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Abstract—In this paper, we show how quantum Boolean circuits
can be used to implement the oracle and the inversion-about-av-
erage function in Grover’s search algorithm. Before illustrating
how this can be done, we present the circuit design principle using
the satisfiability (SAT) problem as an example. Then, based on this
principle, we show the quantum circuits for two different kinds of
applications. The first one is searching a phone book. Although
this is a typical example of Grover’s algorithm, we show that it
is impractical as a real-world application. As the second applica-
tion, we give the quantum circuits for a more practical applica-
tion—breaking a symmetric cryptosystem. Although these two ap-
plications have quite different types of search criteria, they are both
one-way functions and the proposed circuits can actually be gener-
alized to any such problems. In this perspective, we conclude this
paper by proposing a template of quantum circuits that is capable
of searching the solution of a certain class of one-way functions.

Index Terms—Grover’s algorithm, nanoscale circuits, one-way
function, quantum circuits.

I. INTRODUCTION

OVER THE PAST years, the density of transistors on con-
ventional integrated-circuit chips has been increased dra-

matically. However, with the components continue to shrink,
the conventional transistor technology will eventually reach its
physical limit. Nanoelectronics is regarded as the most likely
direction of developing computer technologies. It is believed
that nanocomputer can be smaller, more densely integrated and
more powerful. A promising way of achieving this is to take
the advantage of quantum mechanics. Recent discoveries on se-
cure key distribution [1], polynomial time prime factorization
[2], and fast database search [3] are good examples. They take
advantage of quantum mechanics to improve the efficiency of a
computation process. As a result, quantum computing has be-
come the most rapidly expanding fields of research.

As an example, unordered database search is an important and
widely discussed problem. Unordered database search is impor-
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tant because, from an engineering point of view, many problems
can be formulated as a database searching process. For instance,
cracking a 1024-digit secret key in a key space is essen-
tially an unordered database searching process. Classically, the
only way to search such a database is to test the elements se-
quentially against the condition until the target is found. For a
database of size , this brute force search requires an average of

comparisons. However, Grover’s algorithm can iden-
tify the target in steps, which is more efficient.

The main idea of Grover’s algorithm is to amplify the prob-
ability amplitude of the target state so it can be found with
a high probability when the final measurement is performed.
More specifically, given a Boolean expression , Grover’s al-
gorithm allows the target state to be marked by an “oracle”, so
the target with can be found with a com-
plexity. It has also been shown that, when there are multiple
targets, the problem can still be solved in even if is
not known in advance [4]. The optimality of Grover’s algorithm
[5] and several generalizations including searching multiple ob-
jects [6], analyzing the initial state and optimal unitary operator
[7], [8], and studying the stability and robustness of Grover’s
algorithms [9]–[12] have also been studied. In addition, varia-
tions of this algorithm have been applied to many other prob-
lems such as state preparation [13], finding the minimum [14],
element distinctness [15], and many others [16]–[18].

Implementation of Grover’s algorithm is also the focus of
many researches. For example, Diao et al. showed how to use
1-bit unitary gates and 2-bit quantum phase gates to realize
Grover’s algorithm in cavity QED systems [19]. Roland et
al. analysed the differences between continuous-time analog
Hamiltonian search algorithms and original discrete circuit
based Grover’s algorithm [20]. Xiao et al. described how
to robust single and two qubit logic gates based on nuclear
magnetic resource (NMR) technologies and use the gates to
implement counting algorithm [21], which is based on Grover’s
algorithm. Most of the studies described above emphasized on
either theoretical study or small-scale physical implementation.
However, for large quantum circuits designed for a real-world
application, some modifications should be made. For example,
in a database query application, the demand should not only
be finding the target (answering if there is a satisfying
but also getting the related information (given , answering if
there is a fulfilling ). Therefore, in this paper we
aim to discuss the quantum circuit design issues in a realistic
way. We discuss, from the circuit design perspective, what
kind of applications are suitable for Grover’s algorithm and
propose a circuit template for such applications. We begin by
showing the main idea about how to design quantum Boolean
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circuits for the oracle and the inversion-about-average function
in Grover’s algorithm. We use a well-known problem of sat-
isfiability (SAT) as an example to emphasize the generality of
our circuit model [22]. Based on this circuit model, we then
discuss two real-world applications that have different types
of search criteria. The first application is to perform a reverse
database search in a phone book. We show the quantum circuits
for establishing an empty database, inserting data, and querying
the database. In this process, we found that one has to traverse
the entire phone book to build the database. As a result, we
point out that it is not practical in a real-world scenario. In
the second application, we give a detailed circuit design for
breaking a symmetric cryptosystem. Our discussion is based
on known plaintext attack. We show how the known plaintext,
after encrypted by all possible keys, can be compared with its
ciphertext.

