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Abstract

This paper presents an approach of automatic selection of phonetically distributed
sentence sets for speaker adaptation, and applies the concept to the task of
Mandarin speech recognition with very large vocabulary. This is a different
approach to the adaptation data selection problem. A computer algorithm is
developed to select minimum sets of phonetically distributed training sentences
from a text corpus defining the desired task. These sentence sets not only include
an almost minimum number of words and sentences that cover the desired acoustic
units, but also have statistical distributions of these acoustic phonetic units very
close to that in the given text corpus defining the desired task. In this way, more
frequently used units can be better trained with higher accuracy, thus improving
the overall performance, but the new user needs to produce only a small number of
meaningful sentences to train the recognizer. Different sets of sentences selected
using different phonetic criteria taking into consideration the statistics of the
different acoustic units in the given corpus can then be integrated into a
multi-stage adaptation procedure. With this procedure, the recognition
performance can be improved incrementally stage by stage using the adaptation
data produced with these sentence sets. This proposed approach is applied to an
example task of Mandarin speech recognition with a very large vocabulary, both in
isolated syllable and continuous speech modes and includes different subject
domains in continuous speech recognition. Although the primary results obtained
in this paper are for this example task, it is believed that many of the concepts and
techniques developed here will also be very useful for other speaker adaptation
problems and other languages.
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1. Introduction

The adaptation of a speech recognizer to the signal characteristics of a new user using the
minimum amount of training data produced by the new user has been a very important issue for
speech recognition for a long time. In general, speaker adaptation techniques can be catego-
rized into two classes: feature-based (Shikano, Lee & Reddy, 1986; Stern & Lasry, 1987; Furui,
1989; Huang, 1992; Matsukoto & Inoue, 1992) and model-based (Lee, Lin & Juang, 1991;
Huang & Lee, 1993; Gauvain & Lee, 1994; Hao & Fang, 1994; Zhao, 1994; Leggetter & Wood-
land, 1995) approaches. The former tries to modify the feature vectors of the input speech
of the new user, while the latter tries to modify the model parameters used for recognition
instead of the features. Typical examples for the latter type of model parameter adaptation
include direct estimation of model parameters by maximuma posteriori(MAP) algorithms
(Leeet al., 1991; Gauvain & Lee, 1994) as well as indirect transformation-based estimation of
model parameters by maximum likelihood linear regression (MLLR) algorithms (Leggetter
& Woodland, 1995). For such model-based approaches, there are two other issues to tackle:
the seed model and the adaptation data selection. For seed model selection, gender-dependent
speaker-independent models are usually used as the initial model for the refinement of the
model parameters. Speaker clustering techniques are also useful for the classification of dif-
ferent speakers so that better initial models can be obtained for a new speaker (Kosakaet
al., 1996). For adaptation data selection, words or sentences rich in phonetic information
should be chosen for the new user to produce the adaptation data so that a significant im-
provement can be obtained using a minimum amount of adaptation data (Yu & Liu, 1990;
Jan, van Santen & Buchsbaum, 1997). In this way, the adaptation data may become task-
dependent, i.e. it could be dynamically selected for a specific task. Adaptation data selection
becomes critical for tasks with a very large vocabulary, because very often only a limited im-
provement can be achieved with reasonable amount of adaptation data for such tasks due to the
complexity of the model. Some techniques have been developed to overcome this problem. For
example, predictive speaker adaptation techniques (Cox & Bridle, 1995) such as vector-field
smoothing (VFS) (Hattori & Sagayama, 1992; Takahashi & Sagayama, 1997) and adaptive
Bayesian learning algorithms (Huo & Lee, 1997) have been proposed for the improvement of
those models without corresponding adaptation data. Also, the transformation-based adapta-
tion algorithms (Leggetter & Woodland, 1995; Digalakis & Neumeyer, 1995) were developed
such that different models can share the same transformation matrix obtained for those models
with adaptation data. These methods can be further integrated to achieve better performance.

In this paper, a different approach to the adaptation data selection problem is considered. A
computer algorithm is developed to select minimum sets of phonetically distributed training
sentences from a text corpus defining the desired task. These sentence sets not only include
almost the minimum number of words and sentences that cover the desired acoustic units, but
also have a statistical distribution of these desired acoustic units very close to that in the given
text corpus defining the desired task. In this way, more frequently used units can be better
trained with higher accuracy, thus improving the overall performance, but the new user needs
to produce only the smallest number of meaningful sentences to train the recognizer. Different
sets of such sentences selected based on different phonetic criteria considering the statistics of
different acoustic units in the given corpus can then be integrated into a multistage adaptation
procedure. With this procedure, the recognition performance can be improved incrementally
stage-by-stage using the adaptation data produced with these sentence sets. This proposed
approach is applied to an example task of Mandarin speech recognition with very large
vocabulary, both in isolated syllable and continuous speech modes, including different subject
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domains in continuous speech recognition. Although the primary results obtained in this paper
are for this example task, it is believed that many of the concepts and techniques developed
here will also be very useful to other speaker adaptation problems and other languages.

Mandarin Chinese is a monosyllablic tonal language. There are at least 100,000 commonly
used words and each word is composed from one or several characters. There are also at
least 10,000 commonly used characters. However, all the Chinese characters are pronounced
as monosyllables, of which there are a total of only 1345 different phonologically allowed
syllables. This monosyllabic structure is a characteristic feature of Mandarin Chinese when
recognition of very large vocabulary is considered. Moreover, every syllable is assigned a
tone, and the tone has lexical meaning. When the differences in tone are disregarded, these
1345 different “tonal syllables” are further reduced to 408 different “base syllables” (i.e. tone-
independent syllable structures). Note that here we use “tonal syllables” to indicate syllables
with tones, but “base syllables” for those disregarding the tones. Because there are only four
lexical tones plus a neutral tone and the tones can be independently recognized using primarily
pitch information, accurate recognition of all the 408 Mandarin base syllables is believed to
be the key problem in Mandarin speech recognition with very large vocabulary. This is the
example task selected in this paper, i.e. the recognition of the 408 base syllables in Mandarin
speech, to demonstrate the concepts and techniques proposed here. When the base syllables
information is combined with the tone information, the corresponding Chinese characters and
therefore words and sentences can be obtained by a lexical access process and a Chinese
language model (Leeet al., 1993a, b). Because the purpose of the example task is simply to
recognize the base syllables, the tones were not considered and no language model was used
in the example experiments described below.

