
1154
IEICE TRANS. INF. & SYST., VOL.E82–D, NO.8 AUGUST 1999

PAPER

Multiple Branch Prediction for Wide-Issue Superscalar∗

Shu-Lin HWANG†, Che-Chun CHEN††, Nonmembers, and Feipei LAI††, Member

SUMMARY Modern micro-architectures employ superscalar
techniques to enhance system performance. Since the superscalar
microprocessors must fetch at least one instruction cache line at
a time to support high issue rate and large amount speculative
executions. There are cases that multiple branches are often en-
countered in one cycle. And in practical implementation this
would cause serious problem while there are variable number of
instruction addresses that look up the Branch Target Buffer si-
multaneously. In this paper, we propose a Range Associative
Branch Target Buffer (RABTB) that can recognize and predict
multiple branches in the same instruction cache line for a wide-
issue micro-architecture. Several configurations of the RABTB
are simulated and compared using the SPECint95 benchmarks.
We show that with a reasonable size of prediction scope, branch
prediction can be improved by supporting multiple / up to 8
branch predictions in one cache line in one cycle. Our simula-
tion results show that the optimal RABTB should be 2048 entry,
8-column range-associate and 8-entry modified ring buffer archi-
tecture using PAs prediction algorithm. It has an average 5.2
IPC f and branch penalty per branch of 0.54 cycles. This is al-
most two times better than a mechanism that makes prediction
only on the first encountered branch.
key words: branch prediction, wide-issue superscalar, branch
target buffer, branch penalty

1. Introduction

A deeply pipelined micro-architecture can potentially
achieve extremely high performance since the delay of
each pipeline stage is very short. But several factors
may break the pipeline flow: one is branch mispredic-
tion. So the branch prediction plays an important role
in high performance micro-architectures. In order to re-
duce the pipeline bubbles produced by branch instruc-
tions, various mechanisms to reduce branch mispredic-
tion penalty have been proposed: delayed branches,
predicated execution [1], static and dynamic branch
predictions combined with the BTB. Many techniques
for increasing branch prediction accuracy have been
proposed, such as the BTB [2], [3], Two-Level Adaptive
Branch Prediction [4], [5], Branch Classification [6], etc.

Manuscript received July 31, 1998.
Manuscript revised December 18, 1998.

†The author is with the Department of Electrical Engi-
neering, National Taiwan University, Taipei, Taiwan.

††The authors are with the Department of Computer Sci-
ence and Information Engineering, National Taiwan Univer-
sity, Taipei, Taiwan.

∗This work was partially supported by the National Sci-
ence Council, Taiwan, ROC, under contract No.NSC-2622-
E-009-009.

To support high issue rate and large amount of specula-
tive execution, superscalar microprocessors must fetch
more than one instruction cache line in order to fetch
multiple basic blocks per cycle [9], [13], [14]. Because
multiple branches may be encountered in a cycle, the
branch prediction architecture must be able to recog-
nize and predict multiple branches per cycle [8], [13],
[16]. The trace cache has been proposed as a mech-
anism for providing increased bandwidth by allowing
the processor to fetch across multiple branches in a sin-
gle cycle [18]. The trace cache works in concert with
a multiple branch predictor and trace cache lines are
constructed by the fill logic.

To simplify fetch unit design for implementation,
practical superscalar processors employ one fetch unit
and only fetch one instruction cache line per cycle.
So, we propose a Range Associative Branch Target
Buffer (RABTB) that can recognize and predict multi-
ple branches in a single cache line. Only one incoming
fetch address is needed to look up the RABTB, but our
mechanism can make multiple predictions.

Due to the identification mechanism, most early
solutions only predict the first branch instruction in
each instruction cache line. This will cause the degra-
dation of performance when there are taken branches
after the first one. Therefore, it is necessary to evaluate
the benefits and effects of predicting multiple branches
in a single cache line.

This paper is organized in 7 sections. Section 2
presents the primitives of multiple branch predictions
for these branches in one instruction cache. Section 3
summarizes some related work. Section 4 provides an
overview of the multiple branch identifications by the
RABTB. Section 5 describes the RABTB architecture
in detail. The simulation model and results are showed
in Sect. 6. Finally, Sect. 7 concludes the paper.

2. Primitives

The early prediction mechanism consists of an array
of two-bit saturation up-down counters associated with
each branch instruction. Whenever the outcome of a
branch is taken, its corresponding counter is increased.
Otherwise, decreased. In the Fetch stage of pipeline,
the prediction unit looks up the BTB with instruc-
tion address. If identical tag exists and the value of
its counter is greater than 1, we predict this branch as



HWANG et al: MULTIPLE BRANCH PREDICTION FOR WIDE-ISSUE SUPERSCALAR
1155

taken and feed the target address to the fetch unit for
the next fetch.

Intuitively, we can easily send the fetch addresses
to the BTB as the original BTB [2], [3] architecture
does. But there may be many instructions fetched in
a superscalar microprocessor per cycle, the fetch unit
then will send multiple instruction addresses to the
BTB for instruction identification. For the sake of the
variable instruction length and number under x86 ar-
chitecture, it is difficult to implement.

Firstly, we assess the potential benefit of predict-
ing multiple branches in a cache line. Assume branch
instructions are randomly distributed in a cache line
and the probability of taken branch is p. Then Fig. 1
shows the distribution of taken branch when there are
four branches in a single line. We will derive the prob-
ability T (n) of finding a taken branch when there are
n branches in a line.

T (1) = p,

T (2) = T (1) + (1 − p) ∗ p,

T (3) = T (2) + (1 − p) ∗ (1 − p) ∗ p,

. . .

T (n) = T (n − 1) + (1 − p)n−1 ∗ p

If there are n branches in a cache line, then
the probability, Taken inc(n), of encountering a taken
branch after the first branch is:

Taken inc(n) = T (n) − T (1)
= (1 − p) ∗ p + (1 − p)2 ∗ p + . . .

