Computer Speech and Language (1993) 7, 247-263

Continuous hidden Markov models
integrating transitional and instantaneous
features for Mandarin syllable recognition

Yumin Lee and Lin-shan Lee

Department of Electrical Engineering, Room 512, National Taiwan University, Taipei,
Taiwan, Republic of China

Abstract

Feature parameters describing spectral transitions of speech signals
have been properly integrated with the instantancous features in many
different approaches proposed for speech recognition, and significant
performance improvements have been attained. Most of these methods
are designed for recognition systems based on dynamic time warping
(DTW) or discrete hidden Markov models (HMM). However, it has
been experimentally shown that for the difficult problem of
recognizing the highly confusing Mandarin syllables with limited
amount of training data, the performances of DTW and discrete
HMM techniques are much worse than that of continuous HMMs. In
this paper, the performance of continuous HMMs using one type of
transitiona) features in speaker-dependent recognition of the highly
confusing Mandarin syllables is first evaluated and discussed in detail
under the constraint of very limited training data. Three approaches
are then proposed to integrate the instantaneous and transitional
features for recognition systems based on continuous hidden Markov
models. They are the most straightforward concatenation—integration
approach in which the instantaneous and transitional feature vectors
are simply concatenated, the rwo-maximization approach in which the
output distribution functions for the instantaneous and transitional
feature vectors are maximized separately, and the two-model approach
in which two MM s respectively for instantaneous and transitional
feature vectors are independently trained but the log likelihoods are
summed up with proper weighting. Afier extensive experiments and
careful analysis, it is found that the three approaches respectively
provide attractive performance under different conditions. For
example, with the two-maximization approach a recognition rate
(93-89%) only slightly lower than the highest achievable rate for the
concatenation—integration approach (94-36% for M=15) can be
obtained at a much smaller number of mixtures {M = 2).

1. Intreduction

The recognition of all the 1300 phonologically allowed Mandarin syllables has always
been a difficult problem. In fact, Mandarin Chinese is a tonal language, in which every
syllable is assigned a tone. It has been found that the vocal tract parameters for the
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syllables are only slightly influenced by the tones (Havie, 1976), and the tones can be
separately recognized using pitch contour features. Therefore the differences caused by
tones can be disregarded in Mandarin syllable recognition, which reduces the total
number of different syllables from 1300 to 408. However, the recognition of all the 408
phonologically allowed Mandarin syllables disregarding the tones is still very difficult.
The difficuity is mainly due to the existence of 38 confusing sets in the vocabulary, each
of which can have as many as 19 very confusing syllables. A good example is the A-set:
{[a]*, [ja], [cha), [sha], [tza], [tsa], [sa], [ga], [ka], [ha], [da], [ta], [nal, [la]. [ba], [pa], [ma],
[fa]}. This is why only speaker dependent recognition is considered currently. Conven-
tionally, each Mandarin syllable can be decomposed into an INITIAL/FINAL format
very similar to the consonant/vowel relations in other languages. Here INITIAL means
the initial consonant of the syllable, and FINAL means the vowel {(probably diphthong)
part but including possible medial and nasal ending. It can be found from the above
confusing set example that in general all the syllables in a confusing set have a common
FINAL but different INITIALSs. Table I is a list of all the 408 syllables. The vertical scale
of the table lists all the 38 FINALSs (including a null FINAL), and the horizontal scale of
the table lists all the 22 INITIALSs (including a nuli INITIAL). Therefore every row in
the table represents a confusing set, consisting of syllables sharing the same FINAL but
with different INITIALs. The A-set mentioned above is listed in the second row of the
table. Recognition of these Mandarin syllables becomes even more difficult when only
very limited amount of training data is available. However, since it is impractical to
require a user new to a speaker-dependent system to produce a large number of training
utterances before being able to use the system, very limited amount of training data
becomes a necessary constraint. This is why several special recognition approaches for
these Mandarin syllables have been developed to efficiently utilize the training data (Liu,
Lee & Lee, 1993; Lee ef al., in prep.), and very encouraging results have been achieved.

On the other hand, it has been shown that spectral transitions of speech signals play a
vital role in speech perception (Furui, 1986). In the past few years, several speech feature
parameters that convey transitional spectral information have been proposed (Soong &
Rosenberg, 1988). When these transitional features are properly integrated with the
instantaneous features in many different approaches proposed (Furui, 1986; Gupta,
Lennig & Mermelstein, 1987; Nishimura & Toshioka, 1987; Rabiner, Wilpon & Soong,
1988; Soong & Rosenberg, 1988), significant performance improvernents have been
attained. Most of these methods are designed for recognition systems based on dynamic
time warping (DTW) or discrete hidden Markov models (HMMs). However, it has been
¢xperimentally shown that for the difficult problem of recognizing the highly confusing
Mandarin syllables with limited training data, the performance of DTW and discrete
HMM techniques are much worse than that of continuous HMMs (Liu, Lee & Lee,
1993). Rabiner et al. developed a system integrating the instantaneous and transitional
speech features in continuous HMMs (Rabiner, Wilpon & Soong, 1938), in which the
two types of features are simply concatenated to form augmented feature vectors that
contain both the¢ instantancous and transitional spectral information. As will be shown
later in this paper, it is found that such a simple integration approach is not necessarily
the best, at least for the problem being discussed here, i.e. the recognition of the very
confusing Mandarin syllables with very limited training data, because other attractive
approaches can in fact be found in some cases.

