
IEEE TRANSACTIONS ON RELIABILITY, VOL. 55, NO. 2, JUNE 2006 369

An Efficient Algorithm for Spare Allocation Problems
Hung-Yau Lin, Fu-Min Yeh, and Sy-Yen Kuo, Fellow, IEEE

Abstract—The spare allocation problem in redundant RAM
is to replace faulty rows/columns of memory cells with spare
rows/columns. To solve the problem, comparison-based search
tree structures were used in traditional exact algorithms. These
algorithms are not efficient for large problems because significant
amounts of data have to be retained and copied in order to gen-
erate new partial solutions. Many data may need to be compared
for the removal of each redundant partial solution. To overcome
these drawbacks, an efficient algorithm is proposed in this paper.
The algorithm transforms a spare allocation problem into Boolean
functions, and the renowned BDD is used to manipulate them.
Experimental results indicate that the proposed algorithm is very
efficient in terms of speed and memory requirements. It may
also be useful for problems which can be modeled as constraint
bipartite vertex cover problems.

Index Terms—BDD, bipartite graph, Boolean functions, exact al-
gorithm, memory repair, RRAM, vertex cover.

ACRONYMS,1 NOTATIONS AND DEFINITIONS

BDD Binary Decision Diagram

CPU Central Processing Unit

DRAM Dynamic Random Access Memory

RAM Random Access Memory

RRAM Redundant RAM

SSRRAM A spare-shared RRAM in which spare
lines can be cut into segments and
shared among memory blocks

SR/SC the number of spare rows/columns in
a reconfigurable memory array

Line A line is a row (or a column) of
memory cells

row/column set The two sets of vertices in a bipartite
graph are called the row set, and the
column set.

Cover A cover is a set of vertices such that
every edge of a bipartite graph has at
least one of its end vertices in the set.

Manuscript received May 29, 2005; revised November 1, 2005; November 30,
2005. This work was supported in part by the National Science Council, Taiwan,
R.O.C., under Grant NSC 94-2213-E-002-082. Associate Editor: G. Levitin.

H.-Y. Lin is with the Department of Electrical Engineering, National Taiwan
University, Taipei 106, Taiwan, R.O.C.

F.-M. Yeh is with the Chung-Shan Institute of Science and Technology,
Taoyuan, Taiwan, R.O.C.

S.-Y. Kuo is with the Department of Electrical Engineering, National Taiwan
University, Taipei 106, Taiwan, R.O.C. He is also with the Department of Com-
puter Science and Engineering, National Taiwan Ocean University, Keelung,
Taiwan, R.O.C. (email: sykuo@cc.ee.ntu.edu.tw).

Digital Object Identifier 10.1109/TR.2006.874942

1The singular and plural of an acronym are always spelled the same.

feasible cover A cover is said to be feasible if it
includes at most vertices in the
row set, and at most vertices in
the column set.

minimal feasible cover It has the minimal number of vertices
among all feasible covers.

spare set a set of spare rows/columns which
can be used to replace the lines in the
same memory block
the number of spare lines for spare set

the number of faulty lines within the
duty of spare set . A faulty line is
within the duty of a spare set if it can
be replaced with the spare set.

I. INTRODUCTION

THE speed of CPU has been increasing much faster than
DRAM since the 1980s. This leads to a larger performance

gap between CPU and DRAM [1]. To reduce the performance
impact of the slower DRAM on a computer system, cache
memory was added to the design of a system. In 1984, Mo-
torola added 256 bytes of instruction cache memory into its
MC68020 CPU. Later in 1989, Intel added 8 kilo-bytes (KB) of
on-die cache memory to the 80486 CPU [2]. The Alpha 21064
CPU contained 16 KB of cache, and the PowerPC 601 CPU
contained 32 KB of unified cache when they were introduced
respectively in 1992, and 1993 [3]. Recent desktop CPU, such
as AMD Athlon 64, Intel Pentium 4, Motorola PowerPC 7450,
and IBM PowerPC 970, include at least 512 KB of on-die L2
(level two) cache. The dual-core 64-bit UltraSPARC server
processor contains 512 KB of cache in each core [4]. The
Power4, Power4+, and Power5 include respectively 1.41 MB,
1.5 MB, and 1.875 MB of on-die L2 caches [5]. The 64-bit
1.6-GHz SPARC processor contains 4 MB of on-die L2 cache
[6]. The 1.5-GHz Itanium 2 processor has 6 MB of on-die
L3 (level three) cache [7]. The 1.7-GHz Itanium 2 processor
includes 9 MB of on-die L3 cache [8]. About 44% of the 5.2
million transistors in the UltraSPARC are in the on-die cache
memory [9], [10], and about 86% of the 592 million transistors
in the 1.7-GHz Itanium 2 processor are in the on-die L3 cache
[8]. On-die cache memories have become an important driving
force of chip yield as they get larger.

In addition to the increase in the size of on-die cache memory,
the capacity, and the density of DRAM also grow along with
the advancement of VLSI technology [1]. As the memory den-
sity increases, it becomes harder to fabricate memories con-
taining no defect. One of the techniques for improving the yield
is to replace faulty rows/columns of memory cells with spare
rows/columns. Such devices are known as the RRAM or recon-
figurable memory arrays. Because replacing faulty lines with

0018-9529/$20.00 © 2006 IEEE

Authorized licensed use limited to: National Taiwan University. Downloaded on January 19, 2009 at 23:48 from IEEE Xplore. Restrictions apply.

370 IEEE TRANSACTIONS ON RELIABILITY, VOL. 55, NO. 2, JUNE 2006

spare lines is simple and effective, this technique has been used
in producing DRAM and CPU for years [10], [25], [32]–[34].