Although the search criteria of the two applications we
discussed above are quite different, both of them are actu-
ally one-way functions. In this perspective, we conclude this
paper by proposing a template of quantum circuits to solve
well-formulated one-way functions. As a result, we believe
that this paper makes the following contributions. First, we
give a detailed quantum circuit design for implementing large
scale Grover’s algorithm. Second, we extend our circuits to a
template for solving any one-way functions.

II. BACKGROUND

A. States and Gates

In quantum mechanics, the state of a single two-level
quantum bit (qubit) can be written as a linear combination in a
two-dimensional complex vector space as

(1)

where and . The state shown above ex-
hibits a unique phenomenon in quantum mechanics called su-
perposition. When you measure such a particle, the system is
projected to one of its eigenstates (i.e., either or ). The
probability for projecting to each state is given by the absolute
square of its probability amplitude, i.e., and . Obvi-
ously, the sum of and shall be 1 to satisfy the proba-
bility rule. Multiple qubits can also form a quantum system. A
multi-qubit system is spanned by the basis of the tensor product
of each space. For example, the joint state of qubit and qubit

is spanned by , i.e.

(2)

where and .
A quantum system can be manipulated in many different

ways, called quantum gates. An example is the quantum Not
gate, which functions as

(3)

Fig. 1. Symbols for basic quantum gates.

As a result, when a qubit goes through a quantum
gate, the state transforms into . The symbol of an
gate is shown in Fig. 1(a). Note that the horizontal line con-

necting the input and the output is not a physical wire, instead
it represents a qubit under time evolution.

The Hadamard gate is an important gate. It changes the
state as

(4)

and its symbol is depicted in Fig. 1(b). Another useful quantum
gate which shifts the relative phase by is called the gate.
The operation can be described as

(5)

and its symbol is depicted in Fig. 1(c).
Similarly, a two-bit quantum system can be manipulated

using a two-bit gate. For example, a Control-Not gate
performs the following transformation:

(6)

More specifically, a gate consists of one qubit,
which does not change its value, and a qubit, which
changes its value only if the control qubit is . The operation
can be written as

, where “ ” denotes exclusive-or (XOR). The symbol of
a gate is shown in Fig. 1(d). A generalization of the
gate involves multiple control qubits. For example, a

gate is defined as

(7)

This gate inverts the target qubit if all the control qubits are ’s.
When this gate reduces to the gate described before.
The symbol of a generalized gate is shown in Fig. 1(e).

Further generalization can be made if the inversion of the
target is controlled by evaluating the control qubits using a given
Boolean function. In other words, the target is inverted if the
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control qubits satisfy a given Boolean expression, otherwise it is
unchanged. The Boolean function can be as simple as evaluating
whether the control qubits are all ’s (or ’s), or a compli-
cated Boolean expression which is satisfied by more than one
Boolean variable assignment. The symbol of such an -Con-
trol-Not gate is shown in Fig. 1(f). Note that, a special
case of gates is to invert the target qubit when some of
the control bits are ’s (indicated by black dots) and some are

’s (indicated by white circles).
It is interesting that if the target is initially set as

, applying an gate results in an eigenvalue kickback,
which causes a phase shift on some components of the input
state. This phenomenon is described as follows.

Without loss of generality, we assume the quantum state of
the control qubits is

(8)

where is the set of satisfied assignments and S-A is the set of
un-satisfied assignments, i.e., and

.
Due to the linearity of quantum mechanics, we have

(9)

which effectively inverts the phase of those satisfied assign-
ments, i.e., . This mechanism is used as the basic function
in our circuits.

