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Abstract. This paper presents some results on fixed-point error analysis of the fast Hartley transform algorithms. A novel scheme for 
preventing overflow is considered in the analysis. It is proved that error performance, defined based on the signal-to-noise ratio, can be 
improved for both the decimation-in-frequency and the decimation-in-time fast Hartley transform algorithms. 

Zusammenfassung .  Dieser Artikel stellt einige Ergebnisse zur Festkommafehleranalyse der schnellen Hartley Transformation vor. In 
der Analyse wird eine neue Methode betrachtet, urn Uberlanf zu verhindem. Es wird bewiesen dab der Fehlereinflug, basierend anf der 
Definition des Signal zu Rauschverh~iltnisses, sowohl for frequenzdezimierende als auch fOr zeitdezimierende schnelle Algorithmen for 
die Hartley Transformation vermindert werden kann. 

R~sum~. Cet article prtsente qnelques rtsultats sur l 'analyse de l'erreur en prtcision finie des algorithmes de transformation de Hartley 
rapides. Nous considtrons dans cette analyse une mtthode nouvelle de prtvention du dtpassement. Nous prouvons que les performances 
d'erreur, dtfinies par ie rapport signal snr bruit, peuvent 8tre amtliortes h la fois pour les algorithmes de transformation de Hartley 
rapides basts sur la dtcimation en frtquence et pour ceux basts sur la dtcimation en temps. 
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1. Introduction 

The discrete Hartley transform (DHT), defined by 
Bracewell [2], is an important tool for the processing 
of discrete signals. A finite N-point sequence x[n]  and 
its corresponding DHT H[k]  are related by 

1 u - ,  2"rrnk 
H [ k ] = ~  y ' x [ n l c a s - - ~ ,  O<~k<~N-1 ,  (1) 

n ~ 0  

and 

Correspondence to: Prof. Ja-Ling Wu, Department of  Computer 
Science and Information Engineering, National Taiwan University, 
Taipei 10764, Taiwan, ROC. 

u -  1 2,rrnk 
x [ n ] =  y'H[k]cas----~-- r , O<~n<~N-1 ,  (2) 

/ V  
k = O  

where 

cas a = cos a + sin a. 

The transform kernel of DHT is similar to that of 
DFT and, consequently, the DHT can be used to com- 
pute the DFT and vice versa. Some previous works [ 1, 
4, 6] had proved that a variety of algorithms that tra- 
ditionally utilized the DFT could be carried out with 
the DHT effectively. 

Similar to the fast Fourier transform (FFT), the fast 
algorithms for computing DHT, the so-called fast Hart- 
ley transform (FHT), have been developed by many 
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authors [3, 8]. In many practical situations, the FHT 
needs to be implemented using the fixed-point arith- 
metics. In this case the effect of the word length on the 
accuracy of the computation is of importance both with 
regard to the design of special-purpose machines and 
to the accuracy attainable from existing machines. An 
error analysis of the fixed-point DHT was considered 

by Prabhu and Narayanan [ 7 ] recently. They analyzed 
fixed-point errors for radix-2 decimation-in-frequency 

(DIF) and decimation-in-time (DIT) FHT algorithms, 
with a power of 4 input length; furthermore, a scaling 
scheme was also developed for preventing overflow in 
the computation. 

In this paper, a novel step-by-step scaling scheme is 
proposed for computing the FHT with more general 
input lengths. Following the model given in [7], the 
averaged output signal-to-noise ratio (SNR) is derived 
for both the cases of DIT and DIF FHTs. The analyzed 
results show that better average output SNR can be 
obtained by using the newly proposed scaling scheme. 