+ (1 − p)n−1 ∗ p

= p ∗
(

n−1∑
k=1

(1 − p)k

)

In the SPECint95 suite, for some input patterns,
conditional branches represent nearly 56.8% of the total
branch instructions (refer to Table 2) and the taken
probability of a conditional branch approximates 0.59
in our simulation. So,

p = 0.59 ∗ 0.568 + 1.0 ∗ 0.432 = 0.767.

For p = 0.767, if n = 2 then Taken inc(2) = 0.767 ∗
0.233 = 17.87%, and if n = 4 then Taken inc(4) =
0.767 ∗ (0.233 + 0.0543 + 0.01264) = 23%.

If we can predict the branches after the first branch

Fig. 1 Four branches at one cache line.

correctly using the RABTB, then we expect that pre-
diction accuracy may be improved better than a con-
ventional BTB scheme that only makes one prediction
and identification for the first branch in a single cache
line.

Our simulation results indicate that the average
occurrence of branch per cache line (assume 32 bytes) is
two (see, Table 2). This strongly suggests that making
predictions on multiple branches in each clock cycle is
worthwhile.

3. Related Work

A superscalar processor fetches, issues, and executes
multiple instructions in one cycle to exploit instruc-
tion level parallelism. It must predict the fetch address
prior to the first pipeline stage to avoid pipeline bubbles
whenever a branch is taken.

The BTB [2], [3] is a cache which stores data on
recently executed branches. Each BTB entry generally
has the following fields: branch target address, branch
prediction information, and branch instruction address.
If there is a hit in the cache, then we know that it is
a branch instruction and make prediction by the infor-
mation kept in the entry. If it is predicted taken, then
the target address of this branch will be sent back to
the Fetch Unit as the next instruction address. When
the branch is actually resolved in the execution stage,
the BTB entry will be updated with the correct predic-
tion path and target address. Surely, the pipeline will
be flushed if the actual target address is different from
the one we predicted.

Due to the identification mechanism, this BTB ar-
chitecture only predicts the first branch instruction in
each instruction cache line. It cannot make multiple
identifications if several branches are fetched in one
clock cycle.

Yeh & Patt proposed two index schemes for solv-
ing the branch identification problem: Basic Block and
Fetch Address Based schemes [8].

A basic block contains at most one branch instruc-
tion, so the address of the first instruction can be used
to identify a specific branch. The first approach identi-
fies a branch using its basic block starting address and
predicts the branch when the processor starts fetching
the basic block. However, a branch may jump into the
middle of a piece of straight-line code that ends with
a branch and thus break a basic block into two. This
will lead to multiple identifications of a branch. This
means that two starting addresses may be used to iden-
tify one branch. Another problem is that a basic block
may be very large, so the newly-predicted fetch address
should not be used until the entire basic block has been
fetched. The second scheme uses the address of an in-
struction cache line to identify the first branch in the
cache line but uses the starting addresses of a basic
block to identify subsequent branches in the same line.



1156
IEICE TRANS. INF. & SYST., VOL.E82–D, NO.8 AUGUST 1999

When one cache line is being fetched, its address will hit
in the BTB if the data associated with the first branch
in this line was also in the BTB. A problem is that a
basic block may span several cache lines.

There is a complicated mechanism proposed in [9]
for predicting multiple branches and fetching multiple
non-consecutive basic blocks in each cycle. It extended
the Branch Address Cache (like the BTB) to support
two or three branch predictions by combining their
branch information in the same entry. A BAC sup-
porting two branch predictions per cycle would have a
total of 212 bits per entry. Its hardware cost is too high;
its entry is 3 times the size of a conventional BTB en-
try storing data for one branch. There is also another
problem: the fetch unit must be able to fetch multiple
non-consecutive instruction cache lines every cycle.

Conte et al. [13] also proposed an interleaved
branch target buffer to predict multiple branch targets
and detect short forward branches that stay within the
same cache line. He introduced a mechanism called the
Collapsing. The scheme features an interleaved-coupled
BTB/BHT providing one entry to each instruction of
a cache line. The major drawback is the requisite use
of an address-only based prediction scheme. Moreover,
as the I-cache line size keeps growing in current proces-
sors, the interleaving factor of the BTB grows as well
and the collapsing logic become more complex.

In addition to proposing a caching structure,
Seznec et al. [15] also presented a multiple branch pre-
dictor capable of predicting two branches per cycle.
The originality of their mechanism is to use information
associated with the current instruction block to predict
the block following the next instruction block. They
have introduced the Two-Block Ahead Branch Predic-
tor and can be extended to a multiple-block ahead
branch predictor fetching multiple basic blocks in a sin-
gle cycle.

Franklin and Dutta [14] proposed subgraph ori-
ented branch prediction mechanisms that use local
history to form a prediction that encodes multiple
branches. All parameters required to describe a sub-
graph are stored in a Subgraph History Table (SHT).
Their scheme mostly relies on compiler work to parti-
tion the CFG (Control Flow Graph) into tree like sub-
graph of depth 3. Sine each entry in the SHT holds a
rigid subgraph structure, there might be many under-
utilized or wasted fields. In [19], the authors improve
the prediction accuracy of control flow prediction by us-
ing different extents of correlation. They also attempt
to increase the tree depth by including three conditional
branches to increase the fetch size.

The trace cache has been proposed as a mecha-
nism for providing increased bandwidth by allowing the
processor to fetch across multiple branches in a single
cycle [18]. Since the heart of the trace cache is its abil-
ity to fetch multiple basic blocks each cycle, effective
multiple block branch predictor is critical to its per-

formance. Trace cache lines are constructed by the fill
unit. The fill unit will attempt to maximize the size of
the segment by combining newly arriving instructions
with instructions latched from previous cycles. In [17],
they take a different approach to next trace prediction
— they treat the traces as basic units and explicitly pre-
dict sequence of traces. They propose and study next
trace predictors that collect histories of trace sequences
and make predictions based on these histories.

