPSCM-path. EPSCM-path are a subset of PCM-paths. First, we will formally
define “elementary” and “simple” causal paths.

Definition 7 A causal path µ is elementary if its traversal sequence Pi, Pk1

, …, Pkα, Pj,
which is the sequence of processes traversed by µ, has no repetition [14].

1 This notion was introduced in [13] for the first time and restated in [14].

MORE PROPERTIES OF RDT CHECKPOINTING PROTOCOLS

245

That is, an elementary causal path only traverses a process once. For instance, in the
pattern shown in Fig. 1, Z-path [m4, m5, m3] is not elementary because it traverses proc-
ess Pj twice, while Z-path [m5, m3] is elementary.

Definition 8 A causal path µ = [m1, m2, …, mq] is simple if the two events receive(mi)
and send(mi+1) occur in the same interval, ∀i (1 ≤ i ≤ q − 1) [14].

Thus, a simple causal path does not include local checkpoints. As an example,

Z-path [m4, m5, m3] in Fig. 1 is not simple since the local checkpoint Ck,1 is included. As
for Z-path [m5, m3], it is simple.

Next, an EPSCM-path is defined in the following.

Definition 9 An EPSCM-path is a PCM-path µ ⋅ m such that µ is both elementary and
simple [14].

Similarly, we have the following theorem and corollary for an EPSCM-path; con-

sequently, it is also an RDT-characterization [14].

Theorem 3 A checkpoint and communication pattern satisfies the RDT property if and
only if all EPSCM-paths in it are causally doubled.

Corollary 2 A checkpoint and communication pattern produced by an on-line protocol
satisfies the RDT property if all EPSCM-paths in it are visibly doubled.

3. PROPERTIES OF EPSCM-PATHS

This section focuses on the fact that a few RDT protocols proposed in [14] actually
have the same behavior for all possible checkpoint and communication patterns, accord-
ing to the properties of EPSCM-paths given below.

3.1 Relationships between EPSCM-paths and PCM-paths

Here, we will demonstrate that although EPSCM-paths are a subset of PCM-paths,

the existence of a PCM-path in fact implies the existence of an EPSCM-path. First, it is
obvious that an elementary but not simple causal path µ can be written as µ1 ⋅ µ2 … µl,
where each component µi (1 ≤ i ≤ l) is simple, divided by the checkpoints which µ in-
cludes. Now let us consider the following lemma.

Lemma 1 The last simple component of an elementary prime path is also prime.

Proof: As depicted in Fig. 3, there is an elementary prime path µ = µ1 ⋅ µ2 … µl, where µi
is simple and absolutely elementary, for 1 ≤ i ≤ l. To prove Lemma 1 by contradiction,
suppose its last simple component µl, which starts after checkpoint C and reaches point y
of process Pj, is not prime. Then, by Definition 5, there must exist a prime path ν which
also starts after checkpoint C and reaches point y' of the same process such that point y'

JICHIANG TSAI, SY-YEN KUO AND YI-MIN WANG

246

v

µ1

µ2

µl-1

µl

y′ y

C

Pj

Fig. 3. The scenario of Lemma 1.

precedes point y. Obviously, µ1 ⋅ µ2 … µl-1 ⋅ ν is a causal path, and its last message is
received by Pj before the last message of µ is received. This violates that assumption µ is
prime and, therefore, leads to a contradiction. �

Then, we have the following theorem.

Theorem 4 In a checkpoint and communication pattern, wherever an RDT protocol
detects a PCM-path, it can also detect an EPSCM-path there.

Proof: First, if there is a causal path µ from Ii,x to Ij,y, then we can trivially find an ele-
mentary causal path µ' from Ii,x' to Ij,y' with x ≤ x' and y' ≤ y by ignoring the causal cycles
of µ such that the causal path composed of remainder messages only traverses a process
once. Furthermore, if µ is also prime, then µ' has the same last message as µ; otherwise,
the assumption that µ is prime would be violated. This means that µ' is also prime, ac-
cording to Definition 5. Thus, applying Lemma 1, its last simple component, denoted as
µ'l, is prime and trivially has the same last message as µ. Hence, we know that wherever
there is a PCM-path µ ⋅ m, there is also an EPSCM-path µl' ⋅ m. �

Furthermore, we can obtain the following corollary.