* The transliteration symbols used in this paper is Mandarin Phonetic Symbols IT (MPS II).
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In this paper, the performance of continuous HMMs using one type of transitional
feature parameter in speaker-dependent recognition of the highly confusing Mandarin
syllables is first evaluated and discussed in detail under the constraint of very limited
training data. Three different approaches are then proposed to integrate the instantan-
eous and transitional features for recognition systems based on centinuous hidden
Markov models. They are the most straightforward concatenation—integration approach
in which the instantaneous and transitional feature vectors are simply concatenated, the
two-maximization approach in which the output distribution functions for the instantan-
eous and tranmsitional feature vectors are maximized separately, and the twe-model
approach in which two HMMs respectively for instantaneous and transitional feature
vectors are independently trained but the log likelihoods are summed up with proper
weighting. Extensive experiments are performed to test and compare the performance of
these proposed approaches for the problem discussed here, and the results are carefully
analysed. The conditions under which each approach will be the most attractive are also
discussed. For example, with the two-maximization approach a recognition rate
(93-89%) oniy slightly lower than the highest achievable rate for the concatenation-
integrarion approach (94:36% for M =5} can be obtained at a much smaller number of
mixtures (M =2). In the following, the speech database and the hidden Markov rnodel
with the training approach to be used will be presented in Sections 2 and 3, respectively.
The effectiveness of the transitional spectral features used is then assessed in Section 4.
Three different methods of integrating these features with the instantaneous features and
the experimental results are then discussed in Sections 5 and 6, and finally a conclusion is
given in Section 7.

2. The speech database

In this section the speech database and some initial processing performed on the speech
data will be presented first. They will be used in all the experiments to be discussed in the
following. The database contains two collections of data of two male speakers. Each
includes six utterances for each of the 408 Mandarin syllables, Therefore the database
contains a total of 4896=408 x 6 x 2 syllable templates. All syllables are uttered in
isolation, in_the high-level tone (usually referred to as the first tone in Mandarin) and in
random sequences. The times for recording the speech data were distributed in five days.

All the recorded materials are obtained in an office-like laboratory environment
without special sound-proof treatment. They are low-pass filtered and digitized through
a MASSCOMP-5400 workstation, and then stored in the hard disk for further
processing, The sampling frequency is 10 kHz. After end-point detection (Rabiner &
Sambur, 1975) is performed for each syllable, 20-ms Hamming window is applied every
7 ms to obtain the autocorrelation coefficients with a preemphasis factor of 0-95. LPC-
based cepstral analysis is then performed on the autocorrelation coefficients to extract
the first ten cepstral coefficients which are used as the instantaneous features. Regression
analysis is further applied to obtain transitional features. The linear regression coeffi-
cients are evaluated using the following equation (Furui, 1986):

3 m o,
Z.'=~3C(r+t)"
m_
rr= ———3 -
I
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Figure 1. The state transition topology of the HMMs used.

where ¢ is the m-th cepstral coefficient at time ¢, and r7 is the linear regression coefficient
for the m-th cepstral coefficient at time ¢. The training data for each speaker consist of
five utterances for each of the 408 syllables and the remaining one utterance is used in
testing. In other words, the testing data for each speaker includes one utterance for each
of the 408 syllables, and the recognition rates discussed in the following are the average
for the two speakers. Note that here only five training utterances are available for cach
syllable, which makes the training task very difficult, although it already takes a very
long time for a new speaker to produce 2040 =408 x 5 training utterances.

On the other hand, 408 training utterances for the 408 syllables need to be segmented
into INITIAL parts and FINAL parts for use in further processing. Such segmentation
is in fact very difficult, especially when the INITIAL is some unaspirated plosives such as
/bf, /4], /g/, or some nasals or liquids such as /m/, /n/, /t/, /l/, etc. It was found that the
spectral transition measure previously proposed {Svendsen & Soong, 1987) was a useful
feature to define the boundary between INITIAL and FINAL parts even for syllables
starting with those difficult INITIALs mentioned above for which the average magni-
tude difference function (AMDF) (Ross et al., 1974) is not useful at all. The spectral
transition measure is defined below:

10 3 2
cw= 3, (L weepint) Q)

m=1 “t=-3

where C(1) is the spectral transition measure at time ¢ and w,is a window with length of 7
frames.

