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Abstract

It has always been difficult for language understanding systems to handle spontaneous speech with satisfactory

robustness, primarily due to such problems as the fragments, disfluencies, out-of-vocabulary words, and ill-formed

sentence structures. Also, the search schemes used are usually not flexible enough in accepting different input linguistic

units, and great efforts are therefore required when they are used with different acoustic front ends in different tasks,

specially in multi-modal and multi-lingual systems. In this paper, a new hierarchical tag-graph-based search scheme for

spontaneous speech understanding is proposed. This scheme is based on a layered hierarchy of grammar rules, and

therefore can integrate all the statistical and rule-based knowledge including acoustic scores, language model scores and

grammar rules into the search process. More robust speech understanding is thus achievable. In addition, this scheme

can accept graphs of different linguistic units such as phonemes, syllables, characters, words, spotted keywords, or

phrases as the input, thus compatible to different acoustic front ends and multi-modal and multi-lingual applications

can be easily developed. This search scheme has been successfully applied to a multi-domain, multi-modal dialogue

system. � 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

In a conventional speech understanding system,
a linguistic processor is usually serially integrated
with a speech recognizer based on an N-best in-
terface (Price, 1995; Zue, 1997) providing top-N
word sequence hypotheses. Due to such problems

as the fragments, disfluencies, out-of-vocabulary
words, and ill-formed sentence structures fre-
quently occurring in spontaneous speech, it is in
general not easy to obtain the top-N word se-
quence hypotheses that are both acoustically
promising and linguistically meaningful, even
with the language models applied. In other
words, such hypotheses obtained can be ‘‘best’’ in
terms of acoustic and language model scores, but
not necessarily optimal in terms of language un-
derstanding. Some modifications on the under-
standing scheme have been proposed, with typical
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examples including the robust parsing scheme
(Seneff, 1992) which recovers and analyzes those
parsable phrases if the parser fails in fully parsing
a word sequence hypothesis, and the tightly
coupled integration strategies (Ward and Issar,
1994; Tashiro et al., 1994; Kawahara, 1994;
Rayner and Wyard, 1995; Thanopolous et al.,
1997) which either rule out or reorder the N-best
lists by appropriately integrating the speech rec-
ognition and linguistic processing components.
These modifications are based on reprocessing of
the N-best lists that are often similar to each
other (with replacements of one or two words)
and may lose some semantically important in-
formation. The possible improvements for such
schemes are therefore quite limited, because the
computational cost for reprocessing the N-best
lists will be very high if N is large, while there will
be more information lost in the N-best lists if N is
small. Due to the defects of N-best lists as de-
scribed above, another set of understanding
schemes by directly processing the original word
graph (or the word lattice) are promising to
produce more robust speech understanding per-
formance (Chien, 1991; Tomita, 1986; Aust et al.,
1995) in which the word graph may represent
many word sequence hypotheses very compactly
and efficiently.

On the other hand, it is practically helpful and
highly desired that the understanding scheme is
flexible in accepting all different types of recog-
nition units as the inputs, such as phrases,
words, spotted words, subword units or pho-
nemes, because different recognition units may
provide better understanding results in different
application tasks or for different languages. For
example, in Chinese speech-based systems, sub-
word units of various types such as syllables
sometimes can give better performance than
words or enhance the performance in some ap-
plications (Lee, 1997; Ng, 2000). Moreover, for
the purpose of portability and extensibility in
multi-domain spoken dialogue systems with a
distributed architecture (Lin et al., 1999), a do-
main-independent speech recognizer is required
and subword recognition units are thus inevita-
ble. An understanding scheme flexible in ac-
cepting different speech recognition units thus