Corollary 3 In a checkpoint and communication pattern, wherever an RDT protocol
detects a non-visibly doubled PCM-path, it can also detect a non-visibly doubled EPSCM-
path there.

Proof: First, for a PCM-path µ ⋅ m, we can obviously find another PCM-path µ' ⋅ m,
where µ' is elementary and extends from Ii,x' to Ij,y' with x ≤ x' and y' ≤ y. According to
Definition 3, if µ' ⋅ m is causally doubled by a causal path ν, then we have that ν extends
from Ii,x" to Ij,y" such that x' ≤ x" and y" ≤ y'. Hence, µ ⋅ m is also causally doubled by ν

MORE PROPERTIES OF RDT CHECKPOINTING PROTOCOLS

247

since x ≤ x' ≤ x" and y" ≤ y' ≤ y. Moreover, because µ and µ' have the same last message,
if µ' ⋅ m is visibly doubled by ν, then µ ⋅ m is also visibly doubled by ν from Theorem 2.

Here, let ,21 lµµµµ ′′⋅′=′ … where iµ′ is simple, for 1 ≤ i ≤ l. For the PCM-path µ' ⋅

m, if its corresponding EPSCM-path µ'l ⋅ m is visibly doubled by a causal path ν', we
trivially have that it is visibly doubled by the causal path 1 2 -1 .lµ µ µ ν′ ′ ′ ′⋅ ⋅… According
to the foregoing discussion, we can see that wherever there is a non-visibly PCM-path,
there is also a non-visibly EPSCM-path. �

As a result, protocol No-EPSCM [14], which breaks all EPSCM-paths, actually
breaks all PCM-paths, not just a subset of PCM-paths. Thus, it in fact has the same be-
havior as protocol FDAS [7], which also breaks all PCM-paths. But FDAS requires less
control information piggybacked on a message than No-EPSCM does because FDAS
does not need to distinguish the “simple” condition. Moreover, it has been shown in [17]
that protocols based on a stronger condition than FDAS outperform FDAS. Hence, we
can also conclude that protocols based on a stronger condition than No-EPSCM do a
better job than No-EPSCM. On the other hand, protocol No-Non-Visibly-Doubled-
EPSCM (abbreviated as NNVD-EPSCM) [14], which breaks all non-visibly doubled
EPSCM-paths, also breaks all non-visibly doubled PCM-paths, not just a subset of
non-visibly doubled PCM-paths. Therefore, this protocol has exactly the same behavior
as protocol BHMR [9], which breaks all non-visibly doubled PCM-paths.

3.2 The Property of Visibly Doubling for EPSCM-paths

First, we will introduce a few notations used in this section. Let V-paths denote a

subset of Z-paths. If a V-path is from an interval Ii,x to another interval Ii,x' of the same
process Pi, then we call this V-path a V-cycle. In the remainder of the paper, for the sake
of clarity, only V-paths from one process to a different one are called V-paths. Those
from one process to the same one are called V-cycles. Trivially, if x' < x, then a V-cycle
cannot be causally doubled. Thus, we call this kind of V-cycle a non-doubled V-cycle.
For example, the path [m5, m4] in Fig. 1 is an EPSCM-cycle and is non-doubled. Another
interesting result of this paper is a property of the relationship between protocol
No-EPSCM and protocol No-EPSCM-Cycle, which breaks all EPSCM-cycles and
non-visibly doubled EPSCM- paths [14]. Although the latter forces a checkpoint at a
stronger condition than the former does, we can conclude that No-EPSCM-Cycle is, in
fact, equivalent to No-EPSCM based on the following theorem. This result reveals that
the extra piggybacked control information used by No-EPSCM-Cycle for detecting visi-
bly doubled EPSCM-paths can be discarded.

Theorem 5 If an RDT protocol breaks all EPSCM-cycles and non-visibly doubled
EPSCM-paths, then it also breaks all visibly doubled EPSCM-paths.

Proof: Suppose there exists an RDT protocol which breaks all EPSCM-cycles and
non-visibly doubled EPSCM-paths but does not break some visibly doubled EPSCM-paths.
Let µ ⋅ m denote any such EPSCM-path. As shown in Fig. 4 (a), µ ⋅ m must have a dou-
bling causal path µ1 and a causal path ν1 that brings the knowledge about µ1 to the sender
of µ.last before µ.last is sent. Without loss of generality, we can assume that µ1 is prime.