This paper is organized into eight sections. In Section 2, the computer algorithm to select
phonetically distributed sentence sets to produce the adaptation data is developed. Typical
sentence sets are selected for the example task of Mandarin Chinese in Section 3. In Section 4,
the simplified on-line adaptation algorithm used in the following experiments is presented.
The speech database used in the experiments is described in Section 5, and the experimental
results for isolated syllable and continuous speech recognition are then discussed in Sections 6
and 7, respectively. The concluding remarks are given in Section 8.

2. Automatic selection of phonetically distributed sentences for adaptation data

In this section, we present an algorithm to select automatically the smallest set of sentences
from a given text corpus for a given task. Certainly these sentences have to include all desired
acoustic units for the given task, and therefore they are phonetically balanced. Furthermore,
all the acoustic units should appear in this set of sentences with a statistical distribution
approximating the distribution of these units in the given corpus for the given task. In this way
the more frequently used acoustic units will be trained better and recognized more accurately,
and thus the overall recognition accuracy for this given task can be improved, or the desired
accuracy can be achieved faster. Such a sentence set sometimes can also be used as a good
testing set for evaluation of the performance of a recognizer with respect to a specific given
recognition task. Because of the similar statistical distribution for the acoustic units, the
test results for this set of sentences may give a better reflection of the real performance of a
recognizer for a given task. This specific statistical distribution of the acoustic units for a given
task is a specific feature of the “phonetically distributed” sentence set mentioned here. With the
rapid development of speech recognition technology today, the variety of speech recognition
tasks (applications, subject domains, vocabularies, sentence patterns, etc.) are growing very



82 J. L. Shenet al.

Selected 
acoustic units

Selected 
acoustic units

Initialize the score for each unit according to
its frequency of occurrence in the corpus
and in the sentence set selected in stage 1

Corpus sentences

Initialize the score for
each unit according to
its frequency of occurrence
in the corpus

Score all the unselected
sentences

Set the scores for units in the
selected sentence to zero

Add the sentence with
the highest score to
the selected set

Are all units
included?

YY

Y

N

N

N

Score all the unselected
sentences

Select the sentence 
with the highest score

Add this sentence to 
the selected sentence set

Is R = cos(θ)
improved?

Is the desired
R = cos(θ) value
   achieved?

Set the score
of the selected
sentence to zero

Update the scores
for units in the 
selected sentence

Phonetically balanced
sentence set S1

Phonetically distributed
sentence set S2

(a) (b)

Figure 1. The flow chart of the automatic sentence selection algorithm: (a) Phase 1;
(b) Phase 2.

rapidly, and generating for each task, especially those with relatively large vocabulary, such a
set of phonetically distributed sentences for speaker adaptation automatically using a computer
algorithm from a given text corpus is highly desired.

An algorithm with the above described purpose is presented here. The block diagram of
such an algorithm is shown in Figure 1. This algorithm has two phases. The first phase is to
include all acoustic units needed for the given task with minimum number of sentences, while
the second phase is to try to reproduce the statistical distribution of these acoustic units in the
given text corpus for the given task with also a minimum number of sentences, i.e. to include
those frequently used acoustic units more times in the sentence set and so on. This algorithm
can be applied to any language and any given recognition task for any set of selected acoustic
units, as long as the text corpus defining the desired recognition task is given.

The first phase of the algorithm is shown in Figure 1(a). The input is the whole text
corpus defining the desired task as well as a set of selected acoustic units, while the output is a
“phonetically balanced” sentence setS1, which is almost the smallest set of sentences including
all necessary acoustic units, but not necessarily with the desired statistical distribution for these
units. The basic principles in this phase are the following two rules to ensure that the total
number of sentences covering all acoustic units can be as small as possible:

(1) Those sentences including more distinct acoustic units should be selected with higher
priority.

(2) Those sentences consisting of acoustic units with lower frequency of occurrence in the
corpus should also be selected with higher priority.
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To realize these basic principles, as can be seen in Figure 1(a), a score is first assigned to
each selected acoustic unit, which is initialized inversely proportionally to the frequency of
occurrence of the unit in the given text corpus, such that the rarely used units have higher
priority to be selected. A score is then defined for each sentence in the given text corpus as
well, which is primarily the average of the scores of its component units, but modified by a
parameter which is higher for sentences with larger number of distinct acoustic units, because
such sentences should be selected with higher priority. The sentence with the highest score
is then selected and included in the desired sentence setS1. Once a sentence is selected, the
scores of all its component units are immediately set to zero to avoid these units to be selected
again. The algorithm thus recursively updates the scores of the acoustic units and of all the
remaining unselected sentences in the given text corpus, and selects additional sentences with
the highest scores, until all the desired acoustic units are included in the selected sentence
set. In this way, a set of almost minimum number of sentencesS1 which includes all acoustic
units can be obtained.

The second phase of the algorithm is shown in Figure 1(b). The input for this phase includes
the unselected sentences left in the original given text corpus, and the “phonetically balanced”
sentence setS1 obtained in the first phase, while the desired output is an almost smallest set
of “phonetically distributed” sentence setS2. This set not only includes all necessary acoustic
units, but the statistical distribution of these units should approximate that in the given corpus
for the desired task. In this phase, the score of each acoustic unit is re-defined in a different
way. The purpose is that the acoustic units with higher frequency of occurrence in the original
corpus and lower frequency of occurrence in the sentence setS1 previously obtained in the first
phase should have higher priority to be selected. This is the way to reproduce the statistical
distribution of the acoustic units with minimum number of sentences. In order to achieve this
purpose, a score reduction parameter is first defined for each acoustic unit to reduce the priority
of that unit to be selected again after each time it is selected and included in the sentence set.
Also, this parameter is inversely proportional to the frequency of occurrence of this unit in the
original text corpus, so that frequently used units retain higher priority to be selected even if
they have been selected before. The initial score for each acoustic unit in the second phase is
then defined as a constant subtracted by this score reduction parameter multiplied by the times
it has been selected and included in the sentence setS1 obtained in the first phase. The rest
of the algorithm is very similar to that of the first phase. However, in this phase a similarity
measureR is defined to estimate the degree to which the statistical distribution of the acoustic
units in the selected sentence set is similar to that in the original corpus,