In above, we have introduced some mechanisms
that can fetch multiple basic blocks in a single cy-
cle. These mechanisms need complex fetch mecha-
nisms, branch target buffer, or branch predictors, so
the budget is too expensive to implement. To simplify
the fetch unit design for implementation, our design
only employs one fetch unit and can only fetch one
instruction cache line per cycle. This paper presents
a Range Associative Branch Target Buffer (RABTB)
that can recognize and predict multiple branches at
the same cache line for a wide-issue micro-architecture.
The RABTB is of a simple architecture and easy to
implement practically.

4. Multiple Branch Prediction

4.1 Multiple Branch Identification

Our design is one part of the x86 compatible NSC98
processor [20], so we focus on the x86 compatible su-
perscalar architecture. Because the x86 has variable
instruction lengths, there will be variable number of
instructions per cache line (32 bytes assumed). As a
practical limit, we assume that maximums of 8 instruc-
tions are issued per clock cycle. At first, it seems that
we need to provide the maximum address ports, eight,
for branch identification and prediction. This enables
simultaneous search for these addresses in the BTB,
finding associated Branch Histories (level one branch
information), then indexing to the Pattern History Ta-
ble using Branch History for prediction.

As previously described, a serious problem may oc-
cur when the implementation was taken into consider-
ation. A large number of BTB read ports are thus
needed for multiple branch identifications — 8 in this
case. The hardware cost is too expensive, so we de-
signed another indexing scheme (RABTB) based on
Yeh and Patt’s Fetching Address scheme [8]. It is a
modification of the original BTB architecture. The
main difference is that the traditional BTB finds ex-
actly one of the associative branches in the BTB, but
ours predicts multiple branches’ targets within a spe-
cific range then returns the one we need for prediction.

4.2 Range Associativity

“Range Associativity” means that the RABTB gath-
ers branch information together and make predictions



HWANG et al: MULTIPLE BRANCH PREDICTION FOR WIDE-ISSUE SUPERSCALAR
1157

in a specific range. The detailed functions are: when
a fetch address arrives, the RABTB splits the address
into three parts: tag, index, and offset. The RABTB
first uses the index to locate a row and compares the tag
with the incoming tag of fetch address. If it matches,
the RABTB filters out those branches whose offsets are
smaller than the incoming offset and obtains the data
for those branches after the fetch address within the
specific range. Predictions are made based on this in-
formation. Finally, the RABTB sends the target ad-
dress of the first predicted-taken branch to the fetch
unit for fetching the next instruction cache line. After
the execution stage, we update the prediction informa-
tion in the RABTB. Here two-level adaptive prediction
is our basic algorithm for prediction.

Our RABTB is organized into N-column, S-row
memory. Each row memory is separated by instruction
address. For example, we use 8 bits of the fetch address
to select one of the 256 rows; each row can store N
sets of branch information. When an address is sent
to the RABTB, the lower R bits, the Offset, specify a
“range” — they don’t select a row. With this range
information, we can filter out the branches we do not
need.

The varying number of branches in a cache line
may cause inefficient use of the dedicated fields of a row.
Our simulation results show that the average branch
number per cache line ranges from 1.8 to 2.4 with a
maximum value of 8, meaning that some columns of a
RABTB row may be not used. To utilize all columns
of a RABTB row, we can add the tag to each field in
the RABTB, as shown in Fig. 2.

The next problem is the tradeoff between the
amount of branch information in a row and the number
of rows for the same hardware resource. Using results
from Figs. 9 and 10, we choose a row with 4 to 8 sets
of branches information.

The main consideration of our design is on the
range and the number of branches supported in this
range. Usually the range is the fetch size of the fetcher
in each clock cycle. With a smaller range, we would
get less improvement but the comparison and selection
circuits is simpler. And, with a wider range, we would
need the fetch unit with the ability to fetch larger line

Fig. 2 Block diagram of the RABTB.

size at once and the comparison and selection circuits
become very complex.

It is not necessary to speculatively update the his-
tory in the BTB for prediction [7]. This implies we can
shift the action of prediction from the Fetch Stage to
the Execution Stage. Since there is only one Branch
Unit in the simulated machine and one branch instruc-
tion is executed at one time, so only one write port is
needed for updating the RABTB. After making predic-
tion in advance, we store the result of prediction into
branch information field of the RABTB entry. Then in
the Fetch Stage, we can select target address based on
the previously predicted result.

5. The Architecture of the RABTB

5.1 The 8-Column RABTB

Figure 3 shows a block diagram of an 8-column RABTB
with two-level branch prediction mechanism and an
eight-entry modified ring buffer. The RABTB is or-
ganized into 256 rows and 8 columns. If the range is
32 bytes, then each column needs 67 bits. Each col-
umn contains a tag (20 bits), offset (5 bits), branch type
(2 bits), LRU bit for replacement (1 bit), last predic-
tion result (1 bit), branch history (6 bits), and target
address (32 bits). The RABTB has two read ports and
one write port. One read port is for branch prediction,
the other is for updating branch information. The write
port is also for updating.

The RABTB has two operation stages: prediction
and update. In the prediction stage, the RABTB iden-
tifies multiple branches in a cache line and decides a tar-
get address for the Fetch Unit. Information needed for
prediction is updated in the Update stage after the ac-
tual branch instruction is executed in the Branch Unit.
Prediction Stage
The algorithm for Prediction Stage is:

While the Fetch Unit fetches a cache line with a
fetch address

Fig. 3 Architecture of the RABTB.



1158
IEICE TRANS. INF. & SYST., VOL.E82–D, NO.8 AUGUST 1999

{
The RABTB searches for branches after the fetch
address of this line;
The RABTB then selects the target address of the
first predicted-taken branch, and sends it to the
Fetch Unit for the next fetch;
}
The RABTB begins with an empty buffer, and its

Pattern History Table is initialized with 2 (102). Since
the possibility for a branch to be taken is higher than
not taken. If we use 1 or 0 as initial value when a new
branch is taken and added to the RABTB, then the
branch will be predicted as not taken while it hits in
the RABTB next time. There are extra mispredictions
resulted from the mismatch between branch behavior
and initial value.

