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Abstract

We study the performance of oblivious routing algo-
rithms that follow minimal (shortest) paths, referred
to as minimal oblivious routing algorithms in this pa-
per, using competitive analysis on a d-dimensional,
N = 2d-node hypercube. We assume that packets
are injected into the hypercube arbitrarily and con-
tinuously, without any (e.g., probabilistic) assump-
tion on the arrival pattern of the packets. Minimal
algorithms reduce the total load in the network in the
first place and they preserve locality. First we show
that the well known deterministic oblivious routing
algorithm, namely, the greedy routing algorithm, has
competitive ratio Ω(N1/2). Then we show a problem
lower bound of Ω(N log2(5/4)/ log5 N). We also give a
natural randomized minimal oblivious routing algo-
rithm whose competitive ratio is close to the problem
lower bound we provide.

1 Introduction

Routing algorithms are classified as either oblivious
or adaptive strategies [9, 17]. A deterministic routing
algorithm is oblivious if the path of a packet depends
only on its source and target. For a randomized obliv-
ious routing algorithm, the path of a packet depends
on a probability distribution which is a function of the
source and target of the packet. Oblivious routing al-
gorithms are distributed (They process packets with
local information. It is not necessary to know, for

example, the current global network status.), on-line
(They process packets without knowing future pack-
ets.), and memoryless, all of which are good proper-
ties for distributed systems. Another natural require-
ment of routing is to keep a routing algorithm from
using paths that are longer than the distance of the
source and target of a packet. This kind of routing
algorithms are referred to as the minimal routing al-
gorithms in this paper. Minimal routing algorithms
works very well in some simple inputs that preserve
locality. For example, consider the input that each
node in the hypercube sends a packet to each of its
neighbors. A minimal routing algorithm processes
this input simply by sending every packet over the
edge the packet covers. The network load is kept to
a minimum. Non-minimal routing algorithms may
route packets along long paths. This destroys the
locality in this input and the resulting network load
may be high. For these reasons, in this paper we con-
centrate on the analysis of minimal oblivious routing
algorithms.

The greedy routing algorithm is a prime example of
a deterministic minimal oblivious routing algorithm.
Given a packet from source node s to target node t,
the greedy routing algorithm corrects the bits that
differ between s and t in increasing dimension order.

It is known [17] that there are permutations that
the greedy routing algorithm needs Ω(

√
N) steps

to route. While in the average, the greedy algo-
rithm performs well. In particular, if every node has
m ≥ log N packets initially that are destined for ran-

1



dom targets, the greedy routing algorithm routes this
random input in O(m) steps with high probability.

In [27], Stamoulis and Tsitsiklis analyzed the
greedy routing algorithm on a model that each node
generates packets according to a Poisson process of
rate λ. Each packet is to be sent to a target of dis-
tance k from its source with probability pk(1−p)d−k.
They showed that the network is stable as long as
ρ < 1, where ρ = λp is the load factor of the net-
work. They also showed that the average delay T
per packet satisfies T ≤ dp

1−ρ .

In [28], Tsai and Shin showed some simulation re-
sults for routing on hypercubes. Various scheduling
policies that decide which packet to forward first if
multiple packets are contending for a link are com-
pared. The performance of a routing policy called
Progressive Adaptive that modifies the greedy rout-
ing algorithm are evaluated against a centralized path
selection algorithm. The transient behaviors of these
scheduling and routing policies are measured by, giv-
ing random input at time 0, how long it takes to com-
plete the delivery of all packets. They found that the
Largest Remaining Bandwidth First scheduling pol-
icy combined with the adaptive Progressive Adaptive
routing algorithm to be effective in many conditions.

In the following, we introduce the input model, the
cost measure, and the analysis technique used in this
paper. We also contrast our models to those used in
the related works.

Two fundamental models are frequently employed
in constructing inputs for the analysis of routing al-
gorithms. The first model is the permutation input
model [9, 32, 10, 13, 23, 24, 16, 1]. In a permuta-
tion input, each node in the hypercube is the source
and the target of exactly one packet. Another in-
put model is the probabilistic input model [27], in
which packets are injected into the system according
to some probability distribution. As an alternative
to the two models of inputs mentioned above, in this
paper, we assume that the packets are injected into
the network arbitrary and continuously without any
(e.g., probabilistic) assumption on the arrival pat-
terns of the inputs.