can make it easier not only to compare the un-
derstanding performances among different
acoustic front ends in parallel, but also to adapt
the system architecture for different conditions.
Although we can also choose to modify the un-
derstanding scheme case by case, for example, a
bottom-up search can be used for parsing below
the word level while a top-down search used for
parsing above the word-level (Seneff, 1998), such
approaches however cost extra efforts inevitably.
Furthermore, such flexibility in accepting differ-
ent speech recognition units also makes it easier
to develop multi-modal dialogue systems. For
example, in a multi-modal dialogue system, the
input from text interface may be the character
string, while that from the speech recognizer may
be nonaligned keyword graphs. A flexible un-
derstanding scheme capable of handling inputs of
different types as mentioned above is apparently
beneficial. For the same reason, such flexibility
also makes it easier to develop multi-lingual
spoken dialogue systems.

In this paper, a new hierarchical tag-graph
search scheme with layered grammar rules for
spontaneous speech understanding is proposed.
This scheme is more robust than those based on N-
best lists because it can successfully integrate
knowledge of various types, including the acoustic
scores, the language model scores, and different
layers of grammar rules, into the search process.
The final decision is made by simultaneously
considering all the knowledge available. In addi-
tion, this scheme is flexible for different input
graphs of various linguistic units, including pho-
neme graphs, syllable graphs, character graphs or
word graphs. Therefore, it can be easily applied
with different recognition front ends, and used in
multi-modal or multi-lingual environments. This
scheme has been successfully applied to a multi-
domain, multi-modal dialogue system with high
flexibility and robustness.

The rest of this paper is organized as follows.
The overall architecture of the proposed approach
is described in Section 2, and the analyses and
discussions in Section 3. The experimental results
and an example dialogue system are given in Sec-
tion 4. Finally, the concluding remarks are made
in Section 5.
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2. Tag-graph search scheme

The overall architecture of the proposed ap-
proach for speech understanding is shown in Fig. 1.
For an input speech utterance, an initial graph,
which can be a word graph, a syllable graph, a
phoneme graph, or similar, is first generated by the
acoustic front end. Given the grammar and an
initial graph, the kernel search scheme, located in
the area enclosed by the dashed line in Fig. 1, is
then applied to generate top-N tag sequences that
are both acoustically promising and linguistically
meaningful. These tag sequences are finally pro-
cessed by a semantic transcription module and
transcribed into semantic slots as the understand-
ing output.

2.1. Grammar

First, each linguistic unit, whether it is a pho-
neme, a syllable, a word, a keyword or a key-
phrase, is assigned a ‘‘semantic tag’’. Grammar
rules are then developed based on these semantic
tags. A layering algorithm, as defined in detail in
Appendix A, is used to construct the ‘‘hierarchy’’
for all the semantic tags and the associated
grammar rules, as shown in Fig. 2. For example,
considering the grammar rule ‘‘TIME $ HOUR
MIN’’ for time expressions, the tag ‘‘TIME’’ is
automatically promoted to a layer higher than the
tags ‘‘HOUR’’ and ‘‘MIN’’, because the knowl-
edge regarding ‘‘TIME’’ should be determined
after those for ‘‘HOUR’’ and ‘‘MIN’’. According
to the layers that the tags are assigned to, all the
grammar rules can then be used to construct a set
of grammar trees for all the different layers. For

example, all the grammar rules for the tags in the
same layer, say layer k, are integrated into a
grammar tree, say Tk. For each grammar rule in
layer k, the right-hand side tags in layers lower
than k are spanned into tree nodes, while the left-
hand side tag in layer k is attached at the termi-
nated node, as shown in the example in Fig. 3. If
the highest layer is layer K, there are a total of K
grammar trees, namely T1; T2; . . . ; TK , respec-
tively.

2.2. Bottom-up search

Now, referring to Fig. 1, for an input speech
utterance, an initial graph is first generated by the
acoustic front end. Note that here the initial graph
can be a word graph, a syllable graph, a phoneme
graph, or similar. But for simplicity the word
graph is taken as an example of the initial graph in
the following illustration.