When the fetch unit starts to fetch a cache line
with a fetch address, the RABTB monitors this sig-
nal and the prediction mechanism starts working. The
RABTB compares the upper 20 (tag) bits to the tags
of the 8 indexed RABTB entries. If a match is found,
it selects those entries with offset larger or equal to the
lower 5 bits (range) of the fetch address. Then it checks
their “last prediction” bits and sends the target address
of the first entry marked “predicted taken” to the Fetch
Unit for next fetch. We complete this task with the help
of the Target Selector which checks the validity of the
8 columns of the RABTB row and filters out tag values
different from those of the fetch addresses then finds
out the first predicted-taken branch.
Update Stage
When a branch instruction is executed in the Branch
Unit, it will send its tag to the Target Address Buffer
for the prediction of target address of this branch —
an invalid tag implies no prediction was made by the
RABTB. The Branch Unit then compares the calcu-
lated target address with that returned from the Target
Address Buffer (TAB), a “Misprediction” signal will be
issued if there is a mismatch and the target address is
sent to the fetch unit for the next fetch. The RABTB
will be updated whenever there is a branch.

On prediction, the RABTB firstly uses the branch
address sent from the Branch Unit to index a branch
row, then locates the branch information with the same
offset — if none is found, the replacement algorithm is
applied. The Update algorithm is:

While there is a branch instruction issued to the
Branch Unit
{
// Because there are three RABTB accesses, these
actions must be pipelined.
Three-stage pipelined Update Unit works as fol-
lows:

1. Read the RABTB row where the incoming
branch resides;

2. Append the new branch result to the branch
history and

3. Read the PHT with the branch informa-
tion;
3.1 make prediction with the new history;
3.2 replace or merge within the RABTB row;
3.3 write the new branch information back to

the RABTB;

}

5.2 Target Address Buffer

For the Branch Unit to check for misprediction, there
must be a mechanism for each branch instruction to
pass the predicted target address from the RABTB to
the Branch Unit. An intuitive method is to append
the predicted target address to the instruction. This
will result in a large waste on circuit and buffer in the
pipeline. A more efficient way is that the predicted ad-
dress is stored in a target address buffer called the TAB,
and the TAB will append an index to each instruction.
The Branch Unit uses this index to obtain the predicted
target address from the TAB for comparison.

Because our design focuses on an x86 compati-
ble superscalar architecture. And, the pipeline stages
can be larger than 4 between the fetch and execution
stage. The number of cycle between the fetch and ex-
ecution stage is assumed to be 4 in simulated micro-
architecture. The simulation results from Table 2 in-
dicate that the average occurrence of branch per cache
line is 2. Ideally, the TAB is designed as an 8-entry
buffer to store predicted address.

If the size of the TAB is too small, then the TAB
full will dramatically increase and prevent RABTB
from making prediction. We also make simple simu-
lations to realize the condition. When the sizes of the
TAB are 4 and 6, the TAB full is occurred frequently.
If we use one entry for the prediction on a single cache
line while one predicted address is generated per cycle.
Therefore the 6 entry TAB should be enough.

5.3 The Modified Ring Buffer for Return Target
Prediction

The target address of the return instruction changed
dynamically when there are several callers calling the
same subroutine. Its target address must be associated
with the caller instruction. In the case, the BTB does
have some disadvantage when executing the return in-
struction. A “Return Stack” is implemented to help
the BTB to predict the return target address [11], [12].
What is a return stack? It’s a stack where the next in-
struction address of the caller instruction will be stored
as return address when the caller instruction calls sub-
routine. Whenever there is a CALL instruction, the
next effective address of this CALL instruction will be



HWANG et al: MULTIPLE BRANCH PREDICTION FOR WIDE-ISSUE SUPERSCALAR
1159

considered as the return address and pushed into the
stack. The return address will be popped off during a
BTB hit on a RET instruction then it is considered as
a target address for this RET instruction. By this way,
we can avoid the problem that the return instruction
uses other’s return address.

If the subroutine calls are nested more than the size
of the return stack, the BTB normally will not provide
prediction and will flush the stack for providing spaces
for the incoming CALL instructions’ return address. To
overcome the drawback, we present a new scheme, the
ring buffer, for the target prediction of return instruc-
tions. The ring buffer uses a “Circular Queue” as the
basic structure. When there are many consecutive call
instructions and without return instructions, the circu-
lar queue may be full and will overlap the entry that
stores the return address of the previous call. Differ-
ent to the return stack that flushes the contents, the
circular queue still store the most recent several entries
(depends on the size) of return address and can provide
the prediction for those corresponding return instruc-
tions.

When a process is running recursively, some con-
secutive call instructions that have the same return
addresses will be stored in the entry of return target
no matter a return stack or a ring buffer is imple-
mented. We employ the “Modified Ring Buffer” that
adds a counter for each entry of the circular queue in
the RABTB. When the next return address is the same
as the last one stored in the circular queue, the mod-
ified ring buffer will not store this address as a new
entry. Instead, the modified ring buffer will increment
the counter of the last entry and keep the head pointer
in the same position. In this way, we can predict more
target addresses for return instructions with the same
size of circular queue. The only cost is to add a counter
for each entry. The simulation results of different ar-
chitectures are shown in Fig. 11.

6. Simulation and Discussion

6.1 Simulation Environment & Process

The simulation process consists of two parts. First, we
compile SPECint95 benchmarks into ELF binary code
using gcc on a Linux system. Then gdb, a GNU de-
bugging tool, extracts all the instruction addresses and
instruction types during benchmarks’ execution. gdb
is set to single-step tracing mode and will automati-
cally report both addresses and instruction types. The
standard output of gdb will be piped to gzip for com-
pressing.