3. The hidden Markov model with partitioned Gaussian mixtures

The hidden Markov models used in this paper are left-to-right continuous mixiure
HMMSs with 7 states, as shown in Fig. [. The output probability density function (pdf)
of a state j is the partitioned Gaussian mixtures (PGM) function:

blo)=n: max {b,(0)) @

m=12,...M

where o, is the feature vector, M is the total number of mixtures, and b,.(") is the m-th
mixture pdf of state j, which is assumed 1o be a multi-dimensional Gaussian distribution.
This type of pdf is similar in concept to, and is in fact motivated by, the partitioned
Gaussian autoregressive mixtures (PGAM) density function previously proposed (Juang
& Rabiner, 1985). In this type of mixture density, the feature vector space can be
considered to be implicitly partitioned into clusters. Each cluster is defined by a
Gaussian pdf. As shown in Equation (2), the cluster to which a feature vector o, belongs
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is found by a nearest-neighbour criterion (Juang & Rabiner, 1985). This in fact
resembles the vector quantization (VQ) operation, Such a VQ analogy will be used in
later discussions in this paper. The parameters to be re-estimated are the transition
probabilities a,, mixture mean vectors u,,, and mixture covariance matrices R, . The
formula for maximum likelihood re-estimation of these parameters using the Baum-—
Welch training algorithm can be easily obtained by following the previous derivations
{(Juang, 1985). In particular, let the training utterances for one syllable be O ={o{",0-
9,08 hy=1.2,...,V, where of” is the feature vector of the v-th utterance at time 2,V is
the total number of utterances, and 7% is the length of the v-th training utterance. Also,
let s¢Y=7 denote the event that the »-th utierance is in state i at time £. The re-estimated
parameters d,, i,,, R, can then be obtained as follows:

RO, S = fssé,“l =7 IA)

p=1

ST IROW8 =1[A) 3

VST OO0, = j| A)-of qjm(0£"))]

¥=1

" Y STILAOY 59 =j| A)-g,. (0] @)
LY RULAOO, 5= | A) (0 — 1,)(00 — ) g, (o)
jm = — e
Y TIO 00,50 =1 A) g, (0)] 5)

In these equations, f(-) is used to denote the density function, and A denotes the
HMM. For example, the quantity f(O",s=i,s%, ,=j|A) is the probability density of
observing O with a transition from state 7 at time ¢ to state j at time 7+ 1, given the
current model parameter set A. The quantity f{O" M= i|A) is the probability density of
observing O™ with the process being in state i at time 1. Equation (3) has an intuitive
interpretation of simply being the fractional count of transitions from state 1 to state j
averaged over all sequences. g4,_(-) in Equations (4) and (5) is the nearest neighbourhood
function defined as follows:

g, (0)= b if argmax,_,, ,Aib{0)}=m
s 0 otherwise

Since the amount of training data is limited, the covariance matrices are assumed to be
diagonal. From Equation (4), it is clear that the re-estimated mean vector of th: m-th
mixture of state f is the weighted centroid of the vectors assigned to that particular
mixture. The covariance matrix in Equation (5) have a similar interpretation. It is worth
noting that the re-estimation algorithm for the mean vectors is similar to the LBG
algorithm [Linde, Buzo & Gray, 1980) used to train VQ codebooks.

Since we are dealing with the recognition of highly confusing Mandarin syllables using
very limited amount of training data, special training approaches are required. Several
special approaches have been proposed to utilize the training data efficiently, and very
good results have been obtained with the revised three-pass training approach (Les et al.,
in prep.) using HMMs with PGAM output density. In this approach, as shown in the
block diagram in Fig. 2, one set of training utterances are segmented into INITIAL and
FINAL parts. These segmented utterances are used to train the INITIAL and FINAL
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Pass 1:
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FINAL HMMs
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!
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' Pass 3:
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408 syllable HMMs

|

408 syllable HMMs

Figure 2. Block diagram of the revised three pass training algorithm.

HMMs in the first two passes. They are then concatenated to form 408 syllable HMMs.
In the third pass, these 408 syllable HMMs are taken as the initial values, and all the
segmented as well as the unsegmented training utterances are used in the Banm—Welch
iterations to refine the model parameters, with the parameters for the INITIAL and
FINAL parts of the syllable HMMs eventually re-estimated separately. This method is
adopted to train the HMMs in the expetiments to be discussed in this paper.

A series of preliminary experiments were performed to evaluate the performance of
the PGM models and of the HMMSs with conventional Gaussian mixtures (GM) pdf's
(Rabiner, Juang, Levinson & Sondhi, 1985) using cepstral coefficients as features:

M
bjtoz)z Z ijbjm(ot) (6)

m=1

where M, b,.(-) and o, are the same as in Equation (2), and ¢, are non-negative real
numbers satisfying the condition

iz

Cim =1

1

The results of these preliminary experiments are listed in Table I1. From these resulis one
can see that the PGM models can always achieve better performance than the GM
models, This can be attributed to the following reasons. First, the number of model
parameters to be re-estimated is significantly smaller for the PGM models than that for
the GM models. More specifically, for the PGM models there is no need to re-estimate
the parameters ¢, j=12,....Nm=12,... M. Therefore for the typical case of
N=17,M=35, the number of parameters of the PGM models is that for the GM models
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TasLE II. Recognition rates of HMMs using different output pdfs

Top n rates (%)