R= Evc · Evd

|Evc||Evd| = cos(θ) (1)

where Evc = [nc(1),nc(2), . . . ,nc(i ), . . . ,nc(L)], Evd = [nd(1),nd(2), . . . ,nd(i ), . . . ,nd

(L)], nc(i ) andnd(i ) are the times thei -th acoustic unit appears in the corpus and in the
currently selected sentence set respectively, andL is the total number of different acoustic
units. Apparently,Evc, Evd represent the statistical distribution of the acoustic units in the corpus
and in the currently selected sentence set respectively,R is the normalized inner product ofEvc

andEvb, andθ is the angle betweenEvc andEvd. WhenR= 1, i.e.Evc = kEvd, the two statistical
distributions will be exactly identical. Now, the unselected sentence in the text corpus with the
highest score and at the same time can improve the similarity measureR is first selected and
added to the sentence set. Once a sentence is selected, the scores for all its component acoustic
units are immediately subtracted by their score reduction parameter multiplied by the times
these units appear in the selected sentence. By recursively selecting additional sentences one-
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by-one as described above, a minimum set of phonetically distributed sentences with desired
statistical distribution for the acoustic units can thus be obtained.

3. Incremental phonetically distributed sentence sets for speaker adaptation in
Mandarin syllable recognition

Here we applied the sentence set selection algorithm mentioned above to the Mandarin syllable
recognition problem discussed previously. Although the above algorithm seems simple, there
exists a variety of different ways to apply it to achieve different purposes in speaker adaptation.
The results below show some typical examples of such variety. There certainly exist other
different approaches with different results. First, it is desirable to have incremental sentence
sets such that the new user can observe some performance improvement stage-by-stage each
time the utterances for an incremental sentence set are produced. Second, each incremental
sentence set may be obtained via different acoustic requirements such that different purposes
for speaker adaptation can be achieved. These will be demonstrated in the following examples.

Here two collections of incremental phonetically distributed sentence sets obtained us-
ing the sentence selection algorithm are presented. They are for speaker adaptation on the
task of the recognition of all the 408 Mandarin base syllables in isolated syllable and con-
tinuous speech mode, respectively. Conventionally, each Mandarin syllable is decomposed
into an INITIAL/FINAL format similar to the Consonant/Vowel format in other languages,
where INITIAL means the initial consonant of the syllable and FINAL means the vowel
(or diphthong) part but including optional medial and nasal ending. There are a total of 22
different context-independent (CI) INITIALs and 41 different context-independent (CI) FI-
NALs for the 408 Mandarin base syllables. Due to the mono-syllabic structure of Mandarin
Chinese, the inter-syllable context dependency is observed to be much less significant than
intra-syllable context dependency even in continuous speech. This is why in some situations,
it is desirable to consider only the latter but ignore the former to simplify the problem. In
such an approach, the 22 different context-independent (CI) INITIALs can be expanded to
113 context-dependent (CD) INITIALs considering the beginning phoneme of the following
FINALs (Leeet al., 1993a). In this way, the smaller number of smaller acoustic units such
as these 113 CD INITIALs and 41 CI FINALs can be used in the selection of earlier training
sentence sets such that the recognition rates can be improved very quickly in earlier stages,
while the larger number of larger acoustic units such as base syllables or tonal syllables can
be used in the selection of later training sentence sets to train the model parameters further in
later stages. This is the basic concept of using incremental training sentence sets selected with
different acoustic requirements for speaker adaptation. The text corpus used here for selection
of training sentences consists of a total of 124 845 sentences (1 374 182 characters) collected
from daily Chinese newspapers, Chinese magazine articles and so on, covering almost all im-
portant subject areas and defining a task of general domain, although any other given corpus
defining a specific recognition task is certainly equally applicable.

3.1. Adaptation sentence sets for isolated syllable recognition

The first collection of sentence sets is for isolated syllable recognition. For this purpose, a total
of four phonetically distributed sentence sets, sentence sets 1, 2, 3 and 4 were selected. The
first set, sentence set 1, covers all the 113 CD INITIALs and 41 CI FINALs with statistical
distribution approximating to that in the corpus. This set consists of only 24 sentences or
188 syllables (characters). Apparently, 113 syllables out of the 188 cover all the 113 CD
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TABLE I. The incremental sets of phonetically distributed sentences selected for (a) isolated
syllable recognition and (b) continuous speech recognition in the example task

(a) Isolated syllable recognition
Selected sentences Included syllables Coverage of

Set Total Total Acoustic units syllables in
Number number Number number included given corpus

from set 1 from set 1
1 24 24 188 188 113 CD INITIALs/41CI —

FINALs
2 15 39 104 292 Top 100 tonal syllables 48.82%
3 22 61 144 436 Top 200 tonal syllables 69.24%
4 86 147 556 992 Top 500 tonal syllables 93.83%

(b) Continuous speech recognition
1 24 24 188 188 113 CD INITIALs/41CI —

FINALs
408 base syllables

2 76 100 617 805 Top 20 inter-syllable —
Context dependency classes
Top 600 tonal syllables

3 100 200 801 1606 Top 40 inter-syllable 96.34%
Context dependency classes

INITIALs, and the additional 75 syllables take care of the statistical distribution and make
up all the sentences. Similarly for the 41 CI FINALs. The second phonetically distributed
sentences set, sentence set 2, however, is constructed by including 15 extra sentences or 104
extra syllables (characters) to be added to the previous sentence set 1 to form a set of 39
sentences or 292 syllables (characters). This combination of sets 1 and 2 covers the top 100
most frequently used tonal syllables out of the total of 1345 tonal syllables. In the sentence
sets 3 and 4, additional 22 and 86 sentences or 144 and 556 syllables (characters) are further
added, such that when combined with sets 1 and 2, they can cover the top 200 and 500 most
frequently used tonal syllables out of the total of 1345, similar to that of set 2. In fact, up to the
sentence sets 2, 3 and 4, the top 100, 200 and 500 most frequently used syllables out of 1345
are well trained, and they in fact already cover 48.82%, 69.24% and 93.83% of the syllables
in the text corpus defining the task of Mandarin syllable recognition with general domain. All
these data are summarized in Table I(a) and Figure 2(a).