B. Grover’s Algorithm

The main idea of Grover’s algorithm is to first prepare a
register in a superposition state with the probability amplitudes
uniformly distributed. Then, selectively invert the target and
perform an inversion-about-average operation. The selec-
tive-inversion followed by an inversion-about-average will
cause amplification on the probability amplitude of the target.
After such iterations, we have a high probability of
getting the target upon a final measurement.

As we can see, the only request in Grover’s algorithm is the
information regarding whether an item is the target. This is also
known as an oracle. If we label the items in a database with the

integers and denote the label of the unknown
marked record by , the oracle is an -bit binary function

(10)

defined by

if
otherwise.

(11)

Note that, as a standard oracle, we have no access to the internal
structure of the function . It operates transparently in Grover’s
algorithm as a black-box function, which we can query as many
times as we like.

Using the oracle, the selective-inversion can be defined
as the following unitary function:

if
otherwise.

(12)

This function does an inversion on the input if it is the target,
while leaving all other cases unchanged. Due to the linearity of
quantum mechanics, all items in the database can be processed
simultaneously by applying to the superposition state of
all items.

Obviously, the operation described above can be written as

(13)

and it is actually an inversion in about the hyperplane perpen-
dicular to . Following the same notation, if we define

(14)

the inversion-about-average operation can be regarded as an in-
version in about the hyperplane perpendicular to [23],
and

(15)

As a result, the operation of a selective-inversion followed by
an inversion-about-average can be written as

(16)

Based on this operator, Grover’s algorithm can find the target
with a high probability (approaching 1) by applying the operator

to the superposition state

(17)

for times before the final measurement.
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Fig. 2. Circuit block diagram of Grover’s search algorithm.

III. CIRCUIT BLOCK DIAGRAM

As described before, the implementation of the operator
consists of two parts: selective-inversion , and inversion-
about-average . The eigenvalue kickback is used in the
construction of these two parts, as shown in Fig. 2.

The initial qubits in Fig. 2 include qubits prepared in the
ground state and one auxiliary qubit in the excited
state . This can be written as

(18)

After the Hadamard transform and , all possible states
are superposed as , where

(19)

(20)

A. Selective-Inversion

The first part of the circuits is the oracle-Control-Not
, as shown in Fig. 2. Theoretically, the oracle is only a func-

tion that checks whether a specific item is the target. However,
due to the linearity of quantum mechanics, when the oracle is
applied to the superposition state , all possible items are
examined against the criteria. It follows from the fact that the
eigenvalue of , i.e., 1, is kicked back to the
target state, so the effectively inverts the target, as

(21)

In other words, the circuits are computationally equiv-
alent to the operator , which inverts the unknown target in
one single operation. Since most practical engineering problems
can be binary encoded, searching the target in a database is the
same thing as finding a satisfiable solution for a binary Boolean
expression. This means the oracle function can be represented
by a Boolean logic.

There are two ways to implement such a Boolean logic. The
straightforward method uses elementary gates to simulate clas-
sical gates including AND, OR, and NOT, as shown in Fig. 3. Note

Fig. 3. The straightforward implementation of classical (a) NOT, (b) AND, (c)
OR, (d) FANOUT gates.

Fig. 4. Minimum space implementation of a half adder.

that, unlike classical circuits, the FANOUT function must be done
explicitly by a quantum gate, instead of a metallic contact.

An alternative way that achieves the minimum space con-
sumption is based on the concept of permutation. Since an

-bit quantum Boolean operation is a permutation on the set
of all -bit binary patterns, the desired Boolean function can
be achieved on a subset of the qubits [24]. For example, the
circuits for a half adder are shown in Fig. 4. However, the
construction of the permutation requires a full listing of the
truth table, which is as hard as finding the target. As a result,
the first method has to be used to construct the oracle circuits.

B. Inversion-About-Average

The second part of the operation is the circuit implementing
the function of inversion-about-average. When the operation is
applied to a superposition state, it actually keeps the component
in the direction unchanged, while inverting the components
in dimensions that are perpendicular to . This can be repre-
sented as

(22)

where

(23)

represents the average. Using the same concept of eigenvalue
kickback, the component in the dimension can be selec-
tively inverted, as shown in Fig. 2. Note that this part of the
circuits does not depend on the search criteria.