2. The novel scaling scheme for FlIT 

For fixed-point arithmetics, it is necessary to assure 
that the input data of a discrete transform is sufficiently 
small so that the numerical overflow is avoided. This 
can be accomplished by proper scaling of the inputs 
such that the values of the transform outputs are less 
than one under the conditions that the values of the 
input are also less than one. The step-by-step scaling 
scheme given in [9] can be used to prevent overflow 
in computing FHT. The FHT gain of the input magni- 
tudes is bounded, from (1),  by 

r N- l 2~rnk-] 
In[k] [max ~< Ix[n] I max/E0cas--ff- ] 

<~glx[n] Jmax. (3) 

Thus, the overall increase of the magnitudes, due to 
FHT, will not exceed N. From [7], the maximum 
increase in each stage of the DIF or DIT FHT is 21/2. 
Therefore, the conventional scaling scheme for FFT 
[ 10] which divides the signals by 2 in each stage cannot 
guarantee the numerical stability of the fixed-point 

FHT. As a solution to this problem the scaling factor, 
chosen to scale down the magnitude of the intermediate 
results, must be greater than 2vf2 and easy to be per- 

formed both in software and in hardware. A simple 
scaling scheme used by Prabhu and Narayanan is to 
scale down the intermediate stage by 4 in each of the 
first ½ log2 N stages in DIF FHT and by a factor of 2 in 
the first two stages and a factor of 4 from stage 3 to 
stage ½ log2 N +  1 DIT FHT, under the assumption that 
the transform length is a power of 4. In the following 
a novel scaling scheme is proposed and it will be proved 
that better SNR can be obtained by using the new 
approach. For convenience, it is assumed that the trans- 
form length is an integer power of two, i.e., N = 2 m. 

2.1. Scaling scheme for DIF FHT 

Because the magnitudes of the signal could increase 
by a value of 8 in every two successive stages, the 
intermediate results are scaled down by a factor of 4 in 

the first stage and then by a factor of 2 in the second to 
prevent overflow. Such a scaling scheme is chosen 
because it can easily be implemented by right bit-shifts. 
Since the overall increase will not exceed N, such scal- 
ings are required only in the first } log2 N stage. Three 
possible situations for different N are discussed in the 
following: 

(i) m = 3k. The scaling is performed by a factor of 4 
and a factor of 2 in turns, and the process continues 
only for the first }m stages. For notation conven- 
ience, this scaling process is denoted by 
[(¼)(½)]~. 

(ii) m = 3k+ 1. The scaling process of the first [ -~m] 
stages is the same as that of (i). Additionally, one 
more scaling by a factor of 2 in the stage 2k + 1 is 
required and this process is denoted by 
[(¼)(~)]'<('). 

(iii) m = 3k + 2. From stage 1 onwards till stage 2k, the 
scaling process is the same as (i). But it requires 
one more scaling of ¼ in the (2k+ 1 )-th stage, and 
is denoted by [(~)(½)]~(1) .  

In the above three cases, the overall scaling of magni- 
tude is equal to 1/N, which would ensure that the mag- 
nitudes of the outputs for the last stage would be less 
than unity if the magnitudes of the inputs are in the 
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Fig. 1. Scaling scheme for the DIF algodthm. 
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Fig. 2. Scaling scheme for the DIT algorithm. 

interval ( - 1, 1). The scaling scheme of case (i)  is 
shown pictorially in Fig. 1. 

2.2. Scaling scheme for  DIT FHT 

There are also three cases which are briefly described 
in the following by using the aforecited notations: 

( i)  m = 3 k :  ( l ) 2 [ ( ~ ) ( t ) ]  k - l t ~  ~ ~½), 

(ii) m = 3 k + l :  (½)2[(¼)(½)]k-~(¼),  (4) 

(iii) m = 3 k + 2 :  (1)2[(¼)(½)]k,  

where the heading factor (½)2 means that the scaling 

of a factor of  2 is performed in the first two stages of  
the DIT FHT. The DIT scaling scheme is illustrated in 

Fig. 2. 