3.2. Adaptation sentence sets for continuous speech recognition

In the continuous speech recognition experiments below, the 113 CD INITIALs and 41 CI
FINALs are also used as the basic recognition units. The inter-syllable context dependency
is not explicitly covered in the model configurations, but it is certainly desirable that they
be included in the adaptation utterances and reasonably reflected in the adapted models.
For this purpose the acoustic criteria used to select the incremental adaptation sentence sets
are different from those used for isolated syllable recognition. All the FINALs of Mandarin
syllables can be divided into 12 groups based on their ending phonemes, and all the INITIALs
into seven groups based on the state of articulation. So the inter-syllable context dependency
can be roughly categorized into 84 classes. Three sets of phonetically distributed sentences
were thus developed for continuous speech recognition, sets 1, 2 and 3. Set 1 is exactly the
same as that for isolated syllable recognition presented in Section 3.1, with 24 sentences or
188 syllables covering all the 113 CD INITIALs and 41 CI FINALs. However, in sentence set
2, the criterion is to cover all of the 408 base syllables, as well as the top 20 most frequently
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Figure 2. The block diagram of the sentence selection algorithm with (a) four stages
for isolated syllable recognition; and (b) three stages for continuous speech
recognition.

occurring classes of inter-syllable context dependency out of the total of 84, including the
statistical distribution of these base syllables and inter-syllable context dependency classes
in the given corpus. As shown in Figure 2(b), an additional 76 sentences or 622 syllables
(characters) are included in the set 2. In the third stage, an additional 100 sentences or 801
syllables (characters) are added to cover the top 600 tonal syllables as well as the top 40
classes of inter-syllable context dependency, with statistical distributions approximating to
those in the corpus. In this way, 96.34% of syllables and 92.51% of inter-syllable context
dependency classes in the given corpus are included with a total of 200 sentences or 1606
syllables (characters). Table I(b) summarizes the statistical data of this collection of three
phonetically distributed sentence sets for continuous speech recognition.

Note that these automatically selected sentence sets are quite different from the randomly
selected sentences usually used in many adaptation tasks. With the proposed algorithm here,
the selected sentence sets cover all desired acoustic units with given distribution using only
a minimum number of words or sentences based on given acoustic criteria. So the most
frequently used acoustic units and events can have adaptation utterances available as early
as possible and repeated for as many times as needed and thus can be better trained and
recognized more accurately in the earliest stage. This is the way to generate most efficient
adaptation data. In a set of randomly selected sentences, on the other hand, some acoustic
units may be missing, some important frequently used units may appear only very seldom,
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resulting in under-training, while some less frequently used units may appear repeatedly which
is a waste of the target user’s time. Of course the correct statistical distribution of the units
should automatically appear in randomly selected sentences as well in principle, but that
becomes true only after a large number of randomly selected sentences are included, which
makes the adaptation less efficient. Also, with the proposed algorithm various desired acoustic
criteria can be set by the designer to achieve various purposes. For example, with the staged
adaptation design, the adaptation goal may be achieved most efficiently at the earliest time by
a few sub-goals stage by stage. All these will be verified later on in this paper by the example
experimental results.

4. A simplified on-line adaptation algorithm

In many applications, it is an attractive and desired feature of a recognition system that the
accuracy can be improved incrementally when the user produces the adaptation utterances
one-by-one. In this way, the performance for this user can be continuously improved when he
keeps training or using the system. A supervised on-line adaptation algorithm for this purpose
is summarized below (Shen, Wang, Lyu, & Lee, 1994), which will be used in the following
experiments in this paper.

If the adaptation dataY is composed ofT utterances, i.e.Y = y1, y2, . . . , yT , the adapted
modelλ̂(T) given the last utteranceyT can be estimated as the following (Huo & Lee, 1997):

λ̂(T) = arg max
λ

p(yT |λ)p(λ|y1, y2, . . . , yT−1)· (2)

In other words, the adapted model obtained with all the previous adaptation data given can
be used as the seed model for adaptation with the next utterance. Then the adapted mean
parameters can be estimated as the linear interpolation of the mean parameters for the current
model and the new utterance as in the following form (Huo & Lee, 1997):

η
(ad)
j (t + 1) = η(ad)

j (t)+ τ(t)(η(n)j (t)− η(ad)
j (t)), t = 1, . . . , T, (3)

whereη(n)j (t) andη(ad)
j (t) are the mean parameters for the new adaptation utterances and

the adapted model respectively at timet, j is the mixture index, andτ(t) is the interpolation
factor at timet . The corresponding covariance matrix can be updated accordingly. As long as
τ(t) monotonically decreases witht and satisfies the following two conditions:

∞∑
t=1

τ(t)→∞,
∞∑

t=1

τ(t)2 <∞, (4)

the adapted models can be continuously improved. This is the algorithm to be used in the
following experiments, the concept coming from the learning vector quantization algorithm
(Kohonen, 1988). With this algorithm, the model parameters can be continuously adapted
on-line in real time each time the new speaker produces either a single utterance or a set of
utterances due to the low computation complexity involved.

5. Speech database used in the experiments

The speech database used in all experiments presented below in this paper is categorized
into two sets. The first data set was produced in isolated syllable model for isolated syllable
recognition, while the second set was produced in continuous speech mode for continuous
speech recognition. The first set in isolated syllable mode was produced by two groups of
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speakers with a total of 43 male speakers and 31 female speakers. The first speaker group A1
includes three male speakers. Each speaker of group A1 produced all the 1345 Mandarin tonal
syllables in isolated syllable mode with four utterances for each syllable. In addition, each
speaker of group A1 also produced the syllables in the first collection of four incremental
sets of phonetically distributed sentences for isolated syllable recognition as mentioned in
Section 3.1, also in isolated syllable mode with one utterance for each syllable. These three
speakers in group A1 were used as testing speakers in the following experiments. The second
speaker group A2 consists of 40 male speakers and 31 female speakers. These 71 speakers
produced all the 1345 Mandarin tonal syllables each with 39 utterances, so the total number
of syllable utterances obtained from speaker group A2 is 1345× 39= 52 455, in which each
individual speaker uttered about 739 syllables on average. These speech data produced by
group A2 speakers were used to train a speaker-independent model. The average speaking
rate for this set of speech database is 0.42 s/syllable.