IV. SEARCHING A SAT SOLUTION

The SAT problem is a well-known problem in theoretical
computer science. Given a Boolean expression in conjunctive
normal form, the problem of deciding whether this expression
has an assignment that satisfies the formula has been shown to
be an NP-complete problem [25]. In this section, we will show
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Fig. 5. Oracle circuits for a single-target search.

Fig. 6. The circuits of inversion-about-average.

how Grover’s algorithm can be used to find a satisfiable solu-
tion for the SAT problem. Without loss of generality, we use the
binary expression

(24)

as an example. As described before, the circuits of the oracle
can be implemented according to the Boolean expression itself,
which is shown in Fig. 5. In Fig. 5, gate 1, 2, 3, and 4 copy the
input , , and to , , , and , so subsequent operations
do not affect the original input. Gate 5, 6, and 7 implement the
function , gate 8 inverts , gate 9, 10, and 11 implement
the function , and finally gate 12 performs the AND func-
tion for these three clauses. The final result is in qubit , which
is the control qubit for the selective inversion in Fig. 2.
Note that although the three-input AND function can be imple-
mented by cascading two two-input AND gates, it is shown as
one gate for simplicity.

The second part of the circuits performs the function of in-
version-about-average. To invert the component in the di-
mension, Hadamard gates are used to transform to , then
the state is selectively inverted. After the inversion, the state
is transformed back by another set of Hadamard gates. The cir-
cuits can be represented by

(25)

as shown in Fig. 6.
Note that the function of is implemented by an eigenvalue

kickback. It is shown in Fig. 6 as a generalized gate which

Fig. 7. Circuits G in the quantum search algorithm.

Fig. 8. Template for recovering the auxiliary qubits.

inverts the target when all the control qubits are ’s. This is
shown as white circles, instead of black dots, in Fig. 6. Although
it does not affect the measurement, the minus sign in
can be implemented by applying a phase of to any one of
the qubits. This is shown as the transform in Fig. 6. Note
that since this part of the circuits is completely independent of
the search criterion, it can be used to do any single- or multi-
target search. The complete circuit design for is shown in
Fig. 7. After applying times of , a final measurement
on qubit , , and will reveal the target with high probability.

Although the circuits can be used to find the target, the auxil-
iary qubits must be restored and discarded to avoid the accumu-
lation of qubits and to reduce the extra efforts needed for pre-
serving the auxiliary qubits from noise. A general circuit block
diagram for removing auxiliary qubits is shown in Fig. 8.

The operation in the figure calculates the result with
the help of some auxiliary qubits. Then the qubit representing
the result is used as the control qubit of a gate to save
the state in . Since quantum operations are reversible by nature,
the auxiliary qubits can be restored back to their initial states by
simply applying the reverse operation , then they can be
discarded safely. In Fig. 9, we give a simple example showing
how to implement with the help of auxiliary qubits and how
to restore and discard the auxiliary qubits safely.

With the principle described above, auxiliary qubits in Fig. 7
can be removed by applying the gates shown in Fig. 10. Since
this part does not affect the result, we will skip the recovering
circuits for the rest of this paper in order to make our discussion
clear.

The circuit design for a single-object search can be easily
generalized to search multiple objects. The only difference is
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Fig. 9. Example circuits for recovering the auxiliary qubits.

Fig. 10. Circuits in the reverse order to discard the auxiliary qubits.

Fig. 11. Circuits for searching the first target.

that, after each target is found, the oracle has to be modified to
exclude this target. A typical scenario is shown in the following
example.

Assuming the problem is binary encoded as

(26)

the oracle for searching the first target is shown in Fig. 11. In
these circuits, gate 1 copies the variable , gate 2, 3, and 4 im-
plement the function , and finally gate 5 performs the
AND function for these two clauses. Then, the circuits
followed by the same circuits in Fig. 6 implement the operation

for the first target. A final measurement after times
of gives one of the targets with equal probability.

Fig. 12. Circuits for searching the second target.

Fig. 13. Circuits for searching the third target.

After the first measurement, the same process is repeated
again, the only difference is that the oracle is modified to ex-
clude the target that has been found. Assuming the first result is

, , , the oracle is now modified as

(27)

The clause is used to exclude the target , ,
and . The new oracle is shown in Fig. 12. In these circuits,
gate 7, 8, and 9 are used to implement . Then, gate 10
gives the oracle’s result. This new oracle and the same circuits
of inversion-about-average are used to find the second target.