M model 1 2 3 4 5

2 GM 84-56 92-16 94-36 95-10 95-10
PGM 85-54 9461 96-32 97-30 97-30

3 GM 81-62 9191 94-12 94-61 95-34
PGM 86-52 94-36 95-83 96-57 96-85

4 GM 79-90 92-40 93-87 94-12 94-61
PGM 81-86 92-65 95-10 96-57 97-30

5 GM 8260 92-38 93-63 94-61 95-10
PGM 84-07 93-14 95-10 85-34 95-59

6 GM 81-13 89-22 91-91 93-87 54-85
PGM 8211 93-87 96-08 96-32 97-06

minus 35. Thus for the problem here with only very limited training data, the PGM
models with fewer parameters will of course outperform the GM models with more
parameters. Secondly, it seems that the PGM model is more suitable for Mandarin
syllable recognition than the GM models because of its partitioned-type of output pdf
{Lee et al., in prep.). One reason for this is that as shown in Equation (6) the observation
density for GM models is the weighted average of the mixture components, while for the
PGM models in Equation (2) only the mixture component producing the maximum
likelihood will be picked up as the observation density. For highly confusing Mandarin
syllables, the smoothing effect of the weighied average operation tends to obscure the
subtle differences among confusing syllables and make the model less discriminating.
Another reason is that, as mentioned earlier, modelling with this partitioned-type of
mixture density resembles the VQ operation, therefore an HMM with the partitioned-
type of output pdf in fact resembles the operation of finite state vector quantization
(FSVQ) (Juang & Rabiner, 1985), which had been shown to be extremely effective for
the recognition of confusing Mandarin syllables (Lee et al., in prep.). Therefore although
the GM models have been found equally successful in many speech recognition tasks,
the performance could be quite different if applied under special conditions.

4. The effectiveness of regression coefficients

In order to test the effectiveness of the regression coefficients as a feature for recognition,
a series of experiments were conducted in which the regression coefficients were used
alone, while the number of mixtures Af is varied from 2 to 9. To provide a baseline for
comparison, the cepstral coefficients were also used alone in the recognition experiments.
The results are listed in Table III. The top-1 recognition rates as functions of M are also
plotted in Fig. 3(a).

Two observations are worth noting in Table I11. First, when cepstral coefficients are
used alone the top-1 recognition rates degrade in general as M is increased bevond 5.
This indicates that the discriminating ability of these models becomes worse when too
many mixtures are¢ used. The reason for this is twofold. On the one hand, the amount of
training data is so scarce that when M is increased beyond 5, the estimated model
parameters are no longer accurate. On the other hand, Mandarin syllables are highly
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TapLE III. Recognition rates of HMMs using cepstral coefficients
{CEPS) and regression coeflicients (REGRS) alone

Top n rates (%)

M feature 1 2 3 4 5

2 CEPS 85-54 94-61 96-32 97-30 9730
REGRS 8725 95-10 96-08 9730 98-28
3 CEPS 86-52 84-36 95-83 96-57 96-81
REGRS 86-76 94-61 65-83 97-06 97-55
4 CEPS 81-86 92-65 95-10 96-57 97-30
REGRS 84-56 9510 95-34 96-81 9730
5 CEPS 84-07 93-14 95-10 95-34 95-59
REGRS 86-52 94-61 9510 95-59 97-06
6 CEPS 8211 93-87 96-08 96-32 97-06
REGRS 84-31 94.36 95-34 95-83 96-81
7 CEPS 80-15 9216 94-12 95-59 97-79
REGRS 86-27 94-85 95-34 96-32 97-06
8 CEPA 80-15 92-16 94-12 94-85 96-32
REGRS 84-07 54-36 96-57 98-04 9902
9 CEPS 80-39 91-67 94-12 9510 G583
REGRS 84-07 94-36 96-57 98-04 99-02

confusing, and thus very elaborate models are necessary to discriminate the subtle
differences between confusing syllables.

Secondly, using regression coefficients alone yields significantly higher recognition
rates than using cepstral coefficients alone, with the exception that M =3 yields almost
equal top-1 rates. To illustrate this more clearly, typical example results of M =35 are
plotted in Fig. 3(b). This phenomenon is different from the resolis reported by Furui
{1986), which stated that regression coefficients are only slightly more efficient than the
instantaneous cepstral coefficients, if sufficient training data are available. Although the
recognition approach adopted by Furui (1986) is entirely different from the approach
used here, a possible reason for such difference is that here we are recognizing syllables of
a very canfusing vocabulary using very limited amount of training data. Under these
circumstances the robustness of estimated model parameters (e.g. the means and
covariances) becomes very important, and it seems that the models trained using the
regression coefficients have in fact more robust model parameters with respect to limited
training data. By robustness here we mean that reasonably accurate estimations of the
means and covariances and so on in the models are obtainable even if only very limited
training data are available. Consequently, the model parameters obtained here using
regression coefficients are more accurate than those using cepstral coefficients. This
supposition is further supported by Fig. 3(c) which shows the improvements in top-1
recognition rates using the regression coeflicients with respect to using the cepstral
coeflicients. From Fig. 3(c), one can see that the increase in top-1 recognition rates is in
general larger for large M. In other words, as M increases, more parameters are to be re-
estimated, and when the amount of training data is insufficient, the need for robustness
in model parameters becomes more crucial.