The cost measure of interest is the congestion of
the network. A routing algorithm has congestion C if

the maximum number of packets that travel through
any edge is C. The congestion is a good performance
indication in the packet switching model. In fact,
the congestion is a lower bound on the number of
time steps, called the work-span, to deliver all pack-
ets to their targets, under the constraint that at most
one packet can cross an edge at a single time step.
The congestion can also upper bound the work-span,
as the progresses made in [18, 19, 20, 21, 25] show.
Given a set of paths whose congestion is C and whose
dilation, the length of the longest path, is D, the al-
gorithm in [19], for example, schedules the paths (de-
cides which packet to go first if multiple packets are
contending for an edge) that the resulting work-span
is O(C +D). The congestion is also an important pa-
rameter in the circuit switching model, in which a set
of packets can be transmitted simultaneously if their
paths are edge-disjoint. So the congestion is a lower
bound on how many steps to route all the packets.

Traditionally, worst case analysis [16, 32, 10, 13],
average case analysis [17, 27], worst expected case
analysis [29, 30], and simulation [28] are used to
report the performance of routing algorithms. In
this paper, however, we use competitive analysis [26]
as a tool to evaluate the performance of minimal
oblivious routing algorithms. Competitive analysis
has been used successfully in many on-line problems
[2, 8, 7, 11, 12, 15, 22, 31]. An on-line algorithm is
said to be α competitive, or has competitive ratio α,
if, for any request sequence, (cost of the on-line algo-
rithm) ≤ α × (cost of the optimal off-line algorithm)
+ (some additive constant), in which the additive
constant is independent of the request sequence. The
competitive ratio reports the loss in performance due
to on-line decision making against the optimal off-
line algorithm, which is referred to as the adversary
in this paper and in the literature [8]. The notion of
competitiveness for on-line algorithms can be applied
to comparing the performance of algorithms in a dis-
tributed setting, where a distributed algorithm that
makes decisions locally is compared to an adversary
that makes decisions with global views. Competitive
analysis of problems in a distributed environment can
be found in [3, 4, 5, 6]. For randomized algorithms,
we assume that the adversaries are oblivious as was
defined in [8].
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The organization and the main results of this pa-
per are summarized in the following. Let d be the
number of hypercube dimensions and let N = 2d be
the number of nodes. In Section 2, the notations and
definitions useful in this paper are defined. In Section
3, we show that the competitive ratio of the greedy
routing algorithm is O(N1/2). We modify the trans-
pose permutation [17] and show that it is bad for
the greedy routing algorithm while at the same time
some off-line algorithm can route this partial permu-
tation with small congestion. In Section 4, we provide
a lower bound Ω(N log2(5/4)/ log5 N) of competitive
ratio for randomized minimal oblivious algorithms.
Note that log2(5/4) is about 0.3219. In Section 5, we
show that a randomized variant of the greedy rout-
ing algorithm is close to our supplied problem lower
bound. Given a packet, this randomized routing al-
gorithm complements the different bits between the
source and target of the packet in random order. The
competitive ratio of the algorithm is within a factor of
O(log3 N) from the lower bound. We have to empha-
size that the upper and lower bounds we provide are
strong since the adversaries also use minimal paths.
We are not comparing minimal oblivious routing al-
gorithms against adversaries that are allowed to use
non-minimal paths, in which case such adversaries
may be too strong to provide comprehensive com-
petitive ratios. The orders of the lower and upper
bounds are derived in Section 6.

2 Preliminaries

A d-dimensional hypercube is a directed graph with
node set V and edge set E. There are 2d nodes in V

and they are numbered from 0 to 2d − 1. We use d-
bit binary encodings of the numbers to denote nodes.
Let bd−1bd−2 · · · b0 be a node, we call bi, 0 ≤ i ≤ d−1,
the ith bit (or the ith dimension) of the node. If two
nodes u and v differ in precisely one dimension, then
there are two edges connecting them, one from u to v
and another from v to u, denoted as (u, v) and (v, u),
respectively. If u and v differ in dimension x, (u, v)

is also denoted as u
(x)−−→. Note that |E| = |V| · d.

When d = 0, a hypercube is a single node. When
d = 1, a hypercube consists of two nodes and two

edges connecting them. No routing is necessary on
these cases, so in this paper we assume that d ≥ 2.