Similarly, assuming the result of the second measurement is
, , and , the third oracle is then changed to be

(28)

The new clause is added to exclude the second target.
The oracle is shown in Fig. 13. Again, gates 10 and 11 are used
to implement the new criterion , gate 12 gives the result
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Fig. 14. Quantum circuits for searching a phone book.

of the new oracle. This new oracle, together with the circuits of
inversion-about-average, is used to find the third target.

V. SEARCHING IN A PHONE BOOK

In this section, we give the circuits for applying the Grover’s
algorithm to a phone-book-like database searching problem. Al-
though this is a well-known example of Grover’s algorithm, it
is not so practical from a circuit point of view. We will give
more discussions about the drawbacks at the end of this sec-
tion. The scenario of the “phone book searching” problem is
described as follows. Imagine that one day you miss a phone
call, but fortunately you have caller ID and the phone number
is recorded in the phone. Based on the number and a phone
book, you decide to find who was calling you. Since a classical
phone book is sorted by name, there is no easy way to iden-
tify the caller except to browse through all the entries until you
find the number. Assuming the size of the phone book is , the
number of entries you have to search is on average ,
while in the worst case you would have to search all the entries
(which could be thousands or millions of entries). In addition to
finding the phone number, we also want to retrieve other asso-
ciated information about the number (i.e., name and address).
Although it is often cited that Grover’s algorithm can help iden-
tify the phone number with only queries, they are
usually mentioned without further explanation or implementa-
tion. In fact, with a little more consideration, the problem inher-
ently has some drawbacks in realizing the circuits and is actually
not a good example. In the following we will show the detailed
circuits about how a phone book is encoded and why such ap-
plication is not practical.

The structure of each entry in a phone book is naturally a pair
of (key, value). Classically, the key is the name while the value
includes other associated information such as the number and/or
address. Without loss of generality, we assume that there are no
duplicate names in the phone book, and each name (the key)
is encoded as an -bit binary string so they can be represented
as . This means the number of entries in the phone
book is . Similarly, the numbers (the value) are encoded

as -bit binary strings. As a result, in a quantum phone book,
all the entries are superposed like

(29)

which is equivalent to

The circuits for encoding a phone book are shown in Fig. 14. It
consists of two parts. The first part is for establishing an empty
phone book while the second part is for inserting data into the
phone book.

The qubits in a quantum phone book are separated into two
groups ( key-qubits and value-qubits). Initially all the key
qubits and value qubits are in the state. This can be written
as

(31)

By applying the Hadamard gates, the state of the key-qubits are
transformed into a uniform superposition of all possible states

. The resulting state is

Note that an entry with its as indicates an in-
valid entry. As a result, (32) is an empty phone book with keys
(names) ranging from to . With an empty quantum
phone book, the data can be inserted with a key-control-value
gate, as shown in Fig. 15(a). The key-control-value gate includes
a key gate and a value gate, each with input qubits and .
If the key gate with input state evaluates true, the value gate
will be applied on the qubits. Otherwise, it does nothing. A
sample key-control-value gate is shown in Fig. 15(b). In this
example, if the input state satisfies (which

Authorized licensed use limited to: National Taiwan University. Downloaded on January 20, 2009 at 00:11 from IEEE Xplore.  Restrictions apply.



JU et al.: QUANTUM CIRCUIT DESIGN AND ANALYSIS FOR DATABASE SEARCH APPLICATIONS 2559

Fig. 15. (a) Key-control-value gate. (b) Implementation example.

means , , ), then it changes
from to . Otherwise it does nothing. In other words,
the key gate is a simple comparison gate, which outputs true if
the input state equals to a specific value and otherwise it out-
puts false. And if the key gate outputs true, the value gate is ap-
plied on the values qubits, which functions as storing the value
into the value qubits. Therefore, if we pass the empty quantum
phone book through key-control-
value gates, each gate will record one key(name) with the cor-
responding value(number) into the phone book.

After inserting all the data, the quantum phone book becomes

(33)

with all entries in a uniform distribution. The description above
only shows how a quantum phone book is encoded. It has
nothing to do with the searching process. The searching process
is described in the following paragraphs.