Searching for a solution which replaces all faulty cells in
a memory array with spare lines is called a spare allocation
problem, or a constrained bipartite vertex cover problem [11],
[12]. Spare allocation problems have been shown to be NP-com-
plete [13]. There are two categories of algorithms for spare al-
location problems: heuristic algorithms, and exact algorithms.
Many heuristic algorithms and exact algorithms have been pro-
posed [11]–[30]. Though heuristic algorithms can be very fast,
they cannot guarantee a solution to be found even if one ex-
ists. Exact algorithms are able to find the solution if a solution
does exist. Exact algorithms seem to be preferred. However, the
worst-case running time and worst-case memory space require-
ment in exact algorithms grow exponentially with the problem
size. An exact algorithm can be separated into two stages. The
first stage uses some preprocessing (or filter) algorithms to re-
move as many faulty cells as possible, or to stop as early as
possible. The second stage usually searches for a solution by
applying an exhaustive search algorithm, and it accounts for the
worst-case exponential time complexity. The separation is made
because an exact algorithm can usually incorporate the filter al-
gorithms used in other exact algorithms.

Spare lines are assumed to have no faulty cells in this paper. A
spare allocation problem can be easily modeled as a constrained
bipartite vertex cover problem [13]. In the model, there is an
edge between a vertex in the row set, and a vertex in column
set iff the memory cell at the intersection of the corresponding
row and the corresponding column is faulty. A set of vertices
such that every edge of a bipartite graph has at least one of its
end vertices in the set is called a cover. A set of vertices is said
to be feasible if it includes at most vertices in the row set,
and at most vertices in the column set [27]. A minimal fea-
sible cover has the minimal number of vertices among all fea-
sible covers. The most efficient exact algorithm for minimum
vertex cover problems is presented in [12]. However, a minimal
vertex cover is not necessarily feasible [26]. Although the al-
gorithm in [12] may not be able to find a repair solution for a
spare allocation problem, their filter algorithm to be described
in Section II-D is very efficient.

To solve spare allocation problems efficiently, a two-stage
exact algorithm called PAGEB is proposed. The first stage of
PAGEB uses the filter algorithms described in Section II. The
second stage of PAGEB transforms the remaining problem from
the first stage into a set of Boolean formulas, and uses BDD (Bi-
nary Decision Diagram) [36] to solve the Boolean formulas. All
solutions of a spare allocation problem are encoded in a BDD,
and the optimal solution can be found by traversing the BDD
only once. Depending on the definition, the optimal solution can
be either the solution that uses the least number of spares, or the
solution that has the lowest cost. Advancement of laser and in-
tegration technologies has allowed spare lines to be cut into seg-
ments, and shared between memory blocks [26], [37], [38]. The
PAGEB algorithm can also be extended to solve the spare alloca-
tion problems in SSRRAM. Experiments using the PAGEB and
branch-based exact algorithms were conducted. Experimental
results indicate that the proposed algorithm can be very efficient
in terms of speed and memory requirements.

II. PREPROCESSING/FILTER ALGORITHMS

Filter algorithms usually have polynomial time complexity.
They are often used in the first stage of exact algorithms for two
main purposes: 1) to stop as early as possible if the problem is
known to have no solution, or 2) to filter out as many faulty cells
as possible so that fewer faulty cells are left to the more time-
consuming second stage. Many Filter algorithms have been pre-
sented in the literatures [12]–[14], [26], [27] and those used in
PAGEB are discussed in this section.

A. The Must-Repair Algorithm

If the number of faulty cells in a row exceeds the number
of spare columns, the faulty row must be replaced with a spare
row in order to have a minimal feasible cover. Similarly, a faulty
column must be replaced with a spare column if the number of
faulty cells in the column is greater than the number of spare
rows. This is called the must-repair algorithm because it re-
places the lines that must be repaired in order to have a solution.
It is often used in exact and heuristic algorithms as an initial
screening step.

B. The Early-Abort Algorithm

The purpose of the early-abort algorithm is to abort program
execution as early as possible if the problem is known to have
no solution. The upper bound for the early-abort algorithm pre-
sented in [25] is not very useful in practice. A more practical
upper bound has been proposed in [13], and it uses maximum
matching [39]–[41] as the early-abort criterion. If the size of a
maximum matching is greater than the number of spare lines left
after the initial screening algorithm, then the problem contains
no solution, and the search can be aborted early.

C. The Single-Faulty-Cell Filter

The single-faulty-cell filter is used primarily to reduce the
number of partial solutions generated in the time-consuming
second stage. A single faulty cell is a faulty cell that does not
share its line with any other faulty cells [14]. It is clear that a
single faulty cell must be replaced by either a spare row or a
spare column. Before the second stage starts, the single faulty
cells are recorded and filtered out. After the second stage finds a
potential minimal feasible cover, the remaining spare lines can
be easily calculated. If the number of remaining spare lines is
greater than or equal to the number of single faulty cells, then a
solution can be found. Otherwise, no solution exists for the po-
tential minimal feasible cover.

D. The Gallai-Edmonds Structure Theorem

A spare allocation problem can be easily modeled as a bi-
partite graph. Many algorithms including maximum matching
in Graph theory [42] have been developed for bipartite graphs.
Hasan & Liu [26] introduced the concept of critical sets. A crit-
ical set is the intersection of all minimal vertex covers. Later,
Hadas & Liu [27] presented excess-k critical sets which are con-
ceptually similar to the critical sets. In their algorithm, the pro-
cedure of finding critical sets is interlaced with an exhaustive
search algorithm. Chen & Kanj [12] observed that the Gallai-
Edmonds structure theorem is a stronger version of critical sets,
and showed that such interlacing is not necessary.

Authorized licensed use limited to: National Taiwan University. Downloaded on January 19, 2009 at 23:48 from IEEE Xplore. Restrictions apply.

LIN et al.: AN EFFICIENT ALGORITHM FOR SPARE ALLOCATION PROBLEMS 371

The Gallai-Edmonds theorem partitions the vertices of a bi-
partite graph into three sets: the independent set , the inter-
section set , and the perfect matching set . The independent
set is the set of vertices not contained in any minimum vertex
cover. The intersection set is the intersection of all minimum
vertex covers. The perfect matching set is the set of vertices
such that , where is the set of vertices in the
bipartite graph. A bipartite sub-graph induced from set
has a perfect matching [42]. If a spare allocation problem has a
minimal vertex cover, all vertices in set must be included in
the final solution, and all vertices in should not be included.
The vertices in are the only vertices that need to be processed
in the second stage. The procedures for constructing the three
sets can be found in [12], and they are briefly described here.
Let denotes a bipartite graph. Firstly, compute a maximum
matching for . Let be the set of unmatched vertices
under . A vertex is in set iff is reachable from a vertex in

via an alternating path of even length. An alternating path is
a simple path such that vertex is unmatched,
and the edges are in for . After
set has been found, set can be computed with the following
rule: set is the set of vertices in such that each vertex in

is adjacent to at least one vertex in . Set can be computed
with the equation .