A path τ of length l from node s to node t is a
sequence of adjacent edges e1 = (v0, v1) = (s, v1),
e2 = (v1, v2), . . . , el = (vl−1, vl) = (vl−1, t) that
connecting s and t. We call ei, 1 ≤ i ≤ l, the ith
edge on the path, and we call vi, 0 ≤ i ≤ l, the
ith node on the path. The path is a minimal path
(or shortest path) if l equals the number of bits that
differ between s and t. Assume that the end-point
nodes of ei differ in bit xi, we write the path as the
sequence [ x1, x2, . . . , xl ] when s and t are clear from
the context. A packet δ from node s to node t is
denoted as 〈s, t〉. We call s and t the source and
target nodes, respectively. A path for δ is a path
connecting s and t. The length of δ is the length
of a shortest path from s to t. We say two packets
δ1 = 〈s1, t1〉 and δ2 = 〈s2, t2〉 are equivalent if s1 = s2

and t1 = t2; otherwise we say δ1 and δ2 are non-
equivalent. Let SE(δ, i) be the set of edges {e | e is
the ith edge on some shortest path for δ.} An input σ
of size m is a multi-set of m packets {δ1, δ2, . . . , δm}.
Let σk = {δ1δ1 · · · δ1δ2δ2 · · · δ2 · · · δmδm · · · δm}, the
input where each packet in σ is repeated k times.

Given an input σ and an algorithm A that assigns
paths to the packets in σ, we define the load on an
edge e ∈ E, denoted as loadA(σ, e), to be the number
of packets whose paths cross e. (Without loss of gen-
erality, we assume that the paths are simple paths.
That is, the path for a packet crosses an edge at most
once.) We define the cost (or congestion) of A on σ,
denoted as costA(σ), to be maxe∈E loadA(σ, e), the
maximum load among the edges.

Consider an input σ = {δ1δ2 · · · δm}. A determin-
istic oblivious routing algorithm is one that the path
of a packet δ = 〈s, t〉 ∈ σ depends only on s and t.
A randomized oblivious routing algorithm is one that
the path of a packet δ = 〈s, t〉 is chosen randomly
from a set of paths whose random distribution de-
pends on s and t. The oblivious routing problem is
that of designing oblivious routing algorithms whose
competitive ratios are minimized, where we say an
algorithm A is c competitive (or we say A has com-
petitive ratio c) if there is a constant β such that, for
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any input σ,

costA(σ) ≤ c · costADV(σ) + β. (1)

ADV stands for the adversary, an off-line optimal
routing algorithm. When A is a randomized algo-
rithm, costA(σ) in the inequality should be read as
exp(costA(σ)), the expectation of A’s cost on σ.

3 The Greedy Routing Algo-

rithm

Given a packet 〈s, t〉, the greedy routing algorithm
Greedy complements the different bits between s and
t in some fixed order, which we assume in this pa-
per is in increasing dimension order without loss of
generality.

Theorem 1. The competitive ratio of Greedy is
Ω(

√
N).

Proof. Let m be an integer. Consider the follow-
ing input σ. For each node s whose bit 0 is 1,
bits 1 to ⌊d/2⌋ − 1 are arbitrary, and bits ⌊d/2⌋
to d − 1 are zeros, send m packets to the node t
whose bits are s rotated left ⌊d/2⌋ bits. All packets

cross the edge e0 = 0d (⌊d/2⌋)−−−−→. So costGreedy(σ) ≥
loadGreedy(σ, e0) = m · 2⌊d/2⌋−1.

The following strategy processes σ via shortest
paths with cost m: For any packet δ = 〈s, t〉 ∈ σ,
send it to t by complementing the bits that differ
between s and t in decreasing dimension order. Con-
sider two packets δ1 = 〈s1, t1〉 and δ2 = 〈s2, t2〉 that
s1 6= s2 and therefore t1 6= t2. Let v1 and v2, re-
spectively, be intermediate nodes on the paths for δ1

and δ2, respectively. If vi is a node on the first half
of the path for δi (while we are traversing bits d − 1
to ⌊d/2⌋), bits 0 to ⌊d/2⌋ − 1 of vi and si are the
same. Similarly, if vi is a node on the second half
of the path for δi (while we we are traversing bits
⌊d/2⌋ − 1 to 0), bits ⌊d/2⌋ to d − 1 of vi and ti are
equal. Note that bits 0 to ⌊d/2⌋ − 1 of s1 and s2 are
different and bits ⌊d/2⌋ to d−1 of t1 and t2 are differ-
ent. So for any v1 and v2 mentioned above, v1 6= v2,
and therefore the cost of the strategy on σ is m and
costADV(σ) ≤ m. As a result, the competitive ratio

of Greedy is at least m·2⌊d/2⌋−1−β
m . When m is large,

β is negligible, and the competitive ratio of Greedy

is at least m·2⌊d/2⌋−1

m = 2⌊d/2⌋−1 ≥ 2d/2−2 = Ω(2d) =

Ω(
√

N).