As illustrated, the effect of the gate is to apply a phase
of if the input state is the target (i.e., the state satisfies the or-
acle). It is noteworthy that, the oracle can be applied to selected
groups of qubits according to a specific query condition. For
example, assuming the query is to find a given phone number
(which is much harder for a classical computer), the oracle cir-
cuits can be applied on the “value-qubits” only, as illustrated in
Fig. 14. For each entry state , it only checks if the
“value-qubits” are equal to the query string and flips the sign of
its amplitude accordingly. Note that the same mechanism can
also be used to query the “key-qubits” with equal cost in com-
plexity. As a matter of fact, the database can be designed as

, in which case it can be queried
either by name, number, or address (or any combination) and
get all other information after applying times of . The
only trick is to apply an appropriate oracle on appropriate qubits.
This means, unlike in a classical phone book, searching a phone
book by either name or number is equal in terms of computation
complexity.

Following that, the inversion-about-average operation is ap-
plied on the key-qubits as usual. The inversion-about-average
operation must be applied on the key-qubits since they compose
the superposition state. So the operation will transform the state

(34)

to

(35)

where and , are key and value respec-
tively. The query process is applied times to enhance
the probability of getting the target. A final measurement will
reveal the target with a high probability. Thus, we can find the
target information (number) and get other associated informa-
tion such as name and address at the same time.

By applying the Grover’s algorithm, the query process can
be speed-up without problem. However, the solution has sev-
eral drawbacks. The first and the most obvious one is that the
database has to be built before the search process, and it takes

steps to build the database. Once the database is built, it
means that the entire database has been traversed once, and any
searching problem can be done in constant time. The second
problem is that the database would have to be completely re-
constructed after each query, because each query is ended with a
measurement and that will destroy the whole quantum database
due to the collapse of quantum state. Another problem is that, in
our quantum circuit design methodology, we say that the query
condition can be applied on any field of the data (name, number,
or even a subset of a name), which is an improvement in com-
parison to the classical way. The query condition can be decided
until the query stage, with no influence on the query complexity.
However, a classical database can also achieve this by making
indexes on all combination of the fields before querying after
database construction. (Though it would be a heavy loading for
if the data is stored in bits, it would have to be make
kinds of indexes.)

VI. BREAKING SYMMETRIC CRYPTOSYSTEMS

A classical phone book can be regarded as a function

(36)

which takes a name as the input and a corresponding number
as the output. This function is a one-way function since it is
easy to find the number for a given name, but it is hard to find a
name for a given number. However, the circuits we illustrated in
the previous section can help find the corresponding name for a
given number (which is the reverse function) more efficiently.
Enlightened by this fact, we find this method can be used to
break some cryptosystems that rely on one-way functions. In
this section, we use a DES-like symmetric cryptosystem as an
example to show how this can be done with quantum circuits.
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Fig. 16. Quantum circuits for attacking a symmetric encryption algorithm.

To attack a symmetric cryptosystem, the most straightforward
way is to try all possible bit patterns with brute force until the
correct key is identified. In order to identify the correct key,
methods like “known plaintext attack” and “chosen plaintext at-
tack” are used in case the attacker has access to some (plaintext,
ciphertext) pairs. This is possible because some plaintext has
special formats (like the header of an e-mail), or the attacker can
feed plaintext of his choice to the encryption device and get the
corresponding ciphertext. The only unknown part is the encryp-
tion key. If brute force attack is used, the exponential key space
is a problem for a classical computer. This is because commands
are serially processed in a classical computer. With quantum
parallelism, we will show how quantum circuits can help attack
a symmetric cryptosystem more efficiently.

A general symmetric cryptosystem takes the key and a plain-
text as the input and outputs one ciphertext as

(37)

where and stands for plaintext and ciphertext respectively.
Given encryption algorithm , one plaintext , and the corre-
sponding ciphertext , the problem is to find the key such that
(37) is met.

The quantum circuits for such an exhaustive search are illus-
trated in Fig. 16. As shown in the figure, there are four input
registers, key, value, plaintext and ciphertext. If the encryption
algorithm uses a 56-bit encryption key, there would be 56 qubits
in the key register . At the initializing stage, the key
register is initialized to a superposition of all possible key states
by Hadamard transformations, while the qubits in the value reg-
ister are all initialized to ’s. The other two registers store the
plaintext and the ciphertext .