The filter algorithms in [26], [27] are less efficient than the
Gallai-Edmonds theorem for the inability to separate set from
set . While the Gallai-Edmonds theorem can be a powerful
filter for some bipartite graphs, it may be of little benefit to
others. A graph with a perfect matching has all of its vertices
in set [30]. Note that even though a minimal vertex cover
should include all the vertices in set , the constraints on the
spares may not allow all of them to be included.

III. EXACT ALGORITHMS

The branch-and-bound (B&B) algorithm is a classic
branching algorithm [13]. It is briefly discussed in this section
along with its potential problem. Later in this section, the
second stage of the PAGEB algorithm is described.

A. The B&B Algorithm

The B&B algorithm, a simple fault-driven approach, is the
cornerstone of many exact algorithms [13], [14], [19], [26], [27].
The algorithm starts with an empty priority queue. The entries
in the priority queue are sorted according to some user-defined
cost functions [13]. Firstly, a faulty cell is chosen for branching.
Two sub-problems (also called partial solutions) are generated
by replacing the faulty cell with either a spare row or a spare
column. These two partial solutions are inserted into the priority
queue. Then, a partial solution at the head of the priority queue is
taken for branching each time during iterations until a solution
is found, or the priority queue becomes empty. If the priority
queue becomes empty, then no solution can be found. For a spare
allocation problem which has no solution, it has to examine all
partial solutions before it concludes that no solution exists.

The B&B algorithm is similar to searching in a binary search
tree except that the tree is packed into a priority queue. The
number of nodes in a binary search tree, in this case the number
of partial solutions, grows exponentially with the depth of the

tree [43]. The exponential growth rate also plagues the B&B
algorithm. It may require a lot of memory space to store all par-
tial solutions. Even if a computer system can store all partial
solutions, processing them can take a great amount of time. It
is not necessary to sort the queue if an optimal solution is not
required. While sorting can remove duplicates in the priority
queue, and avoid redundant computation, sorting itself takes
time. Millions of partial solutions may be generated for a spare
allocation problem. For example, there are 2,704,156 partial so-
lutions remaining in the unsorted queue when a solution is found
for the problem with 144 faulty cells (24 effective faulty cells)
[30]. Please note that the branching operations in [30] are per-
formed on effective faulty cells. If branching operations are on
faulty cells, many more partial solutions will be generated, and
the performance will be much worse. Because of the exponential
growth rate, the performance of a branch-based algorithm can
decline dramatically with the increase of the problem size. The
drawback of comparison-based branching algorithms becomes
evident.

B. The Second Stage of the PAGEB Algorithm

To solve spare allocation problems more efficiently, an exact
algorithm called PAGEB is devised. All filter algorithms de-
scribed in Section II are used in PAGEB. Besides, the repair-
most heuristic algorithm [13] can also be used in the first stage
of PAGEB if an optimal solution is not required. The repair-most
algorithm is a greedy algorithm, and it repeatedly replaces the
line having the most faulty cells. Instead of making improve-
ments to branch-based algorithms, the second stage of PAGEB
transforms a spare allocation problem into a set of Boolean func-
tions. BDD is used to manipulate the Boolean operations be-
cause BDD has been known to be an efficient tool for Boolean
function manipulations [36], [44].

Unlike branch-based algorithms which include much infor-
mation in each partial solution, a BDD node only records the
minimal amount of data necessary for BDD operations. It means
that each BDD node takes much less memory space than a par-
tial solution. BDD also has a very useful property: it can merge
isomorphic graphs together. The property can further reduce
memory requirements because isomorphic graphs do not need
to be duplicated. In addition, the property can also help boost
performance. Operations performed on many graphs which are
isomorphic to each other can be reduced to the operations on a
single graph. Therefore, PAGEB can somewhat avoid the great
number of copy and comparison operations inherent in tradi-
tional branch-based algorithms. Fig. 1 lists the pseudo-code of
the PAGEB algorithm. The , , and will be described
in detail later.

1) The Defect Function : A defect function is a Boolean
function which encodes the locations of all faulty cells. Suppose

and denote respectively the row and column Boolean vari-
ables of a faulty cell . It is apparent that the following defect
function encodes the locations of all faulty cells of a spare allo-
cation problem.

(1)

Authorized licensed use limited to: National Taiwan University. Downloaded on January 19, 2009 at 23:48 from IEEE Xplore. Restrictions apply.

372 IEEE TRANSACTIONS ON RELIABILITY, VOL. 55, NO. 2, JUNE 2006

Fig. 1. The PAGEB algorithm.

To replace all faulty cells, the Boolean expression inside the
parentheses needs to be evaluated and found to be true.

2) The Constraint Function : A constraint function is
a Boolean function encoding all combinations of faulty lines
which are replaceable by spare lines. Because the constraints
for rows are orthogonal to the constraints for columns, they can
be considered separately. Suppose a memory array has faulty
rows. (2) encodes , the constraint function for row.

(2)

Let the Boolean variables for the faulty rows be
. Among the faulty rows, faulty rows can be replaced,

and can range from zero up to . Each combinatorial func-
tion represents a set of valid combinations of spare rows.
Note that the definition of the combinatorial function is different
from its conventional one. In conventional mathematics, is
the number of valid combinations if objects are to be picked
out of objects. In this paper, it is defined to be the summa-
tion of the Boolean expressions for the combinations. For ex-
ample, suppose one of 3 faulty lines (say , , and) is to
be replaced by a spare line. The number of valid combinations
is . However, the value 3 is of little use for encoding

. The Boolean expressions for the combinations (,
and) are more useful.