4 A Problem Lower Bound

For 0 ≤ i ≤ ⌊(d − 3)/2⌋, we call bits 2i and 2i + 1
of a node the ith buddy of that node. Given d, the
dimension of the hypercube, and an integer k where
0 ≤ k ≤ ⌊(d − 1)/4⌋, let STk/d be the set of packets
that a packet δ = 〈s, t〉 ∈ STk/d if the following three
conditions are met.

ST Condition 1. The distance from s to t is 2k+1
and the edge (0d, 10d−1) ∈ SE(δ, k + 1).

ST Condition 2. If d is even, bits d − 2 of s and t
are both 0.

ST Condition 3. For 0 ≤ i ≤ ⌊(d−3)/2⌋, if the ith
buddy of s is 01, then the ith buddy of t is 10; if
the ith buddy of s is 10, then the ith buddy of
t is 01; if the ith buddy of s is 11, then the ith
buddy of t is 00; if the ith buddy of s is 00, then
the ith buddy of t is either 00 or 11.

By ST Condition 1, a packet 〈s, t〉 ∈ STk/d has the
following properties: (1) Bits d − 1 of s and t are 0
and 1, respectively; (2) s has k one bits and t has
k + 1 one bits; (3) if bit i of s is 1, then bit i of t is
0; and (4) if bit i of t is 1, then bit i of s is 0.

For any integer k, 0 ≤ k ≤ ⌊(d − 1)/4⌋, and any
edge e = (u, v) ∈ E, let σe,k/d be the set of packets
defined recursively as follows:

Canonical Condition 0. If k = 0, σe,k/d =
{〈u, v〉}.

Canonical Condition 1. If u = 0d and v = 10d−1,
then σe,k/d = {〈s, t〉 | 〈s, t〉 ∈ STk/d and 〈s′, t′〉 ∈
σe′,k′/d′}, where s′, t′, e′, . . . , are computed by
the following procedure. (Procedure HALF)

• Input: (d, k, e = (u, v), δ = (s, t)). Output:
(d′, k′, e′ = (u′, v′), δ′ = (s′, t′)).
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• Assume that buddies x0, x1, . . . , xj−1 of s
are 00 or 11 buddies, 0 ≤ x0 < x1 < · · · <
xj−1 ≤ ⌊(d − 3)/2⌋. By ST Condition 3,
buddies x0, x1, . . . , xj−1 of t are 00 or 11
buddies, too, and these are the only 00 or
11 buddies of t.

• s′ = 0qj−1qj−2 · · · q0, where bit qi = 0 or
1, respectively, if buddy xi of s is 00 or 11,
respectively.

• t′ = 1rj−1rj−2 · · · r0, where bit ri = 0 or
1, respectively, if buddy xi of t is 00 or 11,
respectively.

• d′ = 1 + j; k′ = the number of one bits in
s′; and e′ = (u′, v′) = (0d′

, 10d′−1).

Canonical Condition 2. If u and v differ in bit
d − 1, then σe,k/d = {〈s ⊕ u, t ⊕ v〉 | 〈s, t〉 ∈
σ(u⊕u,v⊕u),k/d} = {〈s ⊕ u, t ⊕ v〉 | 〈s, t〉 ∈
σ(0d,10d−1),k/d}. The symbol ⊕ denotes the bit-
wise exclusive or operator.

Canonical Condition 3. If u and v dif-
fer in bit k, 0 ≤ k < d − 1, then
σe,k/d = {〈rol(s, k + 1), rol(t, k + 1)〉 | 〈s, t〉 ∈
σ(ror(u,k+1),ror(v,k+1)),k/d}, where rol(n, k) is n
rotated left k bits and ror(n, k) is n rotated
right k bits.

Any two distinct packets in the set σe,k/d are non-
equivalent. Furthermore,

Lemma 1. If δ1 = (s1, t1) and δ2 = (s2, t2) are two
distinct packets in σe,k/d, then s1 6= s2 and t1 6= t2.