In the second stage, the encryption algorithm is represented
by a unitary gate , with the function

(38)

The state of the qubits before the unitary gate is ,
which represents a superposition of all possible keys, each with
a corresponding value as . After applying the operation,
the state would then be transformed into .

In other words, with a single operation, we get all possible (key,
ciphertext) pairs.

In the third stage, we use Grover’s operation to find the one
that matches the real ciphertext from all possible cases

. For these matches, the corresponding key is the
answer. The oracle simply compares the two inputs. It outputs
true when they are the same, otherwise it outputs false. Then
the inversion-about-average follows as usual to amplify the
probability amplitude of the target. Therefore, after
Grover’s iterations, a final measurement gives the key that
satisfies .

It is noteworthy that the probability of successfully finding
the correct target does not increase with the number of itera-
tions. Furthermore, as denoted in [4], the precise number of it-
erations of Grover’s operation depends on the number of solu-
tions. In other words, the precise number of iterations with mul-
tiple solutions is different from that with only one solution. In
Fig. 16 we assume that there is one and only one target, so we
use one (plaintext, ciphertext) pair to check the validity of the
target key. However, there might be another key that also sat-
isfies (37). Therefore, the more (plaintext, ciphertext) pairs are
used, the more precise we can determine the correct key. With
this consideration, we illustrate the circuits for multiple known
(plaintext, ciphertext) pairs in Fig. 17. In this example,
and are two known pairs, two unitary encryption op-
erations are used and the oracle has to test whether both known
pairs are satisfied, i.e.,

and (39)

This eliminates the ambiguity when multiple keys satisfying
(37) and enhances the efficiency.

VII. IMPLEMENTATION AND ANALYSIS

Physical realization of a scalable quantum computer is a
challenge [26]–[28]. One of the primary difficulties is how
to keep the components of the computer in a coherent state,
while still allowing initialization, control, and measurement.
David DiVincenzo [27] has listed some criteria for building a
practical quantum computer. Different technologies including
silicon-based solutions [29]–[31], polarized photons [32], [33],
and nuclear magnetic resonance (NMR) [34]–[36] have also
been experimentally demonstrated recently. Taking NMR as
an example, information is carried by nuclei in molecules and
Radio Frequency (RF) pulses that manipulate nuclear spin
orientations are used to implement a quantum operation. The
effect of a RF pulse depends on three factors: the power level,
the duration, and the direction. For example, a single-qubit gate

which performs rotations about can be implemented
with RF pulses along in the rotating frame for a specific
time under a predefined power level. Besides, a CN gate can
be implemented by a free evolution time of , where

is the coupling constant [37]. Since the set of single-qubit
rotation and CN gate is universal [38], [39], these two gates are
sufficient to implement any quantum circuits. In the following
paragraphs, we use the DES cracking problem as an example
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Fig. 17. Attacking a symmetric cryptosystem with multiple known (P,C) pairs.

to compare the performance of quantum circuits with classical
computers.

The DES algorithm [40] enciphers a 64-bit plaintext by a
64-bit key, of which 56 bits as effective key and 8 bits for parity
checking. The enciphering consists of three stages: an initial
permutation IP, 16 rounds of key-dependent computation, and
finally a permutation , which is the inverse of the initial
permutation. It is noteworthy that the permutation for classical
bits and the key scheduling process correspond to nothing but
changing the order of qubits and hence no quantum gate has to
be applied. As a result, we have to deal with only the ciphering
function. The ciphering function used in this algorithm
has four stages: expansion, key mixing, substitution, and permu-
tation.

1) Expansion: The input is expanded from 32 bits to 48 bits
by linear permutation and duplicating some bits according
to a predefined table. The permutation takes no quantum
gate and the duplication process can be performed by

CN gates. Since the 16 CN gates can be done
at the same time, expansion can be accomplished in one
(quantum) gate delay.

2) Key mixing: Perform XOR on the generated 48 bits and a
subkey. All the XOR operations can be done by gates at
the same time and therefore be executed in one (quantum)
gate delay.