Many Boolean expressions may be consolidated into a single
Boolean expression after the summation. For example,

is equivalent to . It is desired to get the simplified
Boolean expression early rather than perform redundant compu-
tation. Direct enumeration of each combinatorial function in (2)
does not seem to be a practical way to compute . Decompo-
sition of (2) is a more practical, systematic approach. Let

. It is apparent that (2) can be expanded on
as

(3)

The symbols of the faulty lines can be put into an array in
any order. Let the Boolean symbols in the array be denoted
by . A placement function can be defined
as

(4)

Note that (3) & (4) are equivalent. The meaning of (4) is in-
tuitive. If a faulty line is to be replaced by a spare line, the
remaining number of spare lines will be one less than the orig-
inal. If is not to be replaced by a spare line, the remaining
number of spare lines will be the same as the original. In both
cases, is removed from the set of faulty lines, and the number
of faulty lines will be one less than the original. Some identical
placement functions may be generated during the decomposi-
tion process of (4). Thus, the use of a hash table can avoid re-
dundant computation in (4).

(5), and (6) are two useful properties of the placement func-
tion. These two properties are intuitive. If the number of spare
lines is greater than or equal to the number of defect lines, all
defect lines can be replaced and true is returned. If no spare line
is left, then none of the defect lines can be replaced, and the
symbols of these defect lines are complemented and multiplied
together.

(5)

(6)

, the constraint function for columns, can be constructed
in a similar way. The global constraint function is the
product of the Boolean-AND operations between and

.

(7)

3) The Repair Function : The repair function is a
Boolean function which encodes all repair solutions of a spare
allocation problem. Because the encodes the lines to be
replaced, and the encodes the lines that the spare lines
can replace, it is obvious that the repair function can be
constructed with (8). The fact that the encodes all repair
solutions can be easily proved.

(8)

Traditional exact algorithms search for the repair solution in
each step of the branching process. Unlike those algorithms, the
second stage of PAGEB does not search for the repair solution
until the has been constructed. As soon as the is built,
a repair solution can be found by traversing only once the BDD
of the . A path from the top variable of a BDD to the ter-
minal node 1 is called a solution path. All Boolean variables in a

Authorized licensed use limited to: National Taiwan University. Downloaded on January 19, 2009 at 23:48 from IEEE Xplore. Restrictions apply.

LIN et al.: AN EFFICIENT ALGORITHM FOR SPARE ALLOCATION PROBLEMS 373

Fig. 2. A simple example.

solution path taking the 1-edge form a repair solution. In the ex-
ample below, the 1-edge, and the 0-edge are drawn respectively
in solid lines, and dotted lines. The 1-edge and 0-edge in a BDD
can be represented by pointers in some computer languages. By
following these pointers, the can be traversed efficiently.
Finding an optimal repair solution is almost as easy as finding
a non-optimal one. PAGEB is very efficient due to the fact that
BDD can remove redundant nodes, combine isomorphic graphs,
and have very compact representations of Boolean functions if
a good variable ordering is used. Unlike other exact algorithms
which stop searching when a repair solution is found, PAGEB
encodes all solutions in the repair function.

4) A Simple Example: Fig. 2 shows a simple memory array
with one spare row, one spare column, and three darkened faulty
cells. The thick black lines represent the spare lines. The ex-
ample is used for its simplicity to convey the basic idea of the
second stage of PAGEB even though the solution can be found
by the must-repair filter. For easier understanding, the BDD
encoding method of this example is also explained with the
If-Then-Else (ITE) connective [31]:

(9)

where is one of the decision variables. The functions , and
are Boolean function evaluated at , and

respectively. If & are two variables with a variable ordering
, the following equalities hold for the operations between

two ITE connectives:

(10)

The first step in the second stage of PAGEB is to choose a
good BDD variable ordering. A variable ordering determines
the level of variables in a BDD. Assume the variable ordering

is chosen. Then the can be built
with (1), and its ITE form can be derived with ease.

(11)

Because of limited space, some derivation steps are omitted. The
BDD of the is shown in Fig. 2. Note how the final ITE
expression maps exactly to the BDD of the .

Before the global constraint function can be built, the
and the have to be constructed with (4)–(6). There are two
faulty rows in the memory array. Suppose , and are in-
serted respectively at position 0, and 1 in the array . The fol-
lowing equation shows how to build .

(12)

The can be built in a similar way. Then, the can be
easily constructed with (7). The following equation shows the
symbolic function of the and its ITE form.

(13)

It can be easily checked that the ITE form of the maps
gracefully to its BDD representation. The clause ite(, 0,1)
appears twice in the ITE form. The ITE form does not make use
of isomorphic graphs while the BDD technique does.

The can be now constructed with (8). It is easy to derive
the ITE form of the , and the derivation detail is omitted.
From the BDD of the in Fig. 2, there is only one solu-
tion path . Thus, the repair solution to this example
problem is . This solution can be easily checked with the

Authorized licensed use limited to: National Taiwan University. Downloaded on January 19, 2009 at 23:48 from IEEE Xplore. Restrictions apply.

374 IEEE TRANSACTIONS ON RELIABILITY, VOL. 55, NO. 2, JUNE 2006

Fig. 3. A memory array with spares being cut and shared among blocks.

symbolic function. The symbolic equations above are for illus-
tration purpose only. In a computer program, the BDD repre-
sentations rather than the symbolic equations are used.

IV. SHARED SPARES

Advancement of laser and integration technologies has al-
lowed spare lines to be cut into segments. Different segments of
a spare line can be used to replace segments of different faulty
lines. This allows more flexible use of spare lines. More faulty
cells may be replaced with the same amount of spare lines, and
the yield may be improved. Spare allocation problems will be-
come more complex if the spare lines can be cut into segments,
and shared among adjacent memory blocks. The reason for the
higher complexity is that the union of the minimal vertex covers
of all blocks is not necessarily feasible. This means that each
block cannot be solved independently. Consider the memory
array in Fig. 3. Blocks A & B share the two spare columns.
The minimal covers for blocks A & B are , and

respectively. The union of the two minimal vertex
covers is obviously not feasible because four spare columns are
required.