Proof. By Canonical Conditions 2 and 3, one can see
that the construction of σe,k/d for a general e is by
some fixed complementation and/or rotation that de-
pends on e of the bits of the endpoints of each of the
packets in σ(0d,10d−1),k/d. So in the proof we focus

on the edge e = (u, v) = (0d, 10d−1) without loss of
generality.

We prove the lemma by induction on d. When
2 ≤ d ≤ 4, k must be 0. By Canonical Condition 0,
σe,k/d is {〈u, v〉}. When 5 ≤ d ≤ 8, k can be 0 or 1.
If k = 0, then σe,k/d = {〈u, v〉}. See Table 1 for the
packets in σe,1/d, for 5 ≤ d ≤ 8. It’s clear that the
lemma holds in these simple cases.

σe,1/5
〈00001, 10010〉, 〈00010, 10001〉,
〈00100, 11000〉, 〈01000, 10100〉.

σe,1/6
〈000001, 100010〉, 〈000010, 100001〉,
〈000100, 101000〉, 〈001000, 100100〉.

σe,1/7

〈0000001, 1000010〉, 〈0000010, 1000001〉,
〈0000100, 1001000〉, 〈0001000, 1000100〉,
〈0010000, 1100000〉, 〈0100000, 1010000〉.

σe,1/8

〈00000001, 10000010〉, 〈00000010, 10000001〉,
〈00000100, 10001000〉, 〈00001000, 10000100〉,
〈00010000, 10100000〉, 〈00100000, 10010000〉.

Table 1: The packets contained in σe,1/d, for 5 ≤ d ≤
8.

Assume that the lemma holds when d < d0, in
the following we prove that the lemma holds when
d = d0.

Assume that the outputs of Procedure HALF on
the inputs (d, k, e, 〈s1, t1〉) and (d, k, e, 〈s2, t2〉) are
(d′1, k

′
1, e

′
1, 〈s′1, t′1〉) and (d′2, k

′
2, e

′
2, 〈s′2, t′2〉), respec-

tively.

Consider the case where s1 = s2. By HALF, s′1 =
s′2, d′1 = d′2, k′

1 = k′
2, and e′1 = e′2. Packets 〈s′1, t′1〉

and 〈s′2, t′2〉 belong to the same input σe′
1
,k′

1
/d′

1
. By

the induction hypothesis, t′1 = t′2. By ST Condition
3, the 01 and 10 buddies of t1 and t2 match. By
HALF, the 00 and 11 buddies of t1 and t2 match. So
t1 = t2 and δ1 and δ2 are equivalent, a contradiction.

Consider the case where t1 = t2. By HALF, t′1 = t′2,
d′1 = d′2, k′

1 = k′
2, and e′1 = e′2. Packets 〈s′1, t′1〉 and

〈s′2, t′2〉 belong to the same input σe′
1
,k′

1
/d′

1
. By the

induction hypothesis, s′1 = s′2. By ST Condition 3,
the 01 10 buddies of s1 and s2 match. By HALF, the
00 and 11 buddies of s1 and s2 match. So s1 = s2

and δ1 and δ2 are equivalent, a contradiction.

The following lemma gives the size of σe,k/d.

Lemma 2. Given d and k, 0 ≤ k ≤ ⌊(d−1)/4⌋, and

an edge e ∈ E,
|σe,k/d|

(d−1

k )
≥ (3/4)log2(d−1).

Proof. By the definition of σe,k/d, |σe1,k/d| = |σe2,k/d|
for any two edges e1 and e2. So without loss of gen-
erality we focus on the edge e = (u, v) = (0d, 10d−1).
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We prove the lemma by induction on d. When
2 ≤ d ≤ 4, k must be 0. In this case, |σe,k/d| =

1,
(

d−1
k

)

= 1, and (3/4)log2(d−1) ≤ 1, so the lemma
holds. Assume that the lemma holds when d < d0.
In the following we consider the case where d = d0.

Define S1 to be the set of nodes whose distance
from u is k and whose bit d − 1 is 0. S1 is exactly
the set of source nodes of the packets mentioned in
ST Condition 1. If d is even, define S2 to be the
set of nodes in S1 whose bits d − 2 is 0; if d is odd,
define S2 = S1. S2 is exactly the set of source nodes
of the packets that satisfy ST Conditions 1 and 2.
Define S3 to be the set of nodes {s | 〈s, t〉 ∈ σe,k/d

for some t.} S3 is exactly the set of source nodes of
the packets that satisfy ST Conditions 1 and 2 and
Canonical Condition 1. By Lemma 1, |S3| = |σe,k/d|.
If d is odd, S2 = S1; otherwise, |S2| =

(

d−2
k

)

. So,

|S2|
|S1|

≥ (d−2

k )
(d−1

k )
≥ d−1−k

d−1 ≥ 3/4.