Finally, we use our RABTB simulator to simulate
these benchmark traces and obtain statistics (x86 in-
struction) including: average instruction length, num-
ber of instruction per cache line, dynamic and static
branches, average occurrence of each static branch,

total prediction accuracy, replacing frequency of the
RABTB entry, the RABTB hit rate, etc. Figure 4
shows the complete simulation process.

The simulated micro-architecture is a superscalar,
x86 instruction compatible processor. It is similar to
the NSC98 microprocessor [20]. The NSC98 micropro-
cessor converts x86 instruction to a sequence of NSC98
primitive operations (or POP). The average conversion
rate is approximate 1.6. The POPs form an NSC98
RISC instruction set. The POPs are issued to an 8-
way superscalar RISC core. The RISC core supports
eight POP issue in a cycle. A reorder associative buffer
(RAB) is used to facilitate speculative execution, out-
of-order execution, out-of-order completion, and in-
order commitment. The I-cache hit rate is assumed
to be 100 percent to eliminate the effect of I-cache ca-
pacity. We assume only one Fetch Unit in a machine
that can only fetch one cache line (32 bytes) per cycle.

6.2 Benchmark Programs and Analysis

The SPECint95 benchmark suite was used for exper-
iments, which includes compress, gcc, go, ijpeg, li,
perl, m88 km and votex. The detailed descriptions are
showed below:

129.compress4.0: A widely used compress program
under UNIX system.

126.gcc 2.7.2: A GNU C compiler (because we
can’t compile it under LINUX, so
we replace it with original gcc
2.7.2).

099.go: A self-played chess game.
132.ijpeg: Graphic compression and decompres-

sion tools.
130.li: A LISP interpreter.
134.perl: Manipulates strings and prime number

in perl.
124.m88 ksim: A simulator for the 88100 micropro-

cessor.
147.vortex: Single-user object oriented database

Fig. 4 The flow of simulation methodology.



1160
IEICE TRANS. INF. & SYST., VOL.E82–D, NO.8 AUGUST 1999

Table 1 Benchmark statistics.

Table 2 Branch distribution in benchmark.

transaction benchmark.
Table 1 shows input data set, total instruction

count, number of instruction per cache line and dy-
namic and static branches. Here “static” means the
number of branch (x86 instructions) in the source pro-
gram and the “dynamic” means that the number of the
branch instructions actually executed.

Table 2 shows the branch distributions of the
Benchmark. The number of branches in each cache
line mostly ranges from 2 to 3, with a maximum of 8 in
real gcc. This implies that less than 2 entries per row
would not be suitable for allocating the branches in a
cache line. However, 4 to 8 entries would be enough
most of the time. We do not waste entries, because
of the tag in each entry. With more than 8 entries per
row, the aliasing problem would become serious and re-
sults in smaller number of rows. An RABTB with more
columns may provide more dynamic resource allocation
capability suitable for unbalanced branch distribution.

Because the predicted taken entry with the small-
est offset in a row would be selected, the sorting must
be done each cycle after updating the BTB. That means
the complexity of the hardware logic would increase in
ratio to the size of the row, and it will surely add much
implementation cost if we do not limit the entries per
row.

6.3 Performance Metric

Performance of the RABTB depends on two factors:
the branch penalty and IPC f. IPC f is now used ex-
tensively to rate an instruction fetch mechanism, which

will be much improved if the branch prediction method
yields satisfying results. We count the waste cycles by
the following cases:
1. Incorrect branch prediction
2. RABTB misses on taken branches

Since we do not simulate the rest of the machine,
the exact mispredicted branch penalty is approximated.
Because our design focuses on the x86 compatible su-
perscalar architecture. The number of cycles between
the fetch stage and execution stage is assumed to be
4 in the simulated micro-architecture. Another cycles
are required to flush pipeline and fetch the correct in-
struction line when branch prediction is wrong. So, a
6-cycle penalty for case 1 is assumed. The penalty for
case 2 is less than the penalty for case 1. In case 2 that
a branch instruction is discovered after the instructions
are decoded, so the penalty for case 2 is assumed to be
4 cycle.

The branch penalty per branch can be derived from
the RABTB utilization and the branch prediction ac-
curacy [10]. The branch penalty is:

Branch penalty = Percent RABTB hit rate
∗ Percent incorrect prediction
∗ misprediction penalty cycles
+ (Percent RABTB miss rate
∗ Taken branches
∗ miss penalty cycles)

In order to keep some entries free all the time, we
do not save data for branches that miss in the RABTB
and are not taken. The simulation will only count the



HWANG et al: MULTIPLE BRANCH PREDICTION FOR WIDE-ISSUE SUPERSCALAR
1161

Fig. 5 The Miss Rate and Misprediction Rate in the scalar machine.

miss rate of branches that are taken. Therefore, in the
above formula taken branches will be 100%. Because
the misprediction rate in our simulations is the per-
centage of total dynamic branch instructions for which
branch paths are predicted incorrectly, the formula can
be simplified to:

Branch penalty
= Misprediction rate ∗ 6

+ (Percent RABTB miss rate ∗ 4)

Though our experiments focus on multiple branch
instructions in a cache line, and pick the target address
of the first taken-branch. The misprediction rate still
includes all branches’ prediction accuracy, not just the
cache line misprediction rate.

6.4 Experimental Results and Analysis

In this section, the results of the trace-driven simula-
tion are presented and plotted. In order to measure
the efficiency of our scheme, we first simulate a sin-
gle prediction scalar machine. Then we analyze those
simulations that only predict the first branch instruc-
tion in a cache line for a wide-issue micro-architecture.
Finally, several configurations of the RABTB were sim-
ulated and compared. Before setting out the results, a
few of their features must be explained.
1. The RABTB entries mean the total used entries.