SSRRAM is almost identical to RRAM except that the spares
can be cut, and shared among memory blocks. Simple modifi-
cations can be made to the filter algorithms in the first stage
of PAGEB to keep them compliant to SSRRAM, and they are
omitted. Modifications to the second stage of PAGEB are dis-
cussed below. Because the global constraint function encodes
how the spare lines can be used to replace faulty lines, it needs
to reflect new restrictions on the shared spares. In RRAM, the

is composed of two functions: and . These two
functions are the constraints for the two sets of spare lines. The
notion can be extended. In a SSRRAM, a set of spare rows (or
columns) is called a spare set if the spares in the set can be
used to replace the same memory block. For example, there are
three spare sets in Fig. 3: two spare sets at the bottom, and the
other between the memory blocks. Each spare set has a con-
straint function. The constraint function for spare set can be
computed by the equation

(14)

Equation (14) is in fact just the rewrite of (2) to emphasize the
notion of spare sets. Suppose there are spare sets, and the con-
straint functions for these spare sets are .

Fig. 4. Figures (a) and (b) have the same fault pattern if the four sub-arrays in
(b) are joined side by side.

In SSRRAM, the is the result of performing AND opera-
tions on the constraint functions of all spare sets.

(15)

Equation (15) degenerates into (7) when equals to 2 in RRAM.
The , and are still built respectively with (1), and (8).
There are four solution paths in the of Fig. 3, and the four
repair solutions are

(16)

Spare cutting and sharing may improve yield because the use
of spares is more flexible. The same number of faulty cells may
be replaced with fewer spare lines. The problem in Fig. 4(a) is a
well-known problem for which the repair-most algorithm is not
able to find the only solution. With PAGEB, the only solution
path is correctly encoded in the . Removing any spare line
from Fig. 4(a) makes the memory irreparable. It is easy to check
that two spare rows and two spare columns are not enough to
replace all faulty lines in the memory array. However, two spare
rows and two spare columns are enough to cover all the faulty
cells in Fig. 4(b) if the spare lines are cut and shared between
adjacent blocks. The fault pattern in Fig. 4(a) is identical to that
in Fig. 4(b) if the four blocks in Fig. 4(b) are joined to adjacent
blocks. Fig. 4(b) has three solution paths, and the three repair
solutions are

(17)

V. EXPERIMENTAL RESULTS

There are almost countless fault patterns for spare allocation
problems. It is not practical to experiment with all possible fault
patterns. The real fault patterns are classified information in in-
dustries. Many models have been published over the years [18],
[19], [45]–[48]. Defects have been shown to occur in clusters

Authorized licensed use limited to: National Taiwan University. Downloaded on January 19, 2009 at 23:48 from IEEE Xplore. Restrictions apply.

LIN et al.: AN EFFICIENT ALGORITHM FOR SPARE ALLOCATION PROBLEMS 375

TABLE I
INFORMATION ABOUT TEST CASES

on wafers [45]. The model in [19] claimed to be easy to imple-
ment, and reflect the clustering effect. It has been said that the
faults become more characteristic of random defects when the
process and design have matured [10]. Because no fault model
was presented in [10], the model in [19] was used to generate
the test cases in this paper. Note that PAGEB is not restricted to
spare allocation problems. To measure the general performance
of PAGEB, other fault models can also be used. The model pro-
posed in [19] uses a compounded Poisson distribution, and it is
briefly described here. An memory array is partitioned
into squares containing elements. Defects occur -inde-
pendently within the same square while occurrences of defects
in different squares are statistically dependent. A square is fault
prone -independently of other squares. Let be the proba-
bility for a square to be fault prone, be the fault probability
within a fault prone square, and be the fault probability within
a fault resistant square. The Poisson parameter is specified by
the criteria

(18)

(19)

Table I shows the parameters used in the model; and it also
shows the minimum number, the average number, and the max-
imum number of faulty cells in the test sets. Each test set has
100 test cases. All memory arrays in the table are of size 1024

1024. The array size is not very important for PAGEB be-
cause the information does not appear in any of the Boolean
functions. Note that equivalent fault patterns can be created by
shifting faulty lines around in the memory array.

To compare the relative performance between a branching al-
gorithm and PAGEB, the second stage of PAGEB is replaced
with a branching algorithm. Two versions of branching algo-
rithms are implemented: sorted queue, and unsorted queue. The
unsorted version is not able to find the minimal feasible cover.
The sorted version may be faster or slower than the unsorted ver-
sion depending on the fault patterns. A heuristic algorithm was
used to generate the static BDD variable orderings in PAGEB
because it has been shown in [50] that finding the optimal BDD
variable ordering is an NP-complete problem [35]. The basic

Fig. 5. Experimental results of test set 5.

idea of the algorithm is to put a group of variables as close as
possible if they can determine the result of a Boolean expres-
sion. Some code snippets written by Setubal [41] were used to
search for a maximum matching. The CMU BDD library [49]
developed by David Long was used to handle the BDD opera-
tions. Everything else was written in the C++ programming lan-
guage. All program files were compiled with GNU g++ 3.4.3,
and the optimization flag was used. The hardware system
had 1 GB of memory, and a single AMD Athlon-XP processor
running at 2.2 GHz. The operating system was a Linux system
with kernel version 2.6.11.

The branching algorithm was aborted if it could not find re-
pair solutions in 100 seconds, or if it ran out of memory space.
Note that the value “100 seconds” is used as the execution
time in such cases. The benchmark results are summarized in
Table II. The results for the test set 5 are plotted in Fig. 5 for
illustration. The two branching algorithms ran out of memory
or could not finish in 100 seconds for most of the test cases
in the test sets 2–4. The maximum execution time of the un-
sorted branching algorithm is less than the sorted counterpart.
However, the average execution time of the unsorted branching
algorithm is larger than the sorted counterpart because the
unsorted version is slower than the sorted one for most of the
test cases. The sorted branching algorithm requires much less
memory than the unsorted version because redundant opera-
tions are not performed. The unsorted version could not solve
any test cases in the test set 3, while the sorted version was
able to find repair solutions for 8 test cases. The two branching
algorithms can be faster than PAGEB for only a handful of test
cases. However, the small lead in time can be ignored because
of imprecision in the measurement. The average execution time
of PAGEB is under 1 second for all test sets. The average exe-
cution time of the branch-based algorithms is much larger than
that of PAGEB. It is clear that the proposed PAGEB algorithm
is much faster than the two branching algorithms.