We partition S2 into groups that two nodes s1 and
s2 in S2 are in the same group if (1) the 01 and 10
buddies of s1 and s2 match, and (2) the numbers of
11 buddies of s1 and s2 are equal. Note that the
numbers of 00 buddies of two nodes in a group are
also equal. We also partition S3 into groups in the
same way. Now consider a group F of S2 and let
G = F ∩ S3. Note that G is a group of S3 and is
exactly the set of source nodes of packets in σe′,k′/d′ ,
where k′ is the number of 11 buddies of any node
in G, d′ − 1 − k′ is the number of 00 buddies, and
e′ = (0d′

, 10d′−1). Therefore, |G| = |σe′,k′/d′ |. By

the way we partition S2, |F | =
(

d′−1
k′

)

. Therefore,
|G|
|F | =

|σe′,k′/d′ |

(d′−1

k′ )
≥ (3/4)log2(d

′−1) ≥ (3/4)log2
d−1

2 ≥

(3/4)log2(d−1)−1, by the induction hypothesis and the
fact that (d′ − 1) ≤ d−1

2 . This ratio holds for any

group of S2 and S3 thus partitioned, therefore, |S3|
|S2|

≥
(3/4)log2(d−1)−1. As a result,

|σe,k/d|

(d−1

k )
= |S3|

|S1|
= |S3|

|S2|
·

|S2|
|S1|

≥ (3/4)log2(d−1)−1 · (3/4) = (3/4)log2(d−1).

We say h = hd−1, hd−2, . . . , h0 is a reorder if
hd−1, hd−2, . . . , h0 is a permutation of d − 1, d −
2, . . . , 0. We call hi, 0 ≤ i ≤ d − 1, the ith digit
of reorder h. Define v/h, where v = bd−1bd−2 · · · b0 is

a node in V, to be the node bhd−1
bhd−2

· · · bh0
. Define

δ/h, where δ = 〈s, t〉 is a packet, to be the packet
〈s/h, t/h〉. Define σ/h, where σ = {δ1δ2 · · · δm} is an
input, to be the input {δ1/h, δ2/h, . . . , δm/h}.

Consider an edge e = u
(x)−−→. Let He be the set

of all reorders whose digit x is x. We say that an
input σ is a bad input with respect to e if there are
reorders hk ∈ He, 0 ≤ k ≤ ⌊(d − 1)/4⌋, that σ =
⋃⌊(d−1)/4⌋

k=0 σe,k/d/hk.

Lemma 3. For any minimal oblivious routing algo-
rithm A, there is an edge ê and a bad input σ̂ with
respect to ê that exp(loadA(σ̂, ê)) ≥ (3/4)log2(d−1) ·
∑⌊(d−1)/4⌋

k=0
(d−1)!·k!

(d−1−k)!·(2k+1)! .

Proof. We use an averaging argument on all edges
and all bad inputs. Let σ(e) be the bad input with
respect to e that has the worst expected load on e.

exp(loadA(σ̂, ê)) ≥ 1

|E|
∑

e∈E

exp(loadA(σ(e), e))

≥ 1

|E|
∑

e∈E

⌊(d−1)/4⌋
∑

k=0

(

1

|He|

·
∑

h∈He

exp(loadA(σe,k/d/h, e))

)

=
1

|E|
∑

e∈E

⌊(d−1)/4⌋
∑

k=0

(

1

|He|

·
∑

h∈He

∑

δ∈σe,k/d

exp(loadA({δ/h}, e))
)

.

Let Ie,k be the set of input sets {{δ} | δ is a packet
of length 2k + 1 and e ∈ SE(δ, k).} The inputs men-
tioned in

∑

h∈He

∑

δ∈σe,k/d

exp(loadA({δ/h}, e))

are in Ie,k and there are |σe,k/d| · |He| of them. Be-
cause the summation is over all reorders in He, the
inputs in Ie,k are symmetrical in how many times

6



they appear in the summation, and, therefore,

∑

h∈He

∑

δ∈σe,k/d

exp(loadA({δ/h}, e))

=
|σe,k/d| · |He|

|Ie,k|
∑

σ∈Ie,k

exp(loadA(σ, e)).