Every entry includes data for tag, offset, branch
type, LRU bit for replacement, last prediction re-
sult, branch history, and target address. The re-
placement algorithm is Least Recently Used (LRU).
The RABTB is used for all type of branch instruc-
tions.

2. The branch history is assumed to be 6 bits in most
cases. The branch history in the RABTB entry is
initialized to all 1’s (0x3f).

3. We use the PAs [4], [5] — a Per-address History Two-
Level Adaptive branch predictor as our basic pre-

diction algorithm. For per-address history scheme,
the most cost-effective one is PAs(6,16) with a lower
hardware cost [5]. The PHT size will become 1 k en-
trries (26 ∗ 16). The PHT is divided into 16 sets and
there are 64 (26) two-bit up-down saturating coun-
ters in each set.

4. An eight-entry modified ring buffer is used for pre-
dicting the return instructions.

6.4.1 Performance of a Single Prediction Scalar Ma-
chine

To measure the performance of single prediction
in a scalar machine, we ran simulations by using
PAs(6,16) [5] and various BTB sizes — from 512 to
8192 entries. To show the effect of the multiple way
set-associative, the simulations considered 1-, 2-, 4- and
8-way for each size.

Figure 5 shows the Miss Rate and Misprediction
Rate in the scalar machine for each configuration. The
Miss Rate decreases obviously while total entries in-
crease from 512 to 2048. And the best one is two-
way set-associative in all configurations. The alias-
ing problems in level one branch information dominate
the performance of PAs scheme [4]. The two-way set-
associative structure can eliminate effectively the alias-
ing problem in most of benchmarks and obtain better
Miss Rate. With more ways, the benefits will be re-
duced due to less number of rows can be indexed. The
Misprediction Rates of all results are less than 8%, the
difference between various ways is little while the total
entries are more than 2048. And we call these schemes
“scalar schemes.”

We can decide the best configuration for a scalar
system from the results shown in Fig. 6. Because the
BTB must be on the CPU chip, tradeoffs between per-
formance and cost are important. Therefore the best
selection for scalar machine would be 2048 entry, 2-way
set-associative BTB.



1162
IEICE TRANS. INF. & SYST., VOL.E82–D, NO.8 AUGUST 1999

Fig. 6 The total Branch Penalty in the scalar machine.

6.4.2 The Degradation of Only the First Branch Pre-
dicted for a Wide-Issue Superscalar

Figure 7 shows the Miss Rate and Misprediction Rate
when only the first branch is predicted using the BTB in
the superscalar machine. Because only the first branch
is predicted, other branches in the same cache line will
be predicted as not taken naturally. But the probabil-
ity of finding a taken branch after the first branch is
above 17%. In Fig. 7, the Misprediction Rates of most
results are larger than 15% and the degradation of pre-
diction accuracy is 8%–10% compared with the “scalar
schemes.” Two-way set-associative is still the best in all
configurations. We call these schemes the “first branch
prediction schemes.”

The branch penalties are all above 1 clock cycle as
shown in Fig. 8. Therefore the IPC will be too small to
support high issue rate. There is more than 80% degra-
dation of the branch penalty compared with the results
of the “scalar schemes.” This is a bad solution for a
wide-issue superscalar. We must modify the scheme to
meet the requirement of high performance.

6.4.3 Performance of RABTB

In this subsection, we investigate the performance of
the RABTB and determine the best architecture for the
RABTB. To evaluate the RABTB performance, we ran
simulations using PAs(6,16) [5] on the various RABTB
sizes — from 512 to 8192 entries. Because a 32-byte line
is fetched and the average cache line has 2 to 3 branches
(Table 2), the number of columns must be greater than
2 and the simulations consider 2-, 4-, 8-, 16-, 32- and
64-column for each size.

Figure 9 shows the Miss Rate and Misprediction
Rate of the RABTB in a superscalar machine for each
configuration. The Miss Rate clearly decreases as the

total entries increase from 512 to 2048. When the
RABTB size is 512 entries, the 4-column scheme is the
best, but the 8-column scheme outperforms the others
from 1024 to 4096 entries. The miss rate is very low
for 4-column to 32-column schemes with 8192 entries,
because these schemes have enough entries to eliminate
most of the aliasing cases. The Misprediction Rate is
mostly less than 8%. The number of columns has little
effect when there are more than 4096 entries. There are
many improvements compared with the “first branch
prediction scheme.”

Figure 10 shows the branch penalty per branch
of the RABTB in a superscalar machine. The branch
penalty clearly decreases as the total entries increase
from 512 to 2048. When the RABTB has 512 entries,
the 4-column scheme has the smallest penalty. When
the RABTB size is above 2048, there is little difference
between 4-, 8- and 16-column schemes. The branch
penalty of these schemes is under 0.56 clock cycle and
similar to the “scalar scheme.” When the RABTB size
is larger than 2048, the 8-column scheme outperforms
the others.

From our analysis and simulation results presented
above, we conclude for the RABTB design:

“When the RABTB size is under 2048, the 4-
column scheme will be the best selection, but for larger
RABTBs the 8-column scheme could be the optimal
design.”

6.4.4 The Comparisons of Different Architectures for
Return Target Prediction

In the SPECint95 suite, for some input patterns, return
instructions represent nearly 8.6% of the total branch
instructions (refer to Table 2). The miss-predicted
probability of its target address approximates 50% us-
ing the conventional BTB without return stack. Here,
the simulations were performed with the context switch
taken into consideration. The simulator will context-
switch between different benchmarks. Whenever there
are 10,000 instructions (default setting) executed or
simulated, the simulator will flush the return stack or
ring buffer and continue to simulate the next bench-
mark. The simulation results of different architectures
with various size are shown in the left side of Fig. 11.
The Misprediction Rate is mostly less than 18%. The
improvement of prediction accuracy is about 64% bet-
ter than the conventional BTB scheme without the re-
turn stack. As we discussed in Sect. 5.3, the ring buffer
structure would have higher prediction accuracy than
the return stack. The difference between various sizes
is little when the size is larger than 10 in the ring buffer
and the modified ring buffer. Under the consideration
of reasonable hardware cost, the optimal configuration
will be the 8-entry “Modified Ring Buffer.” Also, it
has the better performance than the 30-entry “return
stack.” The right side of Fig. 11 shows the miss rate



HWANG et al: MULTIPLE BRANCH PREDICTION FOR WIDE-ISSUE SUPERSCALAR
1163

Table 3 Comparisons of branch penalty for three scheme.