On the other hand, the second data set in continuous speech mode for continuous speech
recognition contains data produced by two groups of speakers with a total of 70 male speakers
and 55 female speakers. The first speaker group B1 consists of three male speakers used as
the testing speakers. Each of the three speakers produced six paragraphs of texts covering six
subject domains of business, politics, society, philosophy, science and sports, respectively,
with a total of 134 sentences or 1462 characters. These data were used for testing. In addition,
each speaker of group B1 also produced the second collection of three incremental sets of
phonetically distributed sentences for continuous speech recognition as described above in
Section 3.2. These data were used as the adaptation data. In the second speaker group B2, a total
of 14 080 continuous speech sentences were produced by the rest of 67 male speakers and 55
female speakers. These data produced by group B2 were used to train a speaker-independent
model. The average speaking rate for this set of speech database is 0.25 s/syllable.

All the speech data were obtained in an office-like laboratory environment. They are low-
pass filtered, digitized by an Ariel S-32C DSP board with sampling frequency 16 kHz. After
end-point detection is performed, a 20 ms Hamming window is applied every 5 ms with a
pre-emphasis factor of 0.95. The speech features used in the following experiments include
14 order cepstral coefficients and the corresponding 14 delta cepstral coefficients.

6. Experimental results for isolated syllable recognition

In the isolated syllable recognition experiments here, the Segmental Probability Model (SPM)
is used (Lyu, Hong, Shen, Lee & Lee, 1998). This model is very similar to continuous density
HMM (CHMM) with Gaussian mixtures, except that the state transition probabilities are
deleted and the N states simply equally segment the syllable utterances. With the SPM,
almost identical recognition accuracy can be obtained for isolated Mandarin base syllables but
at significantly reduced computation complexity compared with CHMM, due to the relatively
simple phonetic structure of these syllables. In the adaptation process, the segment sharing
concept based on the phonological structure of Mandarin syllables is applied, which is also
very similar to the tied-state method used in HMM (Lee, Giachin, Rabiner, Pieraccini, &
Rosenberg, 1992). In this approach, the first few segments (or states) of the SPMs representing
the INITIAL parts of the syllables having the same CD INITIALs share the same adaptation
data, and so do the last few segments of the models representing the FINAL parts of the
syllables having the same CI FINALs. Also, in the series of isolated syllable recognition
experiments to be discussed in this section, to reflect better the realistic performance of a
speech recognition system with respect to the desired task of general domain defined by
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TABLE II. The adaptation results for isolated syllables using manually selected utterances
with adaptation data varying from 113 to 1345× 3 utterances

Adaptation with number of available utterances
SI 113 408 1345 1345× 2 1345× 3

Bayesian adaptation (BA) 63.05% 79.70% 86.72% 90.94% 92.30% 94.14%
Simplified on-line 63.05% 77.52% 86.65% 90.63% 91.49% 93.88%
Simplified on-line plus BA 63.05% 79.23% 88.34% 91.59% 92.28% 95.08%

the given corpus, all the recognition results mentioned are the average of the recognition
accuracies for all the individual syllables, but weighted by the frequency of appearance for
the syllables evaluated from the given text corpus. So the correct recognition of a frequently
used syllable will be counted more than that of a rarely used syllable.

Speaker-dependent tests for the three testing speakers in group A1 were first performed
to obtain baseline results for comparisons later on. Three utterances for each of the 1345
Mandarin tonal syllables for each speaker in group A1 were used in training and the last
utterance in testing. Theleave-one-outmethod was applied, i.e. among the four utterances
available for each syllable for each speaker, three utterances were used in training and the last
one in testing. This operation was repeated four times so all the four utterances have been
used as testing data. The average result for the four tests is taken as the final result for the
speaker. The average for the three speakers for this speaker-dependent experiment is 92.95%
(this number is 92.65% if CHMM with the same model configuration is applied instead).
Speaker-independent tests were also performed to obtain another comparison baseline. The
speaker-independent models were trained using all the speech data produced by all the 71
speakers in group A2, and the average recognition accuracy for the three test speakers in group
A1 is found to be 63.05% (this number is 62.76% if CHMM is applied instead).

6.1. Adaptation results for manually selected training syllables

Apparently, for isolated syllable recognition, one does not need to use the sentence sets selected
above in Section 3.1, but can use manually selected syllables for adaptation. The minimum set
of manually selected training utterances is 113 syllables constructed by the 113 CD INITIALs
and 41 CI FINALs selected from the most frequently used syllables. The next set is the 408
base syllables with the most frequently used tone for each base syllable. One can also use
one, two or three sets of all the 1345 tonal syllables because they are available. Experiments
for such manually selected training syllables were performed first for comparison. The results
are summarized here.

The results based on Bayesian adaptation algorithm (Gauvain & Lee, 1994) with segment
sharing are listed in the first row of Table II with the available adaptation data for each test
speaker varying from 113 up to 1345× 3 syllables. It can be found that the 113 adaptation
syllable utterances can achieve a significant improvement with 45.06% error rate reduction
(accuracy from 63.05% of speaker-independent case to 79.70%). A single utterance for each
CD INITIAL and CI FINAL is very efficient but not adequate. When 408 base syllables are
included in the adaptation data, the accuracy is improved to 86.72%. When one, two and
three utterances of all the 1345 utterances are available, accuracies of 90.94%, 92.30% and
94.14% can be achieved. The last case (94.14%) is even better than the speaker-dependent
case mentioned previously (92.95%).