Given the grammar trees T1; T2; . . . ; TK as ob-
tained in Section 2.1 and an initial graph G0, the
proposed bottom-up search scheme can be briefly
expressed in an iterative form as follows:

Gk ¼ SðG0
k�1; TkÞ; k ¼ 1; 2; . . . ;K; ð1Þ

Fig. 1. The overall architecture of the graph-based search scheme for speech understanding.

Fig. 2. An example of the hierarchy for the semantic tags.
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where K denotes the highest layer, Gk denotes the
graph of layer k, G0

k�1 ¼ fG0;G1; . . . ;Gk�1g de-
notes the union graphs of layers lower than k, Tk
denotes the grammar tree of layer k, and S de-
notes the bottom-up search scheme performing
the pattern matching between the grammar tree
Tk and the union tag-graphs G0

k�1 of layers lower
than k so as to generate the tag-graph of layer k,
Gk. This search scheme will be performed for K
times iteratively so as to generate the tag graphs
G1;G2; . . . up to GK one by one. A recursive re-
alization for the bottom-up search S is given in
Appendix B.

The bottom-up search can be further illustrated
using a simplified example given in Fig. 4. As can
be seen in this figure, when the bottom-up search is
performed on the initial graph G0 at the layer 0,
the lower-layer tags are ‘‘merged’’ into the higher-
layer tags if the patterns in the tag graphs match
those in the grammar trees. For example, in Fig. 4
the arc ‘‘REF’’ on the tag graph of layer 1 ðG1Þ,
together with the arc ‘‘WEEKDAY’’ on the tag
graph of layer 2 ðG2Þ, match the pattern
‘‘WDAY $ REF WEEKDAY’’ (e.g., next Mon-
day) on the grammar tree of layer 3 (T3) in Fig. 3, a
new arc for the tag ‘‘WDAY’’ is therefore con-
structed on the tag graph of layer 3 ðG3Þ. The score
for the matched grammar rule, ‘‘WDAY $ REF
WEEKDAY’’ here, is referred to as the grammar
pattern score, obtained from the probability that
this rule is applied given the tag ‘‘WDAY’’
(‘‘WDAY’’ may be constructed according to more
than one rules), and can be easily calculated from
the training corpus. When the new arc is gener-
ated, the grammar pattern scores as well as the
acoustic recognition scores for the tag ‘‘REF’’ and

‘‘WEEKDAY’’ in Fig. 4 are accumulated into the
score for the newly constructed tag ‘‘WDAY’’. In
this way, the higher-layer tag graphs can be gen-
erated hierarchically one by one, where the scores
for the higher-layer tags are accumulated from
both acoustic scores and grammar pattern scores.
Note that in this paper those ‘‘scores’’ are based on
log probabilities after normalization so as to be
additive, and therefore can be accumulated by
simply adding them together.

2.3. Best first search

After the tag-graph hierarchy is constructed as
shown in Fig. 4, a left-to-right best first search
based on the tag n-gram language model is further
applied to find the top-N tag sequences as shown
in Fig. 5. Note that here the intermediate-level tags
such as HOUR and REF (appearing on the right-
hand side of the rules) are ignored, and only the
high-level tags only appearing on the left-hand side
(such as DATE or TIME representing meaningful
concepts) and the filler words can serve as the
target tags in the search, as can be seen in Fig. 5.
Since only those tags agreeing with the grammar
rules can appear in the tag sequences, the obtained
top-N tag sequences in the best first search are all
linguistically structural and meaningful. Also,
during the best first search, the tag n-gram lan-
guage model scores are combined with the scores
for the target tags obtained in the bottom-up
search by simply adding them together, therefore
the final ‘‘best’’ paths are selected based on the
scores from the acoustic front end, the grammar
rules and the tag n-gram language model simul-
taneously.