PAGEB is able to finish all test cases in test set 4 under one
second, except for test case 34. The two branching algorithms
could not solve test case 34 in test set 4 within 100 seconds,
while PAGEB was able to solve it in 3.64 seconds. The value
3.64 is higher than other test cases in the test set. The fault pat-
tern of the test case was investigated, and no peculiarity was
found. There is no apparent reason that PAGEB cannot solve
it efficiently. The execution time dropped from 3.64 seconds to
0.22 seconds if PAGEB was compiled with the optimization flag

. The test was repeated many
times, and the performance improvement was almost identical.

Authorized licensed use limited to: National Taiwan University. Downloaded on January 19, 2009 at 23:48 from IEEE Xplore. Restrictions apply.

376 IEEE TRANSACTIONS ON RELIABILITY, VOL. 55, NO. 2, JUNE 2006

TABLE II
EXPERIMENTAL RESULTS (IN SECONDS)

Fig. 6. The layout of the 4-blocks memory array.

Fig. 7. Experimental results for SSRRAM.

Other test cases do not have such bizarre result. The great dif-
ference in performance for the test case may be caused by the
optimized hashing mechanisms used in the algorithm.

Although the repair-most algorithm can be embedded into
the first stage of the tested algorithms, it was not used in the
experiment. However, Table I still lists the number of test cases
reparable with the repair-most filter. It also lists the number of
test cases aborted early by the early-abort filter, and the number
of test cases having repair solutions. 24 out of 100 test cases in
test set 5 can be repaired with the repair-most filter, 14 test cases
can be aborted early, and 86 test cases have repair solutions.
The Gallai-Edmonds theorem is mainly used in the first stage to
reduce the problem size, but it was able to find the repair solution
for one test case in test set 5.

Both PAGEB and the branching algorithm can be extended to
solve spare allocation problems in SSRRAM. To compare the
performance between PAGEB and the sorted branching algo-
rithm, 100 4-blocks test cases are generated with the following
parameters: , , , , and

. Each block is of size 512 512. Fig. 6 shows
the layout of the 4-blocks test cases. Spares are shared among
adjacent memory blocks. Fig. 7 shows the experimental results.
The sorted branching algorithm could not solve any of the 100
test cases within 100 seconds, while PAGEB could for all of

them. Although PAGEB was able to finish solving most of the
test cases in 1 second, test case 45 and 94 took as long as 58.14
seconds and 49.35 seconds respectively. The execution time of
these two cases can be reduced to less than 2.1 seconds if the
sift dynamic variable ordering [51] is used. The results indicate
that PAGEB is much faster than the branch-based algorithm.

VI. CONCLUSION

Spare allocation problems are important not only because an
increase in chip production yield by a few percentage points
can have a substantial impact on the profit, but also because it
may find applications in other fields. The experimental results
indicate that the proposed PAGEB algorithm is very efficient
in terms of speed and memory requirement. The efficiency re-
sults from the following good properties: 1) each BDD node re-
quires much less memory space than a partial solution in branch-
based algorithms, 2) BDD can merge isomorphic sub-graphs
together to avoid redundant computation and reduce memory
space requirements, and 3) a solution can be easily obtained by
traversing only once the BDD of the repair function. With the
good performance, PAGEB can also be used to check the results
of other algorithms. The second stage of PAGEB transforms
a spare allocation problem into Boolean function operations.
Though the SAT solver can replace BDD as the Boolean func-
tions solver, it cannot find the minimal feasible cover. In the ap-
plications requiring the minimal feasible cover, BDD is a better
option than SAT. However, all BDD-based algorithms require
good variable orderings to have better performance, and finding
the optimal variable ordering is an NP-complete problem. It is
still unknown whether the transformed Boolean functions pos-
sess any characteristic that can be used to determine an optimal
or near optimal variable ordering. Finally, the proposed algo-
rithm may be useful for other problems which can be modeled
as constraint bipartite vertex cover problems.

ACKNOWLEDGMENT

The authors would like to thank H. Fernau, and J. Chen for
the discussions and help.

REFERENCES

[1] D. A. Patterson and J. L. Hennessy, Computer Organization and De-
sign: The Hardware/Software Interface, 3rd ed. : Morgan Kaufmann,
2004.

[2] M. Rafiquzzaman, Microprocessors and Microcomputer-Based System
Design. : CRC Press, 1995.

[3] J. E. Smith and S. Weiss, “PowerPC 601 and alpha 21064: a tale to two
RISCs,” IEEE Computer, vol. 27, no. 6, pp. 46–58, Jun. 1994.

Authorized licensed use limited to: National Taiwan University. Downloaded on January 19, 2009 at 23:48 from IEEE Xplore. Restrictions apply.

LIN et al.: AN EFFICIENT ALGORITHM FOR SPARE ALLOCATION PROBLEMS 377

[4] T. Takayanagi, “A dual-core 64-bit UltraSPARC microprocessor for
dense server applications,” IEEE J. Solid-State Circuit, vol. 40, no. 1,
pp. 7–18, Jan. 2005.

[5] R. Kalla, B. Sinharoy, and J. M. Tendler, “IBM Power5 chip: a dual-
core multithreaded processor,” IEEE Micro, vol. 24, no. 2, pp. 40–47,
2004.

[6] H. McIntyre, D. Wendell, K. J. Lin, P. Kaushik, S. Seshadri, A. Wang,
V. Sundararaman, P. Wang, S. Kim, W. J. Hsu, H. C. Park, G. Levinsky,
J. Lu, M. Chirania, R. Heald, P. Lazar, and S. Dharmasena, “A 4-MB
on-chip L2 cache for a 90-nm 1.6-GHz 64-bit microprocessor,” IEEE
J. Solid-State Circuit, vol. 40, no. 1, pp. 9–52, Jan. 2005.