The corresponding recognition rates using the simplified on-line adaptation algorithm pre-
sented in Section 4, in which adaptation was performed each time an additional adaptation
utterance was included, are listed in the second row of Table II. In this way, the rates can
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actually be improved utterance-by-utterance, and the process can be performed every time
a new utterance is entered to the system. In comparison with the first row, the rates for this
approach are slightly lower, but the differences are gradually reduced as the number of avail-
able adaptation utterances is increased. In the last row of Table II, the adapted models with
the simplified on-line adaptation algorithm mentioned above are further re-estimated by the
Bayesian adaptation at the end of each stage when 113, 408, 1345 utterances have been entered
and so on. As can be seen, the performance of the simplified on-line adaptation algorithm
can be further improved in this way and even outperform the results obtained directly by the
Bayesian adaptation in most cases.

6.2. Adaptation results for the selected phonetically distributed sentence sets

In the second set of experiments, the syllable utterances produced for the first collection
of four sets of carefully selected phonetically distributed sentences presented in Section 3.1
were used for adaptation. The system can be adapted to a new speaker in four stages. In
each stage, the utterances produced for one sentence set were used, and the recognition rate
can be improved stage-by-stage incrementally. In fact, when the simplified on-line adaptation
technique described in Section 4 is used, the recognition rate can also be improved not only
stage-by-stage, but utterance-by-utterance. Table III is the experimental results for such a
four-stage incremental procedure, in which in each stage the simplified on-line adaptation
algorithm is first performed after each utterance was entered, with results listed as experiment
1 in the left part of the table, and the model parameters are then further re-estimated using the
Bayesian adaptation after all utterances of the stage have been entered, with results listed as
experiment 2 in the right-hand column of the table, evaluated for the three outside speakers
in group A1 respectively. So the results in experiment 2 of Table III are somewhat similar
to the data in the last row of Table II, but with different sets of adaptation utterances. It can
be seen from Table III that the average initial recognition rate for the speaker-independent
model is 63.05%, as in the first row, although the actual rates vary quite significantly across
different speakers. After the first stage with the 188 characters or 24 sentences produced by
a new speaker (with total length of speech data within 1.3 min), the second row of Table III
shows that the average recognition rate is immediately improved significantly to 82.28%, and
it can be further improved to 84.00% after re-estimation of the model parameters using the
Bayesian adaptation. Then with the next three stages completed with the sentence sets 2, 3
and 4 including a total of 147 sentences, 992 utterances or 6.9 min of adaptation speech signal
counted from the first stage, the finally achieved recognition rates can be as high as 92.96% and
93.64% in experiments 1 and 2 respectively, even slightly exceeding the speaker-dependent
results (92.95%) mentioned previously trained by 1345× 3 = 4035 syllable utterances.
Another nice feature here is that the achieved recognition rates at each stage are in fact much
more stable across different speakers, although this is not the case for the initial rates for
speaker-independent models. Moreover, with model parameters re-estimated further with the
same adaptation data by the Bayesian adaptation after each stage, the recognition rates in
experiment 2 can be further improved by 1∼ 2% in each stage compared with those in
experiment 1.

Figure 3 shows the learning curve in full lines for the four-stage adaptation procedure, i.e.
rate increase as a function of the number of adaptation utterances used based on the results
of experiment 2 in Table III. As a comparison, the results obtained by a similar procedure as
listed in the last row of Table II using manually selected 113, 408, 1345, 1345×2 and 1345×3
adaptation utterances are also plotted in Figure 3. It is noteworthy that the learning slope of
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TABLE III. The four-stage adaptation results for isolated syllable recognition using the four
sets of phonetically distributed sentences

Total length Experiment 1 Experiment 2
of speech signal Speaker 1 Speaker 2 Speaker 3
from stage 1 AVE AVE

SI results — 59.95% 59.26% 69.95% 63.05% 63.05%
Stage 1 1.3 min 82.47% 81.36% 83.02% 82.28% 84.00%
Stage 2 2.0 min 89.02% 86.82% 87.58% 87.81% 88.75%
Stage 3 3.1 min 91.34% 89.00% 90.24% 90.19% 92.18%
Stage 4 6.9 min 93.75% 93.43% 91.70% 92.96% 93.64%

the four-stage phonetically distributed sentence sets is almost always higher than that using
the manually selected adaptation utterances, except for the beginning 113 manually selected
utterances. Obviously, the highest learning slope is obtained when the first 113 manually
selected utterances covering all the 113 CD INITIALs and 41 CI FINALs are used, because
this is the most compact collection of utterances covering all the necessary units. However, the
first phonetically distributed sentence set of 24 sentences or 188 syllables is equally applicable
to continuous speech recognition case, as this set is also used as set 1 in the phonetically
distributed sentence sets for continuous speech recognition presented in Section 3.2, because
they are meaningful sentences thus can be produced continuously. The 113 manually selected
syllables, on the other hand, cannot be extended to continuous speech case, because they do not
form meaningful sentences. In fact, the learning slope obtained by the first set of phonetically
distributed sentences with 188 syllable utterances is also very high, only slightly lower than
that using the 113 manually selected utterances. But this stage of 188 utterances gives a much
higher recognition rate than the 113 manually selected utterances (84.00% as compared to
79.23%), apparently because these 188 utterances include the statistical distribution of the
INITIAL/FINALs such that more frequently used units are trained better with higher accuracy,
thus much better overall performance can be achieved. This is the apparent advantage of
properly utilizing the statistics of the acoustic units in adaptation processes. In the second
stage of phonetically balanced sentences, again only 292 utterances can provide a recognition
rate (88.75%) even slightly higher than that given by the 408 manually selected utterances
(88.34%) at a much higher learning slope. This is because the 292 phonetically distributed
syllable utterances cover the top 100 most frequently used tonal syllables out of 1345, which
is very helpful in improving the overall performance. Thus the statistical distributions for the
acoustic units have made the adaptation process much more efficient. Similarly, the third stage
with a total of 436 phonetically distributed utterances requires only slightly more utterances
than the 408 manually selected syllables, but provides an accuracy (92.18%) comparable with
that obtained by 1345× 2 tonal syllables (92.28%). When the four stages of phonetically
distributed sentences with a total of 992 syllable utterances (significantly less than a single
set of the 1345 tonal syllables) are all entered, the recognition rate achieved (93.64%) is only
slightly lower than the rate (95.08%) obtained by 1345× 3 adaptation utterances (which
is more than four times of 992 utterances). These results clearly verified the efficiency of
the proposed scheme for automatically selecting sentence sets for adaptation purposes as
mentioned previously.