To probe further, we can also examine the cutput pdfs of the HMMs. Typical output
distributions for the HMMs using cepstral and regression coefficients as features are
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Figure 3, Recognition results of HMMs using cepstral coefficients (CEPS) and
regression coefficients (REGRS) alone. (a} Top-1 rates for M=2 up to 9; (b)

Top n rates for M =35; (¢) Improvements attained by using the regression
coefficients.

plotted in Fig. 4(a) and (b). From Fig. 4 one can see that the output distributions for
models trained by the regression coefficients are typically much more compact than
those by the cepstral coefficients. In other words, the intraspeaker variations in the
regression coefficients are very small. This accounts for the robustness of the models
using regression coefficients with respect to limited training data, because when the same
number of samples is used, the estimation of the statistical parameters tends to be more
accurate for distributions with smaller variances than for distributions with larger
variances. Therefore since intraspeaker variations in regression coefficients are smali,
reasonably accurate estimations of the model parameters can still be obtained regardless
of the scarcity of the training data.

5. Integration of tramsitional and instantaneous features

It has been shown that the instantaneous and transitional spectral features are largely
uncorrelated (Gupta, Lennig & Mermelstein, 1987; Soong & Rosenberg, 1988). There-
fore, the information conveyed in these two types of features are basically complemen-
tary, and thus can be used jointly to improve recognition performance. Several
approaches to appropriately integrate these two types of features have been proposed
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Figure 4. Typical cutput distributions of HMMs using (a) cepstral and (b)
regression coefficients as features.

(Furui, 1986; Gupta et al., 1987, Nishimura & Toshioka, 1987; Soong & Rosenberg,
1988). These approaches were designed for VQ-based or for discrete-HMM-based
recognition systems. In this section, different approaches to integrate the regression and
cepstral coefficients for continuous-HMM-based recognition systems will be presented
and discussed,

At least three different approaches of incorporating the cepstral and regression
coefficients are possible. The most straightforward approach is to directly concatenate
the P dimensional vectors of the cepstral and regression coefficients into a 2P-
dimensional feature vector, where P is the order of the cepstral analysis. The state output
pdfs of the HMMs follow Equation (2), where o, now refers to the concatenated feature
vectors and b,,(-) are 2P-dimensional Gaussian distributions. This will be referred to as
the concatenation—integration approach.

The second approach is to modify Equation (2) so that vectors of cepstral coefficients
and vectors of regression coefficients are accounted for separately. Specifically, let ¢, and

r, denote the cepstral and regression coefficient vectors, respectively. The state output
pdf now becomes

bj(c,,r,)=M—i-—L max (b5, (c)} max {by(x,)} Q)

m=12, M i=12,..L

In Equation (7), () and bi{-) are P-dimensional Gaussian distributions of the cepstral
and regression coefficient vectors, respectively, and M and L the number of mixtures of
the cepstral coefficient and regression coefficient distributions, respectively. The maxi-
mum likelihood re-estimation formula for the transition probabilities follows Equation
(3), where o, is simply the concatenation of ¢, and r,. The mean vectors &}, and &, and the

covariance matrices ﬁj-m and ﬁj,, where superscripts ¢ and r denote the cepstral and
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regression coefficient distributions, respectively, can be re-estimated using Equations (4)
and (5) with e, substituted with the corresponding feature vector. Here, the covariance
matrices for the distributions () and b}{") are again assumed to be diagonal because of
the insufficiency of the training utterances. Note that in this approach, although one
single HMM is used, the parameters of the cepstral and regression coefficient vector
distributions are re-estimated separately. This appreoach will be referred to as the two-
maximization approach.

The last approach is to train independently two HMMs for each syllable. The first
HMM uses the cepstral coeflicients as features, while the second uses the regression
coefficients as features. During recognition the log likelihood of the test utterance is the
weighted sum of the log likelithoods obtained from these two HMMs using the
corresponding features. Quantitatively, let O° and O denote the time sequences of
cepstral and regression coefficient vectors extracted from the test utierance, respectively,
The log likelihood of this utterance given the syllable HMMs Af,A" is defined as

L0507 [ A5 AV E - L(O°]| A9) + (1 — w) L(O' [ A”) (8)

where L{-|A%) and L(-|A") are log likelihoods given the syllable HMM Ac with M
mixtures using cepstral coefficients as features and the syllable HMM A" with L mixtures
using regression coefficients as features, respectively, 0 <w <1 is a real number used to
specify the relative weight between the two HMMs. This method is similar to the word-
level integration previously developed (Gupta ef al., 1987), with the difference that
continuous, instead of discrete HMMs, are used here, and that log likelihoods are
combined with weightings. This approach will be referred to as the rwo-model approach.
In general here the HMMs A° and A" can be completely different. This means that. they
can be independently optimized in terms of various parameters such as number of states,
state transition topology, type of state output pdf, and the number of mixtures.