Fig. 7 Miss Rate and Misprediction Rate of first branch predicted.

Fig. 8 Branch Penalty: only the first branch predicted.

of the benchmark with 8-entry scheme. Obviously, the
modified ring buffer is the best or at least the same as
the ring buffer structure. Up to half of the miss predic-
tion rates have been diminished on some benchmarks
(e.g. li, vortex) with the ring buffer structure.

6.4.5 Comparison of System Performance

We compared three schemes (“scalar scheme,” “first
branch prediction scheme” and the RABTB) using the
best system performance (branch penalty) for each con-

figuration. These comparisons are set out in Table 3.
The degradation column compares the previous col-
umn and the 2-way BTB (scalar scheme) column. The
branch penalty of an 8-column RABTB with 2048 en-
tries is about 4.31% higher than the “scalar scheme” of
the same size. When the size is 8192, the degradation
of an 8-column RABTB becomes −0.61%: the nega-
tive value means that 8-column RABTB outperforms
the “scalar scheme.”

The trend in modern processors is toward larger
prediction units. Therefore, with reasonable hardware
cost, the best configuration of our RABTB will be 2048
entries, 8-column range-associate, and 8-entry modified
ring buffer architecture using PAs prediction algorithm.

6.4.6 IPC f Number Evaluation

In this subsection, we will discuss the relation between
branch prediction and instruction fetching by the IPC f.
IPC f is the average number of instructions fetched
and issued per cycle assuming ideal performance for all
other parts of the processor and no data dependency
between instructions. The following formula will be
used:

IPC f = Total Instruction Counts

/(Cache Line Fetch Cycles

+ Branch Stall Cycles),



1164
IEICE TRANS. INF. & SYST., VOL.E82–D, NO.8 AUGUST 1999

Fig. 9 Miss Rate and Misprediction Rate of the RABTB.

Fig. 10 Branch Penalty of the RABTB.

Branch Stall Cycles

= Total Branch counts

∗ Branch penalty per branch

The branch stalls include misprediction stalls and
the stalls of misses on taken branches. As described in
Sect. 6.3, their penalties are assumed to be 6 and 4 clock
cycles respectively. We will use this formula to calculate
the IPC f of the optimal configuration proposed in the
last subsection.

From the results shown in Fig. 12, we see that the
IPC f (POPs) is above 4 for all the benchmarks except
for real gcc and go. The IPC f of real gcc and go are 4.2
and 3.27, respectively, which are acceptable for these
two benchmarks even though their prediction accuracy
is not good enough. The misprediction rates of the two
benchmarks are both larger than 10%. The IPC f of
vortex reaches as high as 7.11. The optimal RABTB
can produce an average of 5.15 for IPC f (POPs) and
7.4 for misprediction rate.

Fig. 11 The comparisons of three different architectures and
the miss rate of the 8-entry scheme.

6.4.7 The Effect of Branch Misprediction Penalty

To investigate the effect of branch misprediction
penalty on IPC f of the optimal RABTB, we will vary
the misprediction penalty from 4 cycles to 10 cycles.
Figure 13 shows the effect of branch misprediction
penalty on IPC f. The performance degradation when
the misprediction penalty increased from 4 cycles to 10
cycles is less than 22%. The individual degradation is



HWANG et al: MULTIPLE BRANCH PREDICTION FOR WIDE-ISSUE SUPERSCALAR
1165

Fig. 12 The IPC f of the optimal RABTB in a superscalar machine.

Fig. 13 The effect of Branch Misprediction Penalty on IPC f.

about 7.1% to 30.6%. The go has the maximum degra-
dation and the vortex has the minimum degradation.

7. Conclusion

From simulation results, we know that traditional
branch prediction scheme does not generate good ac-
curacy for multiple branch prediction. In this paper
we have evaluated the influence of multiple branch
prediction on a wide-issue superscalar microprocessor
and proposed a new mechanism (RABTB) for multiple
branch prediction.

Benchmark traces for SPEC95int used in our ex-
periment were run on an x86 architecture. The distri-
bution, behavior and types of branches are extracted
from those benchmarks. The number of branches in
each cache line mostly ranges from 2 to 3, with a max-
imum value of 8 in real gcc. So 4 to 8 columns would
be considered as our solution for the RABTB.

For the benchmarks we have simulated, the opti-
mal RABTB has been verified as a 2048 entry, 8-column
range-associate, and 8-entry modified ring buffer archi-
tecture using PAs prediction algorithm. It is an ac-
ceptable solution for multiple branch prediction with
an average miss rate of 2.4% and a misprediction rate
of 7.4%. It also achieves a system performance of 5.15
IPC f and 0.54 cycles of branch penalty per branch,

which is almost twice the performance of a mechanism
that predicts only on the first encountered branch.

References

[1] G.S. Tyson, “The effect of predicated execution on branch
prediction,” 27th Int’l Symp. on Microarchitecture, pp.196–
206, Nov. 1994.

[2] J.K.F. Lee and A.J. Smith, “Branch prediction strategies
and branch target buffer design,” 8th Int’l Symp. on Com-
puter Architecture, pp.135–148, May 1981.

[3] C.H. Perleberg and A.J. Smith, “Branch target buffer de-
sign and optimization,” IEEE Trans. Comput., vol.42, no.4,
pp.396–411, April 1993.

[4] T.-Y. Yeh and Y.N. Patt, “Two-level adaptive training
branch prediction,” 24th Int’l Symp. on Microarchitecture,
1991.