The above four-stage adaptation procedure using phonetically distributed sentence sets has
actually been used in a very successful Mandarin dictation prototype system developed in
early years, Golden Mandarin(II) (Leeet al., 1993b; Lee, 1997). In practice, because the
incremental adaptation can be implemented as an on-line process in real time, a new speaker
does not have to complete all the four stages before using the system. He can decide to begin
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Figure 3. The learning curves for the adaptation procedure for isolated syllables using
phonetically distributed sentences (—2—) and manually selected utterances (—×—)

to use the system directly at any time because further adaptation can always be performed
on-line during real applications as long as corrections can be made. Similarly such on-line
adaptation can also be performed after the four-stage adaptation is completed. This on-line
process after the four-stage adaptation can continuously improve the performance slightly,
and eventually become saturated.

7. Experimental results for continuous speech recognition

The next set of experiments were performed for continuous speech recognition using the
second set of speech database produced in continuous speech mode as presented in Section 5,
including those for the three incremental sets of phonetically distributed sentences obtained
in Section 3.2. The results are discussed in this section. Here the left-to-right continuous
density HMM(CHMM) was used to model the 113 CD INITIAL/41 CI FINAL units (Leeet
al., 1993a). The conventional one-pass Viterbi beam search algorithm with a fixed pruning
threshold was used to decode the optimal syllable sequence in a continuous Mandarin sentence
(Leeet al., 1992).

7.1. Adaptation results for the selected phonetically distributed sentence sets

The testing data produced by the testing group B1 using the testing texts of six paragraphs
covering six different subject domains as described in Section 5 are used here. As shown
in Table IV, the average base syllable recognition rate for the testing group B1 using the
speaker-independent (SI) models trained from the database produced by the speaker group B2
is 55.57%. Also, significant variations on the recognition rates across the three test speakers
can be observed, ranging from 49.59% to 62.83%. Now with the incremental phonetically
distributed training sentence sets obtained in Section 3.2 produced by the testing group B1,
the SI models were then adapted to the new user stage-by-stage just as in the isolated syllable
recognition case. As can be seen in Table IV, the average recognition rates for base syllables
can be immediately improved from 55.57% to 69.50% after the first stage using only 50 s
of speech data with the simplified on-line adaptation algorithm listed as experiment 1 in the
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TABLE IV. The three-stage adaptation results for continuous speech recognition using the
three sets of phonetically distributed sentences

Total length Experiment 1 Experiment 2
of speech signal Speaker 1 Speaker 2 Speaker 3
from stage 1 AVE AVE

SI results — 54.28% 49.59% 62.83% 55.57% 55.57%
Stage 1 50 s 63.90% 69.71% 74.89% 69.50% 70.65%
Stage 2 3.1 min 76.29% 77.78% 82.18% 78.75% 79.35%
Stage 3 6.8 min 78.92% 80.00% 85.11% 81.34% 81.85%

left part of Table IV, and then to 70.65% after the re-estimation of model parameters using
Bayesian adaptation listed as experiment 2 in the right-hand column of the table. Because
all INITIAL/FINAL acoustic units have been covered in the first stage of the 24 training
sentences with a desired statistical distribution, the performance can be improved significantly
and efficiently. Then with the additional 76 sentences of the second stage covering all the 408
base syllables and the top 20 inter-syllable context dependency classes, the syllable accuracy
can be further improved to 78.75% and 79.35% in experiments 1 and 2 respectively, and finally
to 81.34% and 81.85% respectively using a total of 6.8 min of speech data up to the third
stage, in which more than 96.34% of tonal syllables and more than 92.51% of inter-syllable
context dependency classes in the text corpus defining the desired task are covered. Note that
the average error rate reductions are more than 59% (44.43% to 18.15%) after the three-stage
adaptation process using only 6.8 min of speech data.

Just as in the isolated syllable case, the recognition rates can be further improved with on-
line adaptation to some extent and become saturated eventually when the new user actually
uses the system after the three stages of adaptation, if he can correct the recognition errors
on-line. Also, this three-stage adaptation procedure using the three phonetically distributed
sentence sets has been used in a very successful Mandarin dictation prototype system, Golden
Mandarin (III) Windows 95 version (Lee, 1997).

7.2. Adaptation results with respect to different subject domains of the testing data

It is well known that the accuracies for continuous speech recognition depend heavily on
the subject domains for the testing data. Texts on different subjects domains have different
vocabularies, different word frequencies and different sentence patterns. Not only the lexicons
and language models used to decode the output words and sentences can be completely
different, but the statistical distributions for the acoustic units can be quite different as well
for texts with different subject domains. The former (differences in lexicons and language
models) is beyond the scope of this paper, but we will try to investigate the latter (differences
in acoustic unit distributions) here, which has rarely been discussed in the literature. Although
the desired task addressed here is very large vocabulary speech recognition with a general
domain, as mentioned in Section 3, the majority of the text corpus defining this task is business
news, political news and society news. Articles describing all other subject domains are of
much less quantity, although they are all present in the text corpus. As a result, the first three
out of the six paragraphs of texts used in generating the testing data mentioned in Section 5
(with subject domains of business, politics and society) are much closer to the text corpus
defining the desired task, while the last three paragraphs (with subject domains of philosophy,
science and sports) are more or less different.