JICHIANG TSAI, SY-YEN KUO AND YI-MIN WANG

248

m

µ − µ.last
µ1 − µ1s

ν1 − ν1s

ν1′.first − ν1′

Pi

(a)

m

ν1s − µ.last
µ2 − µ2s

ν2 − ν2s

ν2′.first − ν2′

Pi

(b)

Fig. 4. The scenarios of Theorem 5.

We will show that the absence of a forced checkpoint to break µ ⋅ m leads to a contradic-
tion; thus, the protocol must break all visibly doubled EPSCM-paths. There are two cases
to be considered.

First, assume that the causal path ν1 ⋅ µ.last is prime. According to Lemma 1, we

have that the last simple component of ν1 ⋅ µ.last, assumed to be ν1s ⋅ µ.last, is an ele-
mentary and simple prime path. Moreover, ν1s ⋅ µ.last ⋅ m cannot be an EPSCM-cycle;
otherwise it would be an unbroken EPSCM-cycle. Thus, ν1s ⋅ µ.last must be a visibly
doubled EPSCM-path. Note that ν1s ⋅ µ.last ⋅ m cannot be µ; otherwise, the checkpoint
between ν1s and other part of ν1 would be located between send(µ.first) and send(µ1.first)
such that µ could not be causally doubled by µ1.

Next, assume that the causal path ν1 ⋅ µ.last is not prime. Then, there must be an-
other causal path ν'1 that starts from the same process which ν1 starts and reaches Pi be-

MORE PROPERTIES OF RDT CHECKPOINTING PROTOCOLS

249

fore receive(µ.last). Furthermore, send(ν'1.first) cannot happen after receive(µ1.last) be-
cause that would violate the assumption that µ is prime. Without loss of generality, we
pick ν'1 as the one with send(ν'1.first) closest to receive(µ1.last). Likewise, since µ1 is
prime, its last simple component, assumed to be µ1s, is also an elementary and simple
prime path by Lemma 1. Clearly, the protocol cannot force a checkpoint between
send(ν'1.first) and receive(µ1.last) because that would make ν1 ⋅ µ.last prime. Thus, we
immediately have that µ1s ⋅ ν'1.first must be a visibly doubled EPSCM-path.

So far, we have shown that, for the assumed protocol, an unbroken, visibly doubled
EPSCM-path µ ⋅ m implies the existence of another unbroken, visibly doubled EPSCM-
path ν1s ⋅ µ.last ⋅ m (or µ1s ⋅ ν'1.first). Note that receive(ν1s.last) (or receive(µ1s.last)) is in
the causal past of send(µ.last); thus, ν1s ⋅ µ.last (or µ1s) has at least one different message
from µ. Similarly, the unbroken, visibly doubled EPSCM-path ν1s ⋅ µ.last ⋅ m also implies
the existence of another unbroken, visibly doubled EPSCM-path ν2s ⋅ µ.last ⋅ m (or µ2s ⋅
ν'2.first), as shown in Fig. 4 (b). Again, receive(ν2s.last) (or receive(µ2s.last)) is in the
causal past of send(µ.last); thus ν2s ⋅ µ.last (or µ2s) has at least one different message
from ν1s ⋅ µ.last. Note that ν2s ⋅ µ.last cannot be µ, either; otherwise, the checkpoint be-
tween ν2s and other part of ν2 would also be located between send(µ.first) and
send(µ1.first) such that µ could not be causally doubled by µ1. Thus, the path ν2s ⋅ µ.last
also has at least one different message from µ. (And so does µ2s.) Alternatively, the un-
broken, visibly doubled EPSCM-path µ1s ⋅ ν'1.first implies a similar scenario as well.
Hence, with repeated application of the above argument, the existence of an unbroken µ ⋅
m implies an infinite number of distinct unbroken visibly doubled EPSCM-paths in the
causal past of µ.last. This contradicts the fact that the causal history must be finite. �

In [17], we proved that FDAS and protocol No-PCM-Cycle, which breaks all
PCM-cycles and non-visibly doubled PCM-paths, have the same behavior. Since it has
also been shown in the previous subsection that FDAS is equivalent to No-EPSCM, we
can conclude that No-PCM-Cycle has the same behavior as No-EPSCM-Cycle.