3) Substitution: The output is then divided into 8 blocks of 6
bits each. Each block goes through its selection function,
which uses a table to specify the mapping from the 6-bit
value to its corresponding 4-bit value. In quantum circuits,
each table can be performed using generalized
gates [like the key-value gate in Fig. 15(a)]. Since these
operations are applied sequentially, it takes quantum
gates to accomplish the substitution.

4) Permutation: A final permutation is applied. However, as
before, no quantum gate is needed in this process.

In summary, the total number of quantum gates in the ci-
phering function is . The ciphering function
is then used in the key-dependent part of the algorithm, which

includes 16 rounds of identical computation (under control of
16 subkeys). Assuming the 64-bit input of each round is rep-
resented as [ is the left half block (32 bits) and is the
right half block (32 bits)], each round passes and a subkey

through the ciphering function , then performs an XOR on
the output of and . The XOR result becomes the new and
the original becomes the new . The new cascaded is
the input to the next round. In this stage, the exchange of
takes no quantum gate as discussed before and the XOR opera-
tions can be performed by CN gates. Since the XOR operations
are performed on each qubit in parallel, each round takes 66 (ci-
phering function) plus 1 (XOR) quantum gates. As a result, this
key-dependent part takes a total of quantum
gates (delay).

Other quantum gates involved in searching the target include
1 level of Hadamard gates to prepare the initial superposition
and some quantum gates for Grover’s iteration (oracle and inver-
sion-about-average). The oracle in Grover’s operation simply
compares the two registers by performing XOR on each qubit and
then uses a generalized gate to check if these two regis-
ters are the same. Since the XOR on each qubit can be performed
in parallel, this process totally costs 2 quantum gates (delay).
As to the circuits for inversion-about-average, 4 quantum gates
(delay) are needed, as illustrated in Fig. 6. Since the oracle and
the inversion-about-average are iterated for times,
there will be a total of gates delay. Overall,
it takes quantum gates in terms
of duration.

Taking one experiment we have performed on a Bruker
Avance DMX-500-MHz NMR system [36] as an example.
With a quantum computer which uses atom in carbon-13
labelled chloroform as the information carrier
and sets the power of the pulses at 3.00 dB, the duration for
a pulse is 9.5 s. In this scale, it takes about 3.3 h to
crack a DES key. Compared with a classical technology record
[41], in which a DES key is cracked in 22 h and 15 min (by
Distributed.Net [42], Electronic Frontier Foundation’s DES
Cracker [43], and nearly 100 000 computers on the Internet),
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Fig. 18. Template quantum circuits for a general exhaustive search.

the proposed quantum circuits outperform the classical solution
in a significant way. It is worth noting that this example is in
a relatively small key space. Since the speed-up of Grover’s
algorithm is quadratic, there will be a dramatic difference as
the key space increases.

VIII. CONCLUSION

Due to its wide application in classical engineering prob-
lems, Grover’s algorithm is an example application that can take
advantage of quantum mechanics to perform nanoscale com-
puting. This algorithm allows a quadratic improvement com-
pared with classical brute force search. The algorithm is built
on top of two key operations, namely: selective inversion and
inversion-about-average. In this paper, we present how quantum
Boolean circuits can be used to implement the selective inver-
sion and inversion-about-average in the quantum search algo-
rithm. We give detailed circuit designs for three applications.
The first application is for solving problems that are expressed in
Boolean function. The other two applications include searching
in a phone book and attacking a symmetric cryptosystem. As
previously discussed, though these two examples are usually
referred in explanation of Grover’s algorithm, they are quite
different when implemented with quantum circuits. The main
reason is that each record in a database is different and cannot
be formulated effectively. As a contrast, the key-value pair in a
cryptosystem has a very specific formulation, which can be ap-
plied to all the keys.

As a matter of fact, not any problem involving a brute-force
search can be solved by the proposed quantum circuit design
method. The problem can only be applied in the following
situation: Given a one-way function
and a -bit integer , the purpose is to find an -bit integer
such that . The template circuits for solving such a
one-way function is shown in Fig. 18. The first step in Fig. 18
prepares a superposition of . Then the
second step applies a unitary gate implementing the function
to get . The third step is the Grover’s
iteration which consists of the oracle and inversion-about-av-
erage as described before. Finally, the result can be obtained
with a measurement.
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