With the above backgrounds, the respective base syllable recognition accuracies for both
the speaker-independent models as well as the speaker-adapted models using the above three
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stages of adaptation data for each of the six test paragraphs with different subject domains
are shown in Figure 4. Also shown in Figure 4 are the similarity measuresR defined in
Equation (1) of Section 2 for the acoustic unit distributions between each of the six paragraphs
of testing texts and the whole text corpus defining the desired task. The acoustic unit used
in evaluating these similarity measuresR is the base syllable. One can find that when using
the speaker-independent models, comparable recognition rates, all relatively low in any case,
were obtained for the six test paragraphs despite their different subject domains. As also shown
in Figure 4, the similarity measure valuesR evaluated with respect to the whole given text
corpus change significantly from 0.4895 to 0.6772 for the six test paragraphs, which indicates
the crucial variations in the base syllable distributions for different task domains. Moreover, it
can also be observed that the first three test paragraphs are actually much more similar to the
given text corpus than the last three test paragraphs in terms of the base syllable distribution,
with the average similarity measure values 0.6602 for the former (first three paragraphs) and
0.5669 for the latter (last three paragraphs). Note that in any case all the similarity measure
valuesR are relatively low (i.e. much less than unity) even for the first three paragraphs
with the right subject domains, apparently because here each of the six paragraphs are not
long enough to construct a reasonably good statistical distribution. The results after the three-
stage adaptation, however, show that the difference in the recognition rates across the testing
paragraphs on different subject domains is, in fact, relatively small, ranging from 79.88% to
84.42%. The average of the first three test paragraphs (83.45%) is about 3.22% higher than
the average for the last three test paragraphs (80.23%). It is believed that this feature is due to
the very good design of the three adaptation sentence sets. Note that in the second sentence
set for the second stage adaptation, all the 408 base syllables are covered regardless of the
differences in base syllable distribution for different subject domains. So all different subject
domains have been taken care of to some extent in any case. On the other hand, the most
frequently used tonal syllables are well covered in the third sentence set in the third stage
adaptation, and the most frequently occurring inter-syllable context dependency classes are
well covered in the second and third sentence sets in the last two stages of adaptation, both
with reproduced statistical distribution, so many frequently used domain-independent words
and phrases including function words are all considered as well. In this way, those tasks well
defined by the given text corpus can be recognized very well, while the recognition rates for the
texts with rather different subject domains will not be too bad as well, and in those latter cases
(rather different subject domains) the performance can still be continuously improved after
the three-stage adaptation anyway with on-line adaptation algorithm just as in Section 7.1. In
other words, the proposed phonetically distributed sentence sets as given in Section 3.2 are
especially designed to be used as very good adaptation data for large vocabulary Mandarin
speech recognition, even with the difficulties in the variety of subject domains in the test data.

One may wonder what the similarity measure valueR is between the three sets of phoneti-
cally distributed sentences selected for continuous speech recognition obtained in Section 3.2
and the whole text corpus given. This number is found to be 0.8742, significantly higher than
any of the numbers in Figure 4, when the base syllable is used as the acoustic unit. This
result is quite natural, because the similarity measure valueR is the criterion used in selecting
these sentences in the sets. However, this number is still far from unity, because quite several
different phonetic criteria, including those for INITIAL/FINALs, for tonal syllables, and for
inter-syllable context dependency classes, instead of that for base syllables, have been used in
selecting those sentence sets. We may try to add the last three test paragraphs on quite different
subject domains (philosophy, science and sports) to these three sets of phonetically distributed
sentences, which results in a slight increase in this similarity measure valueR from 0.8742
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to 0.8820. In other words, the additional three paragraphs (65 sentences or 711 syllables) on
quite different subject domains are not very helpful in improving the similarity of the selected
sentence sets with the given text corpus. This is also very natural. As a result, these three
paragraphs can provide only very limited improvements in the adaptation processes if the test
data are on quite different subject domains.

A series of experiments were further performed to illustrate the above point, in which only
the first three paragraphs of test data with subject domains of business, politics and society
were tested, while the speech data for the last three paragraphs on quite different subject
domains (philosophy, science and sports) were used as the first set of adaptation data, and the
data for the three selected sentence sets were used as the second set of adaptation data. The
results are plotted in Figure 5, where the lower curve is for the first set of adaptation data of
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three paragraphs with different subject domains, and the upper curve is for the second set of
adaptation data with the selected sentence sets, both started with the same speaker-independent
models as used previously trained by the data produced by the speakers in group B2. Note
that the data for the upper curve are very similar to those for the three stages in Table IV, but
slightly higher. This is because the data in the upper curve in Figure 5 are for only the three
paragraphs of test texts with subject domains closer to the given text corpus, but the data in
Table IV also include results for the other three paragraphs with different subject domains.
It is noted that the learning slope using the first set of adaptation data for the three different
subject domains (the lower curve) is always much lower than that using the second set of
adaptation data for the three selected sentence sets (the upper curve). For example, although
the recognition rates can be improved from 54.81% to 64.30% when the first paragraph with
subject domain of philosophy in the first set of data is used (23 sentences or 194 syllables), this
number is much worse than the result using the first set of phonetically distributed sentences,
which is 71.45% using 188 syllables. After the other two paragraphs on science and sports in
the first set of adaptation data were added (with a total of 65 sentences or 711 syllables), the
finally achieved recognition rate (71.18%) is still much lower than that obtained by the first two
stages of the selected phonetically distributed sentence sets (80.64% using 805 syllables). So
the learning slope using some adaptation data not matched to the desired task is always much
lower than that using the selected phonetically distributed sentences matched to the desired
task. Now in the next set of experiments, in which the second set of adaptation data for the three
phonetically distributed sentence sets were further used as the adaptation data applied on the
models previously adapted by the three paragraphs of different subject domains with accuracy
71.18% as shown in the lower curve in Figure 5. The recognition accuracy for this case can
then be improved to 77.64%, 82.60% and 84.27% respectively. These results are plotted in
Figure 5 as the lower curve (full lines) connecting to the dashed line. It can be found that this
curve still has a relatively high learning slope, but the final result of 84.27% after all the three
sets of selected sentences were used is now only slightly better than that achieved in the upper
curve (83.43%) using only the three sets of selected phonetically distributed sentences. In
other words, the additional three paragraphs of adaptation data on different subject domains
actually provides only very limited overall improvements on recognition performance. All
these results again verified the efficiency of the approach proposed in this paper, as well as
the point that the adaptation data dynamically selected for a desired task domain always gives
a far faster and more efficient speaker adaptation.

8. Conclusion

In this paper, we have investigated the approach of automatic selection of phonetically dis-
tributed sentences for fast and efficient speaker adaptation. Incremental sets of different pho-
netically distributed sentences can be selected automatically based on different acoustic cri-
teria, and they can then be integrated into a multi-stage adaptation procedure. Although the
complete experiments were performed for Mandarin syllable recognition, the concepts and
techniques here are believed to be equally applicable to many other speaker adaptation tasks
in different languages.
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