4. INCOMPARABLE RDT PROTOCOLS

In this section, we will present performance comparisons of protocol No-EPSCM-
Path (which breaks all EPSCM-paths and non-doubled EPSCM-cycles [14]) and two
other protocols, No-PCM-Path and NNVD-EPSCM.

First, we will compare the performance of No-EPSCM-Path with that of protocol
No-PCM-Path. The latter was also introduced in [14] and breaks all PCM-paths and any

PCM-cycle µ ⋅ m with receive(m) hb
��� send(µ.first). Although No-PCM-Path clearly

forces a checkpoint at a weaker condition than No-EPSCM-Path, we can construct the
checkpoint and communication pattern depicted in Fig. 5, and apply both protocols to
such a pattern to show that No-EPSCM-Path may not always outperform No-PCM-
Path.

Figs. 5 (a) and (b) show the resulting patterns of No-EPSCM-Path and No-PCM-
Path, respectively, where rectangular boxes represent basic checkpoints and diamond
boxes represent forced checkpoints. The figure indicates that there exists a pattern for
which No-EPSCM-Path must take two forced checkpoints to satisfy RDT, while
No-PCM-Path requires only one. Therefore, we can conclude that these two protocols

JICHIANG TSAI, SY-YEN KUO AND YI-MIN WANG

250

(a)

(b)

Fig. 5. (a) Applying No-EPSCM-Path; (b) applying No-PCM-Path.

are incomparable. But No-EPSCM-Path requires more information piggybacked on a
message than No-PCM-Path does the former needs to distinguish whether a Z-path is
simple and whether a Z-cycle is causally doubled or not.

Next, we will begin to compare No-EPSCM-Path with protocol NNVD-EPSCM.
Obviously, NNVD-EPSCM is based on a stronger condition than No-EPSCM-Path, and
since NNVD-EPSCM needs to decide if an EPSCM-path is visibly doubled or not, it
requires more control information piggybacked on a message than No-EPSCM-Path
does. We can also construct the pattern shown in Fig. 6 to demonstrate that NNVD-
EPSCM may not always outperform No-EPSCM-Path. In Fig. 6 (a), it is shown that
NNVD-EPSCM needs two checkpoints to satisfy RDT, whereas Fig. 6 (b) shows that
No-EPSCM-Path needs only one. So these two protocols are also not comparable. Fur-
thermore, it has been shown in [17] that BHMR and No-PCM-Path are incomparable.
Because NNVD-EPSCM was demonstrated to be equivalent to BHMR in the foregoing
section, we can also conclude that NNVD-EPSCM and No-PCM-Path are incompara-
ble.

MORE PROPERTIES OF RDT CHECKPOINTING PROTOCOLS

251

(a)

(b)

Fig. 6. (a) Applying NNVD-EPSCM; (b) applying No-EPSCM-Path.

5. A SIMULATION STUDY

We summarize our foregoing comparison results in the hierarchy graph depicted in
Fig. 7, which shows how the RDT protocols discussed in the present context can be com-
pared in terms of both the number of forced checkpoints and the amount of piggybacked
information. Let #f_ckpt(CP) denote the number of forced checkpoints taken by the pro-
tocol CP. A solid arrow from a protocol CP1 to another protocol CP2 indicates that
#f_ckpt(CP1) ≤ #f_ckpt(CP2), and a dotted arrow indicates that the amount of piggy-
backed information in CP1 is less than that in CP2. A line with arrows at both ends
means equivalent, and a line marked “X” means incomparable.

In the simulation study, each pair of adjacent processes were connected by a bidi-
rectional communication channel for all environments. A process could execute internal,
send, and receive operations. Unless explicitly mentioned otherwise, every process first
checked if any message was waiting in the buffer to be received. If so, it managed this
message; otherwise, it either executed a send operation with probability ps or executed an
internal operation with probability 1 − ps. The foregoing procedure proceeded continu-
ously. The time needed to execute an operation in a process was exponentially distributed

JICHIANG TSAI, SY-YEN KUO AND YI-MIN WANG

252

 NNVD-EPSCM

BHMR

 No-EPSCM

FDAS

No-EPSCM-Path No-EPSCM-Cycle

No-PCM-Path No-PCM-Cycle

Fig. 7. Comparison of a family of RDT protocols.

with a mean value equal to 1 time unit, and the message propagation time was exponen-
tially distributed with a mean value equal to 10 time units. Furthermore, basic check-
points were taken periodically in a process.