It was mentioned in Section 3 that the PGM densities resemble the vector quantization
operation in that the feature vector space is implicitly partitioned into clusters. From this
point of view, using PGM models to represent the feature vectors obtained from the first
concatenation-integration approach mentioned above is conceptually similar to jointly
quantizing the cepstral and regression coefficient vector spaces, i.¢., quantizing the
cepstral and regression coefficient vector spaces using a single joint codebook. Cn the
other hand, integrating the cepstral and regression coefficient vectors using the two-
maximization or two-mode! approaches resembles, in some sense, the separate vector
quantization (SPVQ) (Nakamura & Sjikano, 1989), which is a type of product code VQ.
For these two latter methods, the cepstral and regression coefficient vector spaces are
implicitly partitioned separately into clusters using two different codebooks. In the two-
maximization approach, one can see from Equation (7) that the effective number of
mixtures is M x L, while the number of parameters to be re-estimated is proportional to
M+ L, where M and L have been defined below Equation (7). The same idea applies to
the fwo-model approach, This means that models with large number of mixtures are
effectively obtained while only a small number of parameters are to be re-estimated. This
is particularly advantageous when the available amount of training data is limited, and
will be referred to as the separate guantization effect in the following discussions.
Practically, however, the effective number of mixtures may not be as large as it seems for
the following reasons. First, aithough the cepstral and regression coefficients are largely
uncorrelated, correlation between these two types of features still more or less exist.
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TagLE IV. Recognition rates using the concatenation—integration (CI),
two-maximization (2MAX) and two-model (2MOD) approaches

Top n rates (%)

Integration
M Approach 1 2 3 4 5
ClI 92-65 97-30 98-04 938-04 98-53

2 2MAX 93-87 98-04 08-53 98-53 98-53
2MOD 91-67 97-79 9853 98-77 99-02

cl 93-14 98:04 9877 99-02 99-02

3 IMAX 93-14 98-28 9877 99-02 99-26
2MOD 90-44 96-57 98-53 99-02 99-02

Ct 87-01 97-55 99-02 99-51 99-75

4 2MAX 9191 97-79 98-53 98-53 98-77
2MOD 8995 96-32 97-30 9719 98-04

CI 94-36 99-02 99-26 99-51 9975

5 2MAX 90-93 97-06 98-04 98-28 99-02
ZMOD 8946 96-08 97-30 9755 97-19

CI 92-16 97-30 9779 98-28 98-77

§ ZMAX 9142 96-81 97-30 9730 98-04
2MOD 8995 96-57 98-04 98-28 98-28

CI 93-87 9179 98-04 9828 98-53

7 2MAX 91-42 97-06 97-55 97-7% 97-79
2MOD 89-95 96-08 97-30 97-79 98-28

CI 9216 97:55 9779 98-28 9853

8 2MAX §7-01 97-55 99-02 99-51 99-75
2MOD 91-67 97-55 98-28 98-53 99-02

Cl 82:16 97-55 97-79 98-53 98-53

9 2MAX 91-18 97-55 97-55 98-04 9%-04
2MOD 92-16 98-04 99-02 99-51 99-51

Secondly, although two maximization operations are independently performed in the
two-maximization approach as indicated in Equation (7), a single HMM is used, hence
the implicit quantization of the two vector spaces are not really independent for this
approach. Lastly, the instantaneous and dynamic features actually convey phonetic
information through mutual interaction (Furui, 1986). In other words, although using
the two-maximization and two-model approaches improves the efficiency in training data
utilization, the models thus obtained may be inaccurate. It therefore remains to be
verified experimentally in the next section whether the advantages reaily dominate in the
present problem.

6. Experimental results and discussions

Extensive simulation experiments were performed to evaluate the effectiveness of the
proposed integration approaches in the recognition of the highly confusing Mandarin
syllables under the constraint of limited amount of training data. For the fwo-
maximization and two-mode! approaches, PGM models with M =L are chosen for
simplicity. The weight w for the two-model approach is optimized to (-4 by a series of
preliminary experiments.

The recognition rates using the proposed integration approaches with M varying from
2to % are listed in Table IV. Comparing these results with those listed in Table II1, one
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Figure 5. Recognition results using the concatenation-iniegration (CI),
two-maximization (2MAX) and two-model (2MOD) approaches. (a) Top n
rates for M=35; (b) Top-1 rates for M=2 up to 9.