Fig. 3. A partial list of the grammar tree T3 for layer 3.
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After the top-N tag sequences with associated
parsing trees are generated, they can be further
processed by a semantic transcription module, in
which both the knowledge correctness and infor-
mation consistency are checked to reject those
semantically incorrect paths, and finally tran-
scribed into the semantic slots as the understand-
ing output.

3. Analyses and discussions

3.1. Comparison with conventional search scheme

In the conventional search scheme, given the
input speech observation sequence O, the optimal
word sequence W 	 for language understanding can
be obtained according to the MAP decoding rule,

W 	 ¼ argmaxW P ðW Þ 
 PðOjW Þ: ð2Þ
The first term in Eq. (2), P ðW Þ, is the language
model score while the second term, P ðOjW Þ, is the
acoustic score for the hypothesis word sequence
W . On the other hand, in the proposed search

scheme here, given the input speech observation
sequence O, the optimal hypothesis word sequence
W 	 with the associated tag sequence C	, ðC	;W 	Þ,
can be obtained using the MAP decoding rule
(Pieraccini et al., 1993; Charniak, 1993; Giachin
et al., 1994),

ðC	;W 	Þ ¼ argmaxC;W P ðCÞ 
 P ðW jCÞ 
 P ðOjC;W Þ;
ð3Þ

where PðCÞ is the tag n-gram language model score
for the tag sequence C, P ðW jCÞ is the grammar
pattern score for the parsing trees of all these tags,
and P ðOjC;W Þ is the acoustic recognition score.
The acoustic score P ðOjC;W Þ and the grammar
pattern score PðW jCÞ are accumulated in the first-
stage bottom-up search, while the tag n-gram
language model score PðCÞ is further included in
the second-stage best first search. It should be
pointed out that, though Eq. (3) looks very similar
to the formula for widely used word-class language
model, the high-level semantic tags used here (such
as phrases for date or time expressions) in the tag
sequence C may have much more complicated
structures than the word classes. In fact, the

Fig. 4. A simplified example of the bottom-up search for constructing layered tag-graphs for the utterance ‘‘ . . .,

. . .’’ (umm. . . at half past seven on next Monday morning. . .).
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class-based language model can be considered as a
special case of Eq. (3) where the grammar rules are
all uni-layered (class-to-word level).

To further illustrate the difference between the
proposed search scheme and the conventional
search scheme, a simplified example for the con-
ventional search scheme is given in Fig. 6 for
comparison with those in Figs. 4 and 5. As can be
found, the word graph in layer 0 of Fig. 4 is the
same as that in Fig. 6. However, with the con-
ventional search scheme as in Fig. 6, it is apt to
obtain grammatically incorrect or nonstructural
word sequences like ‘‘ (uhm)! (next)!

(Monday)! (morning)! (half)’’ due to
the incorrect time span of the word ‘‘ (morn-
ing)’’ and the incomplete meaning of word ‘‘
(half)’’. Such nonstructural paths occur very often
in the top-N word sequences obtained by the
conventional scheme, because the best first search
is directly applied to the word graph with recog-

nition errors and ambiguities, and the loosely
constrained statistical language model such as
word tri-gram is not able to reject such paths. On
the other hand, in the proposed scheme, as can be
seen in Figs. 4 and 5, the best first search is not
directly applied to the word graph, but instead to
the tag graphs after the grammar pattern scores
are included in the bottom-up search. In addition,
the tighter constraints of ‘‘target’’ tags can reject
those nonstructural paths during the best first
search, and the scores of tag n-gram language
model are further incorporated in the best first
search, as shown in Fig. 5. Briefly speaking, the
conventional search scheme determines the ‘‘best’’
paths out of the lowest-layer graph, while the
proposed search scheme determines the ‘‘best’’
paths over the union layered graphs including the
knowledge of various levels and sources, both
statistical and rule-based. This is why the proposed
search scheme is superior to the conventional

Fig. 5. A simplified example of the best first search on the layered tag-graphs for the utterance ‘‘ . . ., . . .’’