The average of 10 measurements, running with different seeds, was taken for an
experiment point. Every measurement was the execution time of all considered protocols
under the same checkpoint and communication pattern. A simulation run contained 1000
message deliveries per process on average. Finally, we calculated the ratio between the
number of forced checkpoints taken by a protocol and the number of messages of execu-
tion, for 4 ≤ n ≤ 16, where n denotes the number of processes. This ratio could be re-
garded as the normalized value for the number of forced checkpoints taken by a process
on average.

The simulation was performed in the point-to-point computational environment. For
this environment, a complete network was assumed. The destination of each message
was uniformly distributed. Furthermore, ps = 0.1 and a basic checkpoint was taken every
50 operations for each process. As simulation ran, consistent with the theoretical results
presented in section 3, the two protocols, NNVD-EPSCM and BHMR, really forced
checkpoints at the same points, and the other two protocols, No-EPSCM and FDAS, had
the same behavior. Fig. 8 depicts these results.

Furthermore, the results of another simulation experiment conducted in this envi-
ronment are shown in Fig. 9. They demonstrate that protocols based on a stronger condi-
tion than No-EPSCM outperform No-EPSCM. We can also see that No-EPSCM-Cycle
has exactly the same behavior as No-EPSCM. In addition, though any two protocols
among NNVD-EPSCM, No-EPSCM-Path, and No-PCM-Path have been shown in
section 4 to not be comparable, we can see that a protocol with a stronger condition is

MORE PROPERTIES OF RDT CHECKPOINTING PROTOCOLS

253

0.30

0.32

0.34

0.36

0.38

0.40

4 5 6 7 8 9 10 11 12 13 14 15 16

Processor No.

F

or
ce

d
C

kp
t /

 #
 M

es
sa

ge

NNVD-EPSCM

BHMR

No-EPSCM

FDAS

Fig. 8. Simulation results obtained in the point-to-point environment.

0.30

0.32

0.34

0.36

0.38

0.40

4 5 6 7 8 9 10 11 12 13 14 15 16

Processor No.

Fo

rc
ed

 C
kp

t /
 #

 M
es

sa
ge

NNVD-EPSCM
No-EPSCM-Path
No-PCM-Path
No-EPSCM-Cycle
No-EPSCM

Fig. 9. Simulation results obtained in the point-to-point environment.

still better than a protocol with a weaker one. Thus, we know that those complex patterns
constructed in section 4 seldom occur in a typical computational environment. Further-
more, the difference in the measured ratio between NNVD-EPSCM and No-EPSCM-
Path reveals that some EPSCM- paths can be visibly doubled in this environment. This
result also highlights the fact that No-EPSCM-Cycle is really equivalent to No-EPSCM
since both have the same behavior although the former does not break a visibly doubled
EPSCM-path.

In addition, we examined the influence of different basic checkpoint periods in the
point-to-point environment. Here, we had 8 processes, and all of them had the same rates
for taking a basic checkpoint. Moreover, the number of events needed to take a basic
checkpoint in every process was varied from 20 to 140, in steps of 10 events. We com-

JICHIANG TSAI, SY-YEN KUO AND YI-MIN WANG

254

pared the performance of the four protocols, NNVD-EPSCM, No-EPSCM-Path,
No-PCM-Path and No-EPSCM, and their results are depicted in Fig. 10. One can see
that a protocol based on a stronger condition is still better than a protocol based on a
weaker one. This means that the complex patterns built in section 4 are really hard to
construct in such an environment even if the basic checkpoint period is prolonged. In
addition, the longer the period for taking a basic checkpoint, the larger the number of
forced checkpoints taken by every considered protocol. This is because more PCM-paths
are formed in a longer basic checkpoint period.

0.28

0.30

0.32

0.34

0.36

0.38

0.40

0.42

20 30 40 50 60 70 80 90 100 110 120 130 140

Basic Ckpt Period

Fo

rc
ed

 C
kp

t /
 #

 M
es

sa
ge

NNVD-EPSCM

No-EPSCM-Path

No-PCM-Path

No-EPSCM

Fig. 10. Simulation results of the point-to-point environment.