can easily appreciate the significant improvement brought about by incorporating the
regression and the cepstral coefficients together. The top-1 rates now exceed 90% in most
of the cases, which are 7-10% higher than the results obtained using the regression
cocfficients alone, and 8-13% higher than the results achieved using the cepstral
coefficients alone. The top-5 rates are now on the order of 98-99% and are 2-3% and 1-
2% respectively higher than the results obtained using the cepstral and the regression
coeflicients alone. The highest top-1,2,3,4, and 5 recognition rates are all achieved by
using the concatenation—integration approach with A set to 5. The recognition results for
this particular case together with the results obtained by using the cepstral and
regression coefficients alone are plotted in Fig. 5(a) for illustration purposes.
Although the concatenation—integration approach seems to be the best from Fig. 5(a),
this is not always true in fact. For example, as can be found in Table IV, the two-
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maximization approach can achieve a top-1 rate of 93-87% for M =2 only, which is only
about 0-5% lower than the highest top-1 rate here, 94-36% achieved by the concatena-
tion—integration approach with M =5, Furthermore, when the top-1 recognition rates as
a function of M are plotted in Fig. 5(b) for the different approaches, some interesting
phenomena can be observed. First, for 2 < M <4, the two-maximization approach gives a
better performance than the concatenation—integration and two-model approaches. Also,
the top-1 recognition rates achieved by the two-model approach are in general 2-3%
lower than those achieved by the concatenation—integration and two-maximization
approaches. The only exception to this fact is the case of M =4 in which the top-1
recognition rate of the two-mode!l approach is almost 3% higher than that of the
concatenation—integration approach. Secondly, for 5< M <7, the top-1 recognition rates
achieved by the rwo-mode! approach are still 2-3% lower than those achieved by the
other approaches. The situation, however, is reversed for the concatenation—integration
and two-maximization approaches: now the top-1 recognition rates of the concatenation—
integration approach are higher than those of the two-maximization approach. Lastly,
for M =8, the top-1 recognition rates achieved by the two-model and concatenation—
integration approaches become comparable, and are higher than those achieved by the
two-maximization approach. A closer comparison between the concatenation—integration
and two-model approaches in the last six rows of Table IV reveals that for M =8 and
M =9 the top-1 rates of the two-model approach are respectively 0-5% lower than and
equal to that of the concatenation—integration approach. However, one also can see that
for both cases the top-2,3,4 and 5 rates of the two-model approach are almost all higher
than that of the concatenation—integration approach. Another interesting observation is
that for both the concarenation—integration and two-maximization approaches the top-1
rates for M =8 is lower than those for S< M <7. However, on the contrary, the top-1
rates of the fwo-model approach are higher for M =8 than for 5<M<7. Based on all
these observations, one can conclude that for small number of mixtures, i.e., 2Z€ M <4,
the two-maximization approach in general yields the highest top-1 recognition rates. For
medium number of mixtures (5K M<7), the concatenation—integrarion is the most
attractive. For M larger than or equal to 8, the two-model and concatenation—integration
approaches both give very good results, with the two-model approach performing
slightly better in terms of the top-2,3,4 and 5 rates.

These conclusions can be interpreted from the implicit quantization point of view as
discussed previously in Section 3. Because of the high degree of confusion in the
Mandarin syllables, HMMs with small number of mixtures are incapable of discriminat-
ing the subtle differences among the confusing syllables. This explains why for M <4 the
concatenation—integration approach cannot yield very good performance. For the two-
maximization and the two-model approaches, however, the effective number of mixtures
is relatively larger due to the separate quantization effect discussed in Section 5. Hence
both the rwo-maximization and two-model approaches have the potential to outperform
the concatenation—integration approach. However, as can be found in Fig. 5(b), the two-
model approach in fact does not outperform the concatenation—integration approach. On
the contrary, its recognition rate is 2 to 3% lower than the concatenation-integration
approach. This can be attributed to the fact that for the two-mode! approach, two
independent HMMs are used. As was mentioned in Section 5, the instantaneous and
transitional features convey phonetic information through mutual interaction. Using
two independent HMMs for the cepstral and regression coefficients respectively, as in
the two-model approach, in fact does not make any use of the mutual interaction.
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Apparently although some advantages are obtainable using the two-model approach, the
disadvantages actually dominate here. Of course the same problem also exists in the two-
maximization approach because in this approach two maximization operations are
independently performed as indicated in Equation (7). However, the problem is to a
lesser extent for this approach because only one single HMM, instead of two indepen-
dent HMMs, is used. This is why for the case of 2< M <4 the two-maximization
approach performs the best, for which the separate quantization effect really dominates.

For 5<M<7, the models obtained using the concatenation—integration approach
possess relatively good discriminating capability because the number of mixtures is large
enough now, thus are capable of distinguishing the subtle differences among the highly
confusing syllables. The separate quantization effect, of course, still exists in the rwo-
maximization and rwo-model approaches, However, for the two-maximization approach,
using large M does not necessarily imply that the effective number of mixtures is very
large. This is because the implicit quantization of the cepstral and regression coefficient
vector spaces are not really independent, as mentioned previously in Section 5.
Increasing M may only lead to very little increase in the effective number of mixtures. On
the other hand, because of the limited amount of training data, a large M may lead to
inaccurate estimation of model parameters. Therefore in the case of 5< M <7, the losses
brought about by the insufficiency of training data in fact surpass the gains introduced
by the separate quantization effect for this approach. For the rwo-mode! approach, using
large M actually results in a large effective number of mixtures because two independent
HMMs are used. However, the problems of the mutual interactions between the cepstral
and regression coefficients and limited training data still dominate, hence the perform-
ance of the two-model approach is only satisfactory for the cases of S<M<T.