3. FHT error analysis with fixed-point arithmetic 

Under the same conditions given in [ 7 ], the fixed- 
point error analysis of  both DIF and DIT FHT algo- 
rithms are performed. Throughout the analysis, we 
assume fixed-point arithmetics with (b + 1 )-bit word 
length and sign magnitude representation of the binary 
numbers is used. It is assumed that all the N real random 
variables comprising the input sequence x[n] are 
uncorrelated. Also, they are distributed uniformly in 
the interval ( - 1, 1 ) with zero-mean and a variance of  

-~. The input x[n] and the multiplying coefficients are 
assumed to be represented with infinite precision. 
Finally, the averaged output signal variance is given by 

0 -2 = I /3N.  (5) 

In the fixed-point error analysis, two kinds of  errors are 

involved which are round-off errors and truncation 
errors, respectively. It is easy to show [ 11 ] that the 
variance of the b-bit round-off error is 

0-2 = 2 - 2 b / 1 2 .  (6) 

Scaling by a factor of  1 involves shifting the input to 

the right by one bit and truncation of the last bit. It can 
be shown that the variance of this truncation error is 
given by 

0-21 = 2 - - 2 b / 8 .  ( 7 )  

Similarly, it also can be shown that the variance of the 
truncation error for scaling by 1 is 

z 7 2_2b" o',2 = ~  (8) 

In the following, only the situation N =  2 3k for DIF 
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FHT is discussed in detail. The deviations, however, 
are applicable with minor modifications to other cases. 

3.1. Fixed-point error analysis for DIF FHT 

Since errors of each stage are uncorrelated, the total 
error variance can be computed as sums of all errors 
involving the output. The truncation errors occurring 
in odd stages are scaled down by a factor of 4 and the 

2 is resulted. For the same reason, the error variance O ' t 2  

truncation errors occurring in the even stages are scaled 
down by a factor of 2 and the error variance 0.21 results. 
At any odd stage 21-  1, 1 ~< 1 ~< k, there are N truncation 
errors and each error propagates through k - l  odd 
stages and k - l +  1 even stages and N / #  -~ output 
points are involved. The error variance from an odd 
stage 2 l -  1 in the first 2k stages is scaled ( k -  l) times 
by the scaling factor ¼ and is scaled ( k - l +  1) times 
by the scaling factor ~. When the error is multiplied by 
¼ and ½, the variance gets reduced by ~6 and ~, respec- 
tively. The overall truncation errors which are intro- 
duced in even stages can be computed following the 
same way and the total averaged truncation error vari- 
ance of the output is given by 

0.2 1 k - - I l k  
t T J  av  - -  N 

N 1 k--2 1 k--I 
+ . . .  

N 1 ° l  1 

0.2 [ .  N / 1  "~k--'/l'~k--I 

, (1 
+NT l,-g) I, l + 

N 1 1 ° 1 °  

16 (2o.2 +o.Z)(2k_2_3k).  (9) 
15 

At any stage l, 1 < l ~< 3k - 2, there are N -  2 ~ + 1 round 
errors and they will propagate to N/2 ~ output points. 
There are no round-off errors in the ( 3 k - l ) - t h  stage. 

The round-off errors can be computed as the sums of 
the following three terms: 
( 1 ) round-offerrors introduced in the first kodd stages. 
(2) round-off errors introduced in the first k even 

stages. 
(3) round-off errors introduced in the last k - 2 stages. 
The total averaged round-off error variance of the out- 
put points can be computed as 

N ( 1  ]k-Z(1 ] k - '  
+ (N-  24) 2"~ ~,]g} t ~ }  +""  

N / 1 ~°/1~1 

N ( 1 ) k - ' ( l / k - t  
+ ( N -  23) ~ []-6J 1,4} 

+(N -25) ~~ ~~] [;J +""  

N [ 1 ~°/1~° 

N 
+ ( N - 2  zk+z) 22k+1 

N 
+ (N--22k+3) 22----~-~ +- . .  

N] + (  N -  23k- l ) 

[ ~  160 8 3k , 160 , ,  6k] 
=0"2 2k--2k 63 5 2 -  -~--~-z-  j .  