6. CONCLUSIONS

Since the concept of Rollback-Dependency Trackability (RDT) was first introduced,
designing more efficient RDT protocols has become an active research topic. In [14], the
authors provided two crucial characterizations of the RDT property, EPSCM-paths and
PCM-paths. They also derived a family of RDT protocols from these two characteriza-
tions that not only contain existing protocols based on PCM-paths but also some new
ones based on EPSCM-paths. We compared the performance of protocols based on
PCM-paths in [17]. In this study, we performed performance comparisons of protocols
based on EPSCM-paths. We also addressed more interesting properties of RDT protocols
in the previous family. From these results, we have found that some RDT protocols actu-
ally have the same behavior for all possible patterns. In addition, we have constructed
patterns to show that any two among several RDT protocols are incomparable. Finally,
we have carried out simulation experiments to verify the previously obtained theoretical
results. Interestingly, the experimental results reveal that a protocol based on a stronger
condition still requires a smaller number of checkpoints than a protocol based on a
weaker one in a typical computational environment even though they have been shown to
not be comparable.

MORE PROPERTIES OF RDT CHECKPOINTING PROTOCOLS

255

ACKNOWLEDGMENTS

The authors wish to express their sincere thanks to the anonymous referees for their
valuable comments. Moreover, Tsai’s work was supported by the National Science Coun-
cil, Taiwan, R.O.C., under Grant NSC 90-2213-E-002-113.

REFERENCES

1. Y. M. Wang, A. Lowry, and W. K. Fuchs, “Consistent global checkpoints based on
direct dependency tracking,” Information Processing Letters, Vol. 50, 1994, pp.
223-230.

2. K. M. Chandy and L. Lamport, “Distributed snapshots: determining global states of
distributed systems,” ACM Transactions on Computing Systems, Vol. 3, 1985, pp.
63-75.

3. B. Randell, “System structure for software fault-tolerant,” IEEE Transactions on
Software Engineering, Vol. 1, 1975, pp. 220-232.

4. E. N. Elnozahy, L. Alvisi, Y. M. Wang, and D. B. Johnson, “A survey of roll-
back-recovery protocols in message-passing systems,” ACM Computing Surveys,
Vol. 34, 2002, pp. 375-408.

5. R. Koo and S. Toueg, “Checkpointing and rollback-recovery for distributed sys-
tems,” IEEE Transactions on Software Engineering, Vol. 13, 1987, pp. 23-31.

6. B. Janssens and W. K. Fuchs, “Experimental evaluation of multiprocessor cache-
based error recovery,” in Proceedings of International Conference on Parallel
Processing, 1991, pp. 505-508.

7. Y. M. Wang, “Consistent global checkpoints that contain a given set of local check-
points,” IEEE Transactions on Computers, Vol. 46, 1997, pp. 456-468.

8. R. H. B. Netzer and J. Xu, “Necessary and sufficient conditions for consistent global
snapshots,” IEEE Transactions on Parallel and Distributed Systems, Vol. 6, 1995,
pp. 165-169.

9. R. Baldoni, J. M. Helary, A. Mostefaoui, and M. Raynal, “A communication-induced
checkpointing protocol that ensures rollback-dependency trackability,” in Proceed-
ings of IEEE Fault-Tolerant Computing Symposium, 1997, pp. 68-77.

10. Y. M. Wang, “The maximum and minimum consistent global checkpoints and their
applications,” in Proceedings of IEEE Symposium on Reliable Distributed Systems,
1995, pp. 86-95.

11. Y. M. Wang, M. Merritt, and A. B. Romanovsky, “Guaranteed deadlock recovery:
deadlock resolution with rollback propagation,” in Proceedings of Pacific Rim In-
ternational Symposium on Fault-Tolerant Systems, 1995, pp. 92-97.

12. E. Cohen, Y. M. Wang, and G. Suri, “When piecewise determinism is almost true,” in
Proceedings of Pacific Rim International Symposium on Fault-Tolerant Systems,
1995, pp. 66-71.

13. R. Baldoni, J. M. Helary, and M. Raynal, “Rollback-dependency trackability: visible
characterizations,” in Proceedings of 18th ACM Symposium on Principles of Dis-
tributed Computing, 1999, pp. 33-42.