[5] T.-T. Yeh and Y.N. Patt, “A comparison of dynamic branch
predictors that use two levels of branch history,” 20th Int’l
Symp. on Computer Architecture, pp.257–266, May 1993,

[6] P.-Y. Chang, E. Hao, T.-Y. Yeh, and Y. Patt, “Branch clas-
sification: A new mechanism for improving branch predic-
tor performance,” 27th Int’l Symp. on Microarchitecture,
pp.22–31, Nov. 1994.

[7] E. Hao, P.-Y. Chang, and Y. Patt, “The effect of specu-
latively updating branch history on branch prediction ac-
curacy, revisited,” 27th Int’l Symp. on Microarchitecture,
pp.228–232, Nov. 1994.

[8] T.-Y. Yeh and Y.N. Patt, “Branch history table indexing to
prevent pipeline bubbles in wide-issue superscalar proces-
sors,” 26th Int’l Symp. on Microarchitecture, pp.164–175,
1993.



1166
IEICE TRANS. INF. & SYST., VOL.E82–D, NO.8 AUGUST 1999

[9] T.-Y. Yeh, D.T. Marr, and Y.N. Patt, “Increasing the in-
struction fetch rate via multiple branch prediction and a
branch address cache,” Proc. 7th ACM Int’l Conference on
Supercomputing, pp.67–76, July 1993.

[10] J.L. Hennessy and D.A. Patterson, “Computer Architec-
ture: A Quantitative Approach,” Morgan Kaufmann Pub-
lisher, San Francisco, Calif., 1996.

[11] D.R. Kaeli and P.G. Emma, “Branch History Table Pre-
diction of Moving Target Branches Due to Subroutine Re-
turns,” ACM, 1991.

[12] C.F. Webb, “Subroutine call/return stack,” IBM Tech.
Discl. Bull., vol.30, no.11, April 1988.

[13] T.M. Conte, K.N. Menezes, P.M. Mills, and B.A. Patel,
“Optimization of instruction fetch mechanisms for high is-
sue rates,” 22nd Int’l Symp. on Computer Architecture,
pp.333–344, 1995.

[14] S. Dutta and M. Franklin, “Control flow prediction with
tree-like subgraphs for superscalar processors,” 28th Int’l
Symp. on Microarchitecture, pp.258–263, 1995.

[15] A. Seznec, S. Jourdan, P. Sainrat, and P. Michaud,
“Multiple-block ahead branch predictions,” Int’l Conf. on
Architectural Support for Programming Languages and Op-
erating Systems VII, 1996.

[16] S. Wallace and N. Bagherzadeh, “Instruction Fetch-
ing Mechanisms for Superscalar Microprocessors,” Euro-
Par’96, 1996.

[17] Q. Jacobsen, E. Rotenberg, and J.E. Smith, “Path-based
next trace prediction,” 30th Int’l Symp. on Microarchitec-
ture, pp.258–263, 1997.

[18] S.J. Patel, D.H. Friendly, and Y.N. Patt, “Critical issue
regarding the trace cache fetch mechanism,” Technical Re-
port CEE-TR-335-97, Dept. of Electronics Engineering and
Computer Science, University of Michigan, 1997.

[19] B. Cyril and M. Franklin, “A study of tree-based control
flow predictions schemes,” Int’l Conf. on High Performance
Computing, 1997.

[20] C.L. Wu, “The definition of NSC98 microarchitecture,”
Document of Tentative NSC98 Microprocessor Design
and Manufacture. WWW site http://www.act.nctu.edu.tw,
Sept. 1996.

Shu-Lin Hwang received the
B.S.E.E. degree from National Taiwan In-
stitute of Technology, Taiwan, in 1988,
and M.S. degree from the Electrical En-
gineering Department of National Taiwan
University, Taiwan, in 1993. He is an in-
structor of the Department of Electrical
Engineering at Mingchi Institute of Tech-
nology. He was also a Ph.D. candidate in
the Electrical Engineering Department of
National Taiwan University. He is a mem-

ber of the Institute of Information & Computing Machinery. He is
also the student member of IEEE and ACM. His current research
interests are microprocessor architecture design and branch pre-
diction design.

Che-Chun Chen received his B.S.
degree from National Chiao Tung Univer-
sity, Taiwan, in 1995 and the M.S. degree
from National Taiwan University, Taiwan
in 1997. He is a member of the Institute
of Information & Computing Machinery.
His current research interests are branch
prediction design and simulator design.

Feipei Lai received a B.S.E.E. degree
from National Taiwan University in 1980,
and M.S. and Ph.D. degrees in computer
science from the University of Illinois at
Urbana-Champaign in 1984 and 1987, re-
spectively. He is a professor in the De-
partment of Electrical Engineering and in
the Department of Computer Science and
Information Engineering at National Tai-
wan University. He was a visiting profes-
sor in the Department of Computer Sci-

ence and Engineering at the University of Minnesota, Minneapo-
lis, U.S.A. He was also a guest Professor at University of Dort-
mund, German and a visiting senior computer system engineer
in the Center for Supercomputing Research and Development at
the University of Illinois at Urbana-Champaign. Dr. Lai holds
four Taiwan patents and two USA patents currently. He served
as a consultant at ERSO, ITRI during 1988 and at Faraday Tech-
nology Corp. from 8/94 to 7/95. His current research interests
are high performance microprocessor chip design, computer ar-
chitecture, optimizing compiler, VLSI design. Prof. Lai is one of
the founders of the Institute of Information & Computing Ma-
chinery. He is also a member of Phi Kappa Phi, Phi Tau Phi,
ACM, and The Chinese Institute of Engineers. He received Acer
awards five times in 1989, 1991, 1992, 1993 and 1995 and The
Taiwan Fuji Xerox Research award in 1991. Dr. Lai is a Senior
member of IEEE and included in “Who’s Who in Science and
Engineering” and “Who’s Who in the World.”