(umm. . . at half past seven on next Monday morning. . .) shadowed arcs: a part of the arcs for target tags.
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search scheme while understanding spontaneous
speech.

3.2. Flexibility for the initial graph

In addition to words, many other subword units
including phonemes, syllables, characters and so
on, can also be used for acoustic recognition front
ends. As shown in an example of the lexicon
structure for the word ‘‘ (tomorrow)’’ for
Mandarin Chinese in Table 1, there may be a va-
riety of recognition units. Thus, the search scheme
or system architecture (Seneff, 1998) usually needs
to be modified for the various units if the under-
standing performances for different acoustic front
ends are to be studied. However, with the pro-
posed search scheme, this can be easily achieved
because of the flexibility of the initial graph in the
bottom-up search. When initial graphs of various
units are applied to the understanding scheme,
with the proposed approach it is not necessary at

all to modify the search algorithm, but instead
simply adding some lower-level lexicon rules in the
bottom-up search can handle the problem, such as
‘‘ (tomorrow)$ming2 tien1’’ or ‘‘ (to-
morrow)$ming tien’’ for the Chinese word ‘‘
(tomorrow)’’ in the example of Table 1. Such
flexibility also makes the speech-based systems
easily adapted for different conditions. For exam-
ple, in a multi-domain spoken dialogue system
with a distributed architecture (Lin et al., 1999), a
domain-independent syllable recognizer is useful
for the user interface agent for better portability
and extensibility, while the conventional key-
phrase spotter can work very well for applications
of some specific domains. Such flexibility can sig-
nificantly reduce the necessary efforts when the
understanding module has to be adapted for dif-
ferent environments.

Furthermore, the flexibility in the initial graph
also benefits multi-modal applications. For exam-
ple, in a multi-modal spoken dialogue system ac-
cepting both text and speech inputs in Mandarin
Chinese, the initial graph for the text-mode may be
a character string while that for the speech-mode
may be a tonal syllable lattice. The proposed
search scheme can be used to ‘‘understand’’ the
character string with the character-to-word lexicon
rules (e.g., ‘‘ (tomorrow)$ ’’ for the ex-
ample in Table 1) added, and ‘‘understand’’ the
tonal syllable graph with the tonal-syllable-to-
word lexicon rules (e.g., ‘‘ (tomorrow)$
ming2 tien1’’ for the example in Table 1) added. It
works equally well for all different modes as long
as such low-level rules can be used. In Figs. 7(a)

Fig. 6. An example of the conventional first search directly on the word graph for the utterance ‘‘ . . ., . . .’’

(umm. . . at half past seven on next Monday morning. . ..).

Table 1

Low-level lexicon rules for the Chinese word ‘‘ (tomor-

row)’’

Word

Character

Tonal syllable ming2 tien1

Base syllable

(tone ignored)

ming tien

Initial/final m ing t ien

toneme mi ing2 ti ien1

phoneme m i ng t i e n
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and (b) is an example showing how the tag se-
quences with parsing trees can be constructed from
a character string and a tonal syllable graph for
the two modes, respectively.

Moreover, the flexibility in the initial graph can
also make multi-lingual speech understanding
easier. For example, for a spoken dialogue system
accepting Mandarin Chinese, Taiwanese, and En-
glish, the chosen recognition units for the front
end recognizers may be different for different lan-
guages, say a base syllable lattice for Mandarin, a
tonal syllable lattice for Taiwanese and a phoneme
graph for English. The search scheme proposed
here leads to the easy sharing of a common speech
understanding module for different languages.