[7] S. Rusu, H. Muljono, and B. Cherkauer, “Itanium 2 processor 6M:
higher frequency and larger L3 cache,” IEEE Micro, vol. 24, no. 2, pp.
10–18, 2004.

[8] J. Chang, S. Rusu, J. Shoemaker, S. Tam, M. Huang, M. Haque, S. Chiu,
K. Truong, M. Karim, G. Leong, K. Desai, R. Goe, and S. Kulkarni,
“A 130-nm triple-Vt 9-MB third-level on-die cache for the 1.7-GHz
Itanium 2 Processor,” IEEE J. Solid-State Circuit, vol. 40, no. 1, pp.
195–203, Jan. 2005.

[9] M. E. Levitt, “Designing ultraSparc for testability,” IEEE Design &
Test, vol. 14, no. 1, pp. 10–17, 1997.

[10] L. Youngs and S. Paramanandam, “Mapping and repairing embedded-
memory defects,” IEEE Design & Test, vol. 14, no. 1, pp. 18–24, 1997.

[11] H. Fernau and R. Niedermeier, “An efficient exact algorithm for con-
straint bipartite vertex cover,” J. Algorithms, vol. 38, pp. 374–410, Feb.
2001.

[12] J. Chen and I. A. Kanj, “Constrained minimum vertex cover in bipar-
tite graphs: complexity and parameterized algorithms,” J. Computer &
System Science, vol. 67, pp. 833–847, Dec. 2003.

[13] S. Y. Kuo and W. K. Fuchs, “Efficient spare allocation in reconfig-
urable arrays,” IEEE Design & Test, pp. 24–31, Feb. 1987.

[14] W. K. Huang, Y. N. Shen, and F. Lombardi, “New approaches for the
repairs of memories with redundancy by row/column deletion for yield
enhancement,” IEEE Trans. Computer-Aided Design, pp. 323–328,
Mar. 1990.

[15] R. W. Haddad, A. T. Dahbura, and A. B. Sharma, “Increased
throughput for the testing and repair of RAMs with redundancy,” IEEE
Trans. Computers, pp. 154–166, Feb. 1991.

[16] C. P. Low and H. W. Leong, “A new class of efficient algorithms
for reconfiguration of memory arrays,” IEEE Trans. Computers, pp.
614–618, May 1996.

[17] ——, “Minimum fault coverage in memory arrays: a fast algorithm
and probabilistic analysis,” IEEE Trans. Computer-Aided Design, pp.
681–690, June 1996.

[18] D. M. Blough and A. Pelc, “A clustered failure model for the memory
array reconfiguration problem,” IEEE Trans. Computers, pp. 518–528,
May 1993.

[19] D. M. Blough, “Performance evaluation of a reconfiguration algorithm
for memory arrays containing clustered faults,” IEEE. Trans. Relia-
bility, vol. 45, pp. 274–284, June 1996.

[20] N. Funabiki and Y. Takefuji, “A parallel algorithm for allocation of
spare cells on memory chips,” IEEE Trans. Reliability, pp. 338–346,
Aug. 1991.

[21] W. Shi and W. K. Fuchs, “Probabilistic analysis and algorithms for
reconfiguration of memory arrays,” IEEE Trans. Computer-Aided De-
sign, pp. 1153–1160, Sep. 1992.

[22] S. Y. Kuo and I. Y. Chen, “Efficient reconfiguration algorithms for
degradable VLSI/WSI arrays,” IEEE Trans. Computer-Aided Design,
vol. 11, no. 10, pp. 1289–1300, 1992.

[23] C. T. Huang, C. F. Wu, J. F. Li, and C. W. Wu, “Built-in redundancy
analysis for memory yield improvement,” IEEE Trans. Reliability, vol.
52, no. 4, pp. 386–399, Dec. 2003.

[24] D. K. Bhavsar, “An algorithm for row-column self-repair for RAMs
and its implementation in the Alpha 21264,” in Proc. Int’l Test Conf.,
Sep. 1999, pp. 311–318.

[25] J. R. Day, “A fault-driven comprehensive redundancy algorithm for
repair of dynamic RAMs,” IEEE Design & Test, vol. 2, no. 3, pp. 35–44,
1985.

[26] N. Hasan and C.L. Liu, “Minimum fault coverage in reconfigurable ar-
rays,” IEEE Fault-Tolerant Computing Symp., pp. 348–353, June 1988.

[27] R. L. Hadas and C. L. Liu, “Fast search algorithms for reconfiguration
problems,” in Proc. Int’l Workshop on Defect and Fault Tolerance on
VLSI Systems, Nov. 1991, pp. 260–273.

[28] H. Y. Lin, F. M. Yeh, I. Y. Chen, and S. Y. Kuo, “An efficient perfect
algorithm for memory repair problems,” in Proc. IEEE Symp. on Defect
and Fault Tolerance in VLSI Systems, 2004, pp. 306–313.

[29] H. Y. Lin, H. Z. Chou, F. M. Yeh, I. Y. Chen, and S. Y. Kuo, “An
Efficient Algorithm for Reconfiguring Shared Spare RRAM,” in Proc.
IEEE Conf. Computer Design, 2004, pp. 544–546.

[30] H. Y. Lin, F. M. Yeh, S. Y. Kuo, and H. Fernau, BDD Variable Order-
ings for Spare Allocation Problems unpublished.

[31] W. S. Jung, S. H. Han, and J. Ha, “A fast BDD algorithm for large
coherent fault trees analysis,” Reliability Engineering & System Safety,
vol. 83, no. 3, pp. 369–374, March 2004.

[32] G. D. Chevley, “Main memory wafer-scale integration,” VLSI Design,
pp. 54–58, Mar. 1985.

[33] J. I. Raffel, A. H. Anderson, G. H. Chapman, K. H. Konkle, B. Mathur,
A. M. Soares, and P. W. Wyatt, “A wafer-scale digital integrator
using restructurable VLSI,” IEEE J. Solid-State Circuits, vol. 20, pp.
399–406, Feb. 1985.

[34] Y. Ueoka, C. Minagawa, M. Oka, and A. Ishimoto, “A defect-tolerant
design for full-wafer memory LSI,” IEEE J. Solid-State Circuits, vol.
19, pp. 319–324, June 1984.