14. R. Baldoni, J. M. Helary, and M. Raynal, “Rollback-dependency trackability: a

JICHIANG TSAI, SY-YEN KUO AND YI-MIN WANG

256

minimal characterization and its protocol,” Information and Computation, Vol. 165,
2001, pp. 144-173.

15. R. Baldoni, J. M. Helary, and M. Raynal, “Impossibility of scalar clock-based com-
munication-induced checkpointing protocols ensuring the RDT property,” Informa-
tion Processing Letters, Vol. 80, 2001, pp. 105-111.

16. D. Manivannan and M. Singhal, “Quasi-synchronous checkpointing: models, char-
acterization, and classification,” IEEE Transactions on Parallel and Distributed Sys-
tems, Vol. 10, 1999, pp. 703-713.

17. J. Tsai, S. Y. Kuo, and Y. M. Wang, “Theoretical analysis for communica-
tion-induced checkpointing protocols with rollback-dependency trackability,” IEEE
Transactions on Parallel and Distributed Systems, Vol. 9, 1998, pp. 963-971.

18. L. Lamport, “Time, clocks and the ordering of events in a distributed system,” Com-
munications of the ACM, Vol. 21, 1978, pp. 558-565.

Jichiang Tsai (蔡智強) received his B.S. degree in Electri-
cal Engineering from National Taiwan University, Taipei, Tai-
wan, in 1991. Then he started his graduate study at the same uni-
versity, and received the Ph.D. degree in Electrical Engineering
in 1999. Dr. Tsai served as a postdoctoral research fellow in the
Institute of Information Science, Academia Sinica, Taipei, Tai-
wan, from 1999 to 2001. Since 2002, he has been an Assistant
Professor with the Department of Electrical Engineering, Na-
tional Chung Hsing University, Taichung, Taiwan. His current
research interests include fault tolerance, parallel and distributed
systems, embedded systems, quantum computing, and computer
networks.

Sy-Yen Kuo (郭斯彥) received the B.S. (1979) in Electrical
Engineering from National Taiwan University, the M.S. (1982) in
Electrical and Computer Engineering from the University of
California at Santa Barbara, and the Ph.D. (1987) in Computer
Science from the University of Illinois at Urbana-Champaign.
Since 1991 he has been with National Taiwan University, where
he is currently a Professor of the Department of Electrical Engi-
neering, and served as the department head from 2001 to 2004.
He spent his sabbatical years as a visiting researcher at AT&T
Labs-Research, New Jersey from 1999 to 2000, and as a visiting

professor at the Computer Science and Engineering Department of the Chinese Univer-
sity of Hong Kong. He was the Chairman of the Department of Computer Science and
Information Engineering, National Dong Hwa University, Taiwan from 1995 to 1998, a
faculty member in the Department of Electrical and Computer Engineering at the Uni-
versity of Arizona from 1988 to 1991, and an engineer at Fairchild Semiconductor and
Silvar-Lisco, both in California, from 1982 to 1984. In 1989, he also worked as a sum-

MORE PROPERTIES OF RDT CHECKPOINTING PROTOCOLS

257

mer faculty fellow at Jet Propulsion Laboratory of California Institute of Technology.
His current research interests include software reliability engineering, mobile computing,
dependable systems and networks, and optical WDM networks.

Professor Kuo is an IEEE Fellow. He has published more than 200 papers in jour-
nals and conferences. He received the distinguished research award (1997-2005) from
the National Science Council, Taiwan. He was also a recipient of the Best Paper Award in
the 1996 International Symposium on Software Reliability Engineering, the Best Paper
Award in the simulation and test category at the 1986 IEEE/ACM Design Automation
Conference (DAC), the National Science Foundation’s Research Initiation Award in 1989,
and the IEEE/ACM Design Automation Scholarship in 1990 and 1991.

Yi-Min Wang (王逸民) manages the Systems Management
Research Group at Microsoft Research, Redmond. He received
his Ph.D. in Electrical and Computer Engineering from Univer-
sity of Illinois at Urbana-Champaign in 1993, worked at AT&T
Bell Labs from 1993 to 1997, and joined Microsoft in 1998. His
research interests include systems and security management, fault
tolerance, home networking, and distributed systems.