4. Experiments and example system

The above-mentioned tag-graph-based under-
standing scheme was evaluated using the sponta-

neous utterances collected from an example
spoken dialogue system in Mandarin Chinese for
retrieval of the train information in Taiwan. The
acoustic front end used in this example spoken
dialogue system is a keyword spotter (Chen et al.,
1998) that generates keyword graphs as the
acoustic output. A total of 2117 utterances with
3656 slots collected in real dialogues were used for
evaluation in Sections 4.1 and 4.2, where tag
5-gram language models were used. In addition,
the understanding scheme proposed in this paper
can be applied to a multi-domain multi-modal
dialogue system and show the high flexibility
achievable for different applications, as will be
discussed in Section 4.3.

4.1. Robustness for speech understanding

Two understanding schemes are compared here.
The first is the tag-graph-based understanding
scheme proposed here, while the other is the

Fig. 7. Tag sequences with parsing trees for the utterance ‘‘ (I’d like to go to Taipei at half past seven in the

morning)’’: (a) Using a character string as the initial graph for the text-mode. (b) Using a tonal syllable lattice as the initial graph for

the speech-mode.
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conventional scheme with a sentence parser and N-
best keyword lists. The experimental results shown
in Table 2 are obtained at a keyword spotting rate
of 76.74% and a false alarm rate of 79.89%. There
are quite several reasons why the performance of
keyword spotter for this train information task is
not very good. The vocabulary, though its size is
only 515, contains up to 62.79% short keywords
(less than two characters) that are prone to be
incorrectly recognized. The test utterances are
quite spontaneous, while the acoustic models are
trained only by read speech and not yet reesti-
mated for this application. It can be found from
Table 2 that the slot accuracy for the proposed
tag-graph-based understanding scheme and the
conventional scheme is 76.07% and 69.53%, re-
spectively. Though not very high, these slot accu-
racies are in fact quite acceptable considering the
keyword spotting rate of 76.74%. Also, such re-
sults agree with the discussions in Section 3.1.

4.2. Flexibility in initial graphs

As discussed in Section 3.2, the understanding
scheme can accept initial graphs of different types.
Here the understanding performance is evaluated
for two types of initial graphs, an unaligned key-
word graph generated by the keyword spotter
mentioned in Section 4.1 and an aligned syllable
lattice obtained by a syllable recognizer, with the
same test utterances used in Section 4.1. Note that
the keyword spotter can achieve a spotting rate of

76.74% at a false alarm rate of 79.89%, while the
syllable recognizer can achieve a top-1 syllable
accuracy of 57.95%, a top-5 inclusion rate of
83.57% and a top-10 inclusion rate of 87.89%. It is
actually not easy to judge which one can give
better speech understanding performance simply
according to these rates. With the flexibility of the
search scheme for different acoustic recognition
units, the parallel performance analysis becomes
easier. The results in Table 3 show that here the
keyword spotter is better than the syllable recog-
nizer from the understanding performance point
of view, though the syllable recognizer can have
better extensibility and portability for multi-do-
main applications.

4.3. A multi-domain multi-modal dialogue system

Besides the example spoken dialogue system
for train information mentioned above, the flex-
ible understanding scheme proposed in this paper
can be further applied to another multi-domain
multi-modal dialogue system based on a distrib-
uted agent architecture (Lin et al., 1999). Fig. 8(a)
shows such an example system with a user in-
terface agent plus three domain-specific spoken
dialogue agents each providing train, weather and
bus information respectively, while Fig. 8(b) dis-
plays the execution windows of this system on
different hosts. The user can access the spoken
dialogue agents for various domains through the
user interface agent, either by speaking through

Table 2

The understanding performance for different understanding schemes at a keyword spotting rate of 76.74% and a false alarm rate of