[35] M. R. Garey and D. S. Johnson, Computers and intractability: a guide
to the theory of NP-completeness. : W. H. Freeman, 1979.

[36] R. E. Bryant, “Graph-based algorithms for Boolean function manipu-
lation,” IEEE Trans. Computers, pp. 677–691, Aug. 1986.

[37] Y. N. Shen, N. Park, and F. Lombardi, “Spare cutting approaches for
repairing memories,” IEEE Conf. Computer Design, pp. 106–111, Oct.
1996.

[38] N. Park and F. Lombardi, “Repair of memory arrays by cutting,” in Proc.
Int’l Workshop on Memory Technology, Design, and Testing, 1998.

[39] J. E. Hopcroft and R. M. Karp, “An n5/2 algorithm for maximum
matchings in bipartite graphs,” SIAM J. Computing, pp. 225–231, Dec.
1973.

[40] Z. Galil, “Efficient algorithms for finding maximum matching in
graphs,” ACM Computing Surveys, vol. 18, no. 1, pp. 23–38, Mar.
1986.

[41] J. C. Setubal, Institute of Computing State University of Campinas,
Brazil, Technical Report IC-96-09, 1996.

[42] D. B. West, Introduction to Graph Theory, 2nd ed. : Prentice Hall,
2001.

[43] H. R. Lewis and L. Denenberg, Data Structures and their Algo-
rithms. : Harper Collins Publishers, 1991.

[44] K. S. Brace, R. L. Rudell, and R. E. Bryant, “Efficient implementation
of an OBDD package,” in Proc. the 27th Design Automation Conf.,
June 1990, pp. 40–45.

[45] C. H. Stapper, “On yield, fault distributions, and clustering of parti-
cles,” IBM J. Research & Development, vol. 30, pp. 326–338, May
1986.

[46] Z. Koren and I. Koren, “A unified approach for yield analysis of defect
tolerant circuits,” Defect and Fault Tolerance in VLSI Systems, vol. 2,
pp. 33–45, 1990.

[47] F. J. Meyer and D. K. Pradhan, “Modeling defect spatial distribution,”
IEEE Trans. Computers, vol. 38, pp. 538–546, Apr. 1989.

[48] B. Murphy, “Cost-size optima for monolithic integrated circuits,” in
Proc. IEEE, Dec. 1964, vol. 52, pp. 1537–1545.

[49] The BDD Library [Online]. Available: http://www-2.cs.cmu.edu/
afs/cs/project/modck/pub/www/bdd.html.

[50] B. Bollig and I. Wegener, “Improving the variable ordering of OBDDs
is NP-complete,” IEEE Trans. Computers, pp. 993–1002, Sep. 1996.

[51] R. Rudell, “Dynamic variable ordering for ordered binary decision di-
agrams,” in Proc. Conf. Computer-Aided Design, 1993, pp. 42–47.

Hung-Yau Lin received in 1998 the B.S. degree in mechanical engineering from
National Taiwan University, Taipei, Taiwan. Since September 1999, he has been
a PhD student in the department of electrical engineering at the same university.
His research interests include computer graphics, data compression, memory
repair algorithms, network reliability analysis, and operating systems.

Fu-Min Yeh received the B.S. degree in 1985 in electronic engineering from
Chung-Yuan Christian University, the M.S. degree in 1992 in electrical engi-
neering from National Taiwan University, and the Ph.D. degree in 1997 in elec-
trical engineering from National Taiwan University. He is a deputy chief at the
Electronic System Research Division of Chung-Shan Research Institute of Sci-
ence and Technology. His research interests include UWB baseband design,
Radar system design, hardware verification, VLSI testing, and fault-tolerant
computing.

Authorized licensed use limited to: National Taiwan University. Downloaded on January 19, 2009 at 23:48 from IEEE Xplore. Restrictions apply.

378 IEEE TRANSACTIONS ON RELIABILITY, VOL. 55, NO. 2, JUNE 2006

Sy-Yen Kuo is Dean of the College of Electrical Engineering and Computer
Science, National Taiwan Ocean University, Keelung, Taiwan. He is also a Pro-
fessor at the Department of Electrical Engineering, National Taiwan University
where he is currently on leave, and was the Chairman at the same department
from 2001 to 2004. He received the BS degree (1979) in Electrical Engineering
from National Taiwan University, the MS degree (1982) in Electrical & Com-
puter Engineering from the University of California at Santa Barbara, and the
PhD degree (1987) in Computer Science from the University of Illinois at Ur-
bana-Champaign. He spent his sabbatical years as a Visiting Professor at the
Computer Science and Engineering Department at the Chinese University of
Hong Kong from 2004–2005, and as a visiting researcher at AT&T Labs-Re-
search, New Jersey from 1999 to 2000. He was the Chairman of the Depart-
ment of Computer Science and Information Engineering, National Dong Hwa
University, Taiwan from 1995 to 1998; a faculty member in the Department of
Electrical and Computer Engineering at the University of Arizona from 1988

to 1991; and an engineer at Fairchild Semiconductor and Silvar-Lisco, both in
California, from 1982 to 1984. In 1989, he also worked as a summer faculty
fellow at the Jet Propulsion Laboratory of California Institute of Technology.
His current research interests include dependable systems and networks, soft-
ware reliability engineering, mobile computing, and reliable sensor networks.

Professor Kuo is an IEEE Fellow. He has published more than 240 papers in
journals and conferences. He received the distinguished research award between
1997 and 2005 consecutively from the National Science Council in Taiwan, and
is now a Research Fellow there. He was also a recipient of the Best Paper Award
in the 1996 International Symposium on Software Reliability Engineering, the
Best Paper Award in the simulation and test category at the 1986 IEEE/ACM
Design Automation Conference (DAC), the National Science Foundation’s Re-
search Initiation Award in 1989, and the IEEE/ACM Design Automation Schol-
arship in 1990 and 1991.

Authorized licensed use limited to: National Taiwan University. Downloaded on January 19, 2009 at 23:48 from IEEE Xplore. Restrictions apply.