For the cases of large number of mixtures, i.e., M 2§, the amount of training data is so
insufficient that for the concatenation-integration approach, increasing M gains nothing.
It is clear that models obtained using this approach are inaccurate and is incapable of
discriminating the very confusing syllables. The same argument applies to the two-
maximization approach. It was stated earlier and can be found in Fig. 5(b) that the top-1
recognition rates achieved by the concatenation—integration and two-maximization
approaches for M =8 are in fact lower than those for 5<M<7. However, the top-1
recognition rates achieved by the two-model approach for M =8 become significantly
higher than those for 5< M < 7. This indicates that now the separate quantization effect
actually dominates in this approach. In other words, because of the separate quantiza-
tion effect, models with good discriminating capability are obtainable despite the fact
that only very limited amount of training data are available. This is equivaient to saying
that when M =8 the rwo-model approach provides a means of very efficiently utilizing
the very limited amount of training data.

7. Conclusion

The performance of the previously proposed regression coefficients (Furui, 1986) as
features for the recognition of the highly confusing Mandarin syllables is evaluated
under the constraint of very limited training data. It is experimentally found thai the
regression coefficients are very efficient under these circumstances. Three different
approaches are then proposed to integrate the regression coefficients with the cepstral
coefficients. These approaches are suitable for continuous-HMM-based recognition
systems. Significant improvements in recognition rates are achieved, and each of the
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three approaches is shown to provide very good performance under different conditions.
After careful analysis and discussions, it is found that in general the rwo-maximization
and concatenation—integration approaches are very attractive for small (less than 4) and
medium (from 5 to 7) numbers of mixtures, respectively. For number of mixtures M > 8,
on the other hand, the two-model and concatenation-integration approaches can both
achicve very good performance, which is much better than that of the two-maximization
approach. In fact, in our experiments the two-model approach performs slightly better
than the concatenarion—integration approach in terms of the top-2,3,4 and 5 rates. In any
case, there does exist a full spectrum of design options in choosing the approaches and
parameters to optimize the desired performance and computation complexity. For
example, with the two-maximization approach a recognition rate (93-89%) only slightly
lower than the highest achievable rate for the concatenation—integration approach
(94-36% for M =35) can be obtained at a much smalter number of mixtures (M= 2).

References

Havie, J. M. (1976). Acoustical Studies of Mandarin Vowels and Tones, Cambridge, Cambridge University
Press.

Liu, F-H., Lee. Y. & Lee, L.-8. (1993). A direct-concatenation approach to train hidden Markov models
to recognize the highly confusing Mandarin syllables with very limited training data. To appear on
IEEE Transactions on Speech and Audio.

Lee, L.-S., et al., Special speech recognition approaches for the highly confusing Mandarin syllables based
on hidden Markov models, Computer Speech and Language (accepted).

Furui, S. (1986). On the role of spectral transition for speech perception. Journal of the Acoustic Society of
America, 80(4), 1016-1025.

Soong, F. K. & Rosenberg, A. E. (1988). On the use of instantaneous and transitional spectral information
in speaker recognition. JEEE Transactions on Acoustics, Speech and Signal Processing, 36(6), §71-879.

Furui, S. (1986). Speaker-independent isolated word recognition using dynamic features of speech
spectrum. JEEE Transactions on Acoustics, Speech and Signal Processing, 34(1), 52-59.

Gupta, V. N., Lennig, M. & Mermelstein, P. (1987). Integration of acoustic information in a large
vocabulary word recognizer. JEEE International Conference on Acoustics, Speech and Signal Processing,
1987, 697-700.

Nishimura, M. & Toshioka, K. (1987). HMM-based speech recognition using multi-dimensional
multi-labeling. JEEE International Conference on Acoustics, Speech and Signal Processing, 1163-1167.

Rabiner, L. R., Wilpon, J. G. & Soong, F. K. (1988). High performance connected digit recognition using
hidden Markov models. JEEE International Conference on Acoustics, Speech and Signal Processing,
1988, 119-122,

Rabiner, L. R. & Sambur, M. R. (1975). An algorithm for determining the endpoints of iselated utterance.
AT&T B.S.T.J., 54(2).

Svendsen, T. & Soong, F. K. (1987). On the automatic segmentation of speech signals. JEEE International
Conference on Acoustics, Speech and Signal Processing, 1987, 77-80.

Ross, M. 1, er al. (1974). Average magnitude difference function pitch extractor. [EEE Transactions on
Acoustics, Speech and Signai Processing, 22(10), 353-362.

Juang, B.-H. & Rabiner, L. R. (1985). Mixture autoregressive hidden Markov models for speech signals,
1EEE Transactions on Acoustics, Speech and Signal Processing, 336}, 1404-1413,

Juang, B.-H. (1985). Maximum-likelihood estimation for mixture multivariate stochastic observations of
Markov chains. AT&T Technical Journal, 64(6), 1235-1249.

Linde, Y., Buzo, A. & Gray, R. (1980). An algorithm for vector quantizer design. [EEE Transactions on
Communications, 28(1), 84-94.

Rabiner, L. R, Juang, B.-H., Levinson, S. E. & Sondhi, M. M. (1985). Recognition of isolated digits using
hidden Markov models with continuous mixture densities. AT&T Technical Journal, 64(6), 1211-1234,

Nakamura, S. & Shikano, K. (1989). Speaker adaptation applied to HMM and neural networks. /EEE
International Conference on Acoustics, Speech and Signal Processing, 89-92.