79.89%

Inserted slots Deleted slots Substituted slots Slot accuracy

Tag-graph-based understanding scheme 3.97% (145) 13.57% (496) 6.40% (234) 76.07%

N-best list plussentence parser 2.29% (84) 23.06% (843) 5.11% (187) 69.53%

Table 3

The understanding performance obtained with different types of initial graphs

Inserted slots Deleted slots Substituted slots Slot accuracy

Word graph 3.97% (145) 13.57% (496) 6.40% (234) 76.07%

Syllable graph (top 10) 4.70% (172) 8.64% (316) 14.50% (530) 72.15%

Syllable graph (top 5) 2.90% (106) 12.99% (475) 9.19% (336) 74.92%
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the microphone, by typing the Chinese characters
using the keyboard, or by pushing the functional
bottoms on the touch screen. In the user interface
agent, either the input Chinese character string in
the text mode or the syllable lattice generated by
a syllable recognizer in the speech mode is passed
to the spoken dialogue agent. In the spoken di-
alogue agent, the common search scheme is able
to ‘‘understand’’ the input of either mode. The
instructions from the functional bottoms are also
directly sent to the spoken dialogue agent and
used in the dialogue flow. When such distributed
architecture is used for a single specific domain
such as the train information domain, the domain
portability or extensibility is not critical, and a
keyword spotter is apparently more preferred
than a syllable recognizer according to Table 3.

In that case, there is no need to modify the search
scheme in the spoken dialogue agent. Though
currently the example system only accepts the
Mandarin speech input and the Chinese character
input, it is not difficult at all to extend to other
languages because the common understanding
module is adequate for different languages as
mentioned above.

5. Conclusion

In this paper, we have proposed a tag-graph-
based search scheme for spontaneous speech
understanding that is not only more robust than
the conventional approaches because the knowl-
edge of different levels can all be considered, but

Fig. 8. The example multi-domain multi-modal dialogue system with a user interface agent and three spoken dialogue agents for train

information, bus information and weather information domains: (a) block diagram of distributed agent architecture and (b) execution

windows on different hosts.
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more flexible in accepting different acoustic rec-
ognition units in different application environ-
ments. This scheme has been successfully applied
to a multi-domain multi-modal dialogue system
in Mandarin Chinese with high flexibility and
robustness.

Appendix A. Layering algorithm

The layering algorithm is used to determine the
priorities of the construction of the semantic tags
during the search process. It is based on the prin-
ciple that for each grammar rule, the left-hand side
tag should not be constructed until all right-hand
side tags have been constructed, and therefore any
left-hand side tag should have higher layer index
than all of its right-hand side tags. For example,
given the grammar rule C $ AB;C needs to be
constructed later than A and B. Assuming the
layer index for A and B are 2 and 4, respectively,
the layer index for C given this rule should be at
least 5 to ensure it will be constructed later than A
and B. Furthermore, there may be more than one
grammar rule with the same left-hand side tag C,
say C $ AB;C $ DEF , and so on. Then the layer
index for C should be no less than the maximum
value required for all such rules. For example, if
the layer index for C is 5 for the rule C $ AB, 6
for the rule C $ DEF and 3 for the rule C $ GH ,
then the layer index for the tag C should be at least
6 considering these three rules. For further illus-
tration, the layer index of a semantic tag t is de-
noted as LT ðtÞ, the layer index of a grammar rule r
is denoted as LRðrÞ, and every grammar rule r is
expressed in form of

r : tl $ tr1tr2 . . . ; ðA:1Þ

where tl is the left-hand side tag and tri,
i ¼ 1; 2; . . . ; are the right-hand side tags. With the
above-mentioned formulation, the first principle
mentioned above is simply

LRðrÞ ¼ max
i

ðLT ðtriÞÞ þ 1: ðA:2Þ

Furthermore, assume r1; r2; . . . ; are those rules
with the same left-hand side tag t, the second
principle mentioned above is simply

LT ðtÞ ¼ max
j

ðLRðrjÞÞ: ðA:3Þ

The layering algorithm can therefore be expressed
as below:

initialize:
LT ðtÞ ¼ 0 for every tag t
LRðrÞ ¼ 0 for every rule r

loop:
for every rule r : tl $ tr1tr2 . . .
LRðrÞ ¼ maxi ðLT ðtriÞÞ þ 1
for every left-hand side tag t (rules r1; r2; . . . ;
with the same left-hand side tag t)
LT ðtÞ ¼ maxj ðLRðrjÞÞ
If any of LRðrÞ or LT ðtÞ increases, goto loop
else done