(10) 

The averaged variance of the output noise is given by 

0-~ = [ O'-]-]a,, + [ O'~.] a., 

= 2-2b[ ~2k--~k--1-~ - ~219 --3k_~_ --49-2-6k1189 J ' 

(11) 

where the variances of 0-r 2, O'21 and o "2, defined in (6), 
(7) and (8),  respectively, have been substituted. Since 
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the signal variance at the output is 1 / (3N), the average 
signal-to-noise ratio at the output is 

0"2] 22b 

~ A J a v  ~ - ' N [  ~-~.43 ,')k - -  l k - -  64°3 - -  To-19") - 3k-l--- 6"5-40") - 6k12 " 

(12) 

Following the above analysis, the averaged signal- 
to-noise ratio at the output for an N=  23k+ ~ DIF FHT 
can be obtained as 

o-21 22b 
~ggJav =N[  "]"~.22")k - -  I k -  1268-'~3 - -  "2"0~199-- 3k_ I__ 6"3~10~-- 6k]j ' 

and for the case of N = 23k+ 2 the result is 

°-21 22b 
~AAJ.v N[ 41 9k  ~ - ½k- ~ - ~ 2 - 3 k +  ]~-g2-6k I 

(13) 

(14) 

3.2. Fixed-point error analysis for DIT FHT 

Following the same derivation given in Section 3.1, 
the average round-off error variance of the output for 
an N-point DIT FHT with N =  23k can be obtained as 

[0-2]~ v = o . z [ ~  2 ~ _ 8 . 2 - k  2 + ~  2-3k] ,  (15) 

and the corresponding average truncation error vari- 
ance of the output is 

2 [232k + 5 2 9 - - 3 k  ] 2 4 k 64, '9--3k1 [o-2],v =o.,, 33 ~ -  j +o ' ,2 [~2  - ~ -  j. 

(16) 

And the average signal-to-noise ratio at the output of 
the DIT FHT algorithm is 

o-21 22b 
~-~£Jav N[z99~ 139-3k1" (17) T6- - I - 2 " 2 - k +  ~ - , 

Following the above analysis, the corresponding 
expressions for the averaged signal-to-noise ratio with 
N =  23k + ~ and N = 23k + 2 for DIT FHT can be shown to 

be 

o-21 22b 
~AAJav --N[ 3-132k -- ½- 2"2-k +~2'3 -3k] 

for N =  23k+ 1 (18) 

and 

o-21 22b 

~r-Ya j~v = U[-~ 2 k -  l - 32-e  + ~ 2-3k] ' 

for N =  23k+2. (19) 

4. Discussions and conclusions 

The average signal-to-noise ratio expressions for the 
fixed-point FHTs derived by Prabhu and Narayanan 
are [7] 

0"2] __ 22b 

N[ ~ 2  - I k -  8 - 37225 -2k..[_ T~ ~8 9--4klj 

for DIF FHT (20) 

and 

[o.2] 22b 

~£Jav - U [  92k-  4 _ ~2-2k] 

for DIT FHT, (21 ) 

where N = 2 2k. 
The average signal-to-noise ratio expressions for the 

fixed-point FHTs using the same scaling scheme for 
the transform length N =  2 2k+ I, are [5] 

I-o-21 
- -  - -  19 25@--2k_1_ 2 9 - - 4 k l  [~AJav N[ "~2 k I k -  5-6 -- 28- -- T3" J 

for DIF FHT (22) 

and 

o.2]  __ 22b 

ff~-A J,v - U [  ~ 2  k -  62 _ ~19") - 2k]j 

for DIT FHT, (23) 

where N =  22k+ 1. 

The two SNRs, defined in (12)- (14)  and (20), 
(22) and defined in (17)- (19)  and (21), (23) are 
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Fig. 3. Average signal-to-noise ratio for (a) DIF FHT, (b) DIT FHT. 

Signal Processing 



G.-S. Chen et al. / A novel scaling scheme for fast Hartley transform 129 

plotted for various N in Figs. 3(a) and 3(b), respec- 
tively. It is clear, from Fig. 3, that the proposed step- 
by-step scaling scheme produces better SNR values 
than those of the ones proposed in [ 7 ]. As indicated in 
Fig. 3, the newly proposed scaling scheme yields a 
maximum improvement of about 6 dB in both DIF and 
DIT cases. However, the signal-to-noise ratio of the 
proposed scaling scheme is still less than that of the 
standard FFF algorithms [ 9 ]. 
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