The above-mentioned layering algorithm can
accept those context free/sensitive grammars that
are loop-free. If any loop exists in the grammars,
the priorities of the tags become not obvious and
the tag hierarchy in fact cannot be constructed
based on the layering algorithm. For example, in
the following grammar rules,

NP $ DetN ;

NP $ NP N ;

where NP is expressed in form of self recursion in
the second rule, and the layer index for the NP will
increase infinitely in the layering algorithm due to
the principle that the left-hand side tag need to be
in a higher layer than those right-hand side tags.
To avoid this problem, the above-mentioned
grammar rules can be equivalently rewritten as the
following ones:

NP 0 $ DetN ;

NP $ NP 0;

NP $ NP 0N ;

NP $ NP 0NN

. . .

Since there is in fact not any NP that can possibly
be infinitely long, the maximum number of the
right-hand side tags can thus be determined ap-
propriately according to the application domain.
In this way, there is no need for modifying the
bottom-up search or best first search at all, but
simply to use a different set of grammar rules.

B.-S. Lin et al. / Pattern Recognition Letters 23 (2002) 819–831 829



Appendix B. Bottom-up search scheme

The bottom-up search scheme S matches the
arcs on the union graph G0

k�1 (with a previously
matched arc G) with the nodes on the grammar
tree Tk (with a previously matched node T), as
shown in lower part of Fig. 9(a). A pattern tree as
shown in the upper part of Fig. 9(a) is created for
saving those matched patterns. If an arc on the
union graph G0

k�1, say arc ‘‘WEEKDAY’’ on the
bottom left of Fig. 9(a), matches a node on
the grammar tree Tk, say node ‘‘WEEKDAY’’ on
the bottom right of Fig. 9(a), the pattern tree then
spans from previously matched node P (with a
pointer pointing towards the previously matched
arc, e.g., ‘‘REF’’ here) a child node Pc (with a
pointer pointing towards the newly matched arc,
e.g., ‘‘WEEKDAY’’ here). The newly matched arc
on the union graph G0

k�1 and the node on the
grammar tree Tk, both labeled as ‘‘WEEKDAY’’
here, are referred to as Gc and Tc, respectively, as
shown in the bottom of Fig. 9(a). The pattern

matching then continues from the newly matched
position, Gc, Tc and Pc, recursively until the leaves
of the grammar tree are encountered. During the
process of pattern matching, if the matched node
Tc has a terminated tag (such as the tag ‘‘WDAY’’
on the grammar tree of Fig. 9(a)), it means the
patterns for this tag have been matched com-
pletely. In such case, the pattern tree is back
traced, and a new arc for the tag is constructed on
the tag graph Gk, as shown in Fig. 9(b). Of course,
those acoustic scores and grammar pattern scores
(as log probabilities with normalization) for the
constituents of the new tag can be accumulated
into the newly constructed arc. Such realization
has been verified and used in the experiments of
this paper. The pseudocodes are given below for
reference:

SðP ;G; T Þ {
for all next arcs Gc of G on the union graphs
G0

k�1 {
if G matches any child node Tc of T on the
grammar tree Tk {

Fig. 9. Matching of the union graph G0
k�1 with the grammar tree Tk . (a) Matching patterns and spanning the pattern tree recursively.

(b) Backtracing the pattern tree and generating the new arc for the terminated tag.
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span child node Pc of P and save Gc into
Pc
if Tc is a leaf node terminated at tag t on
Tk {

backtrace the pattern tree from Pc,
and construct a new arc on Gk for
tag t with the score accumulated
from all its constituents

} // if
recursively perform SðPc;Gc; TcÞ

} // if
} // for

} SðP ;G; T Þ
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