Then,

exp(loadA(σê, ê)) ≥
1

|E|

⌊(d−1)/4⌋
∑

k=0

∑

e∈E

( |σe,k/d|
|Ie,k|

·
∑

σ∈Ie,k

exp(loadA(σ, e))

)

,

by Lemma 2,

≥ 1

|E|

⌊(d−1)/4⌋
∑

k=0

∑

e∈E

(

(3/4)log(d−1) ·
(

d−1
k

)

(

d−1
k

)

·
(

d−1−k
k

)

·
∑

σ∈Ie,k

exp(loadA(σ, e))

)

=

⌊(d−1)/4⌋
∑

k=0

(

(3/4)log(d−1)

|E| ·
(

d−1−k
k

)

·
∑

e∈E

(

∑

σ∈Ie,k

exp(loadA(σ, e))

)

)

.

Let Jk be the set of input sets {{δ} | δ is a packet of

length 2k + 1}, ∑e∈E

(

∑

σ∈Ie,k
exp(loadA(σ, e))

)

=
∑

σ∈Jk

(

∑

e∈SE(σ,k+1) exp(loadA(σ, e))
)

=
∑

σ∈Jk
1 = |Jk|. Therefore,

exp(loadA(σê, ê))

≥
⌊(d−1)/4⌋
∑

k=0

(

(3/4)log(d−1)

|E| ·
(

d−1−k
k

) · |Jk|
)

=

⌊(d−1)/4⌋
∑

k=0

(

(3/4)log(d−1)

|E| ·
(

d−1−k
k

) · |V| ·
(

d

2k + 1

)

)

=

⌊(d−1)/4⌋
∑

k=0

(d − 1)! · k! · (3/4)log(d−1)

(d − 1 − k)! · (2k + 1)!
.

Lemma 4. For any edge e and any bad input σ with
respect to e, costADV(σ) ≤ d.

Proof. Recall that σ =
⋃⌊(d−1)/4⌋

k=0 σe,k/d/hk, where
hk, 0 ≤ k ≤ ⌊(d − 1)/4⌋, is an arbitrary reorder in
He. We will show that costADV(σe,k/d/hk) = 1. So
costADV(σ) ≤ ⌊(d−1)/4⌋+1, and the lemma follows.

Note that any reorder hk can not fool the ad-
versary, that is, if there is a strategy for σe,k/d

that costADV(σe,k/d) = 1, then it is easy to con-
vert the strategy to another for σe,k/d/hk that
costADV(σe,k/d/hk) = 1. Therefore, without loss
and generality, we focus on the input σe,k/d. Also
note that σe,k/d is obtained by complementing (as in
Canonical Condition 2) and rotating (as in Canon-
ical Condition 3) of σ(0d,10d−1),k/d. So without loss

of generality, we focus on the edge e = (0d, 10d−1) =

0d (d−1)−−−→ and the input σe,k/d, for any k, 0 ≤ k ≤
⌊(d − 1)/4⌋.

In the following we show how to construct a path
for each packet in σe,k/d recursively such that (1) the
paths are edge-disjoint; and (2) dimension d − 1 is
crossed last in the paths.

Consider a packet δ = (s, t) ∈ σe,k/d. Let
the output of Procedure HALF on (d, k, e, δ)
be (d′, k′, e′, δ′ = (s′, t′)). Assume that bit i,
0 ≤ i ≤ d′ − 2, of s′ corresponds to buddy g(i)
of s. Remember that buddies g(i)’s of s are 00
or 11 buddies. Assume that the path constructed
for δ′ is [ p1, p2, . . . , p2k′ , d′ − 1 ] and that buddies
f(1), f(2), . . . , f(l) of s are 01 or 10 buddies,
f(1) < f(2) < f(3) < · · · < f(l). The path we
assign to δ is [ 2f(1), 2f(1) + 1, 2f(2), 2f(2) +
1, . . . , 2f(l), 2f(l) + 1, 2g(p1), 2g(p1) +
1, 2g(p2), 2g(p2)+1, . . . , 2g(p2k′), 2g(p2k′)+1, d−1 ].
For convenience, the path is divided into three parts.
The first part path is

[ 2f(1), 2f(1) + 1, 2f(2), 2f(2) + 1, . . . ,

2f(l), 2f(l) + 1 ]

the second part path is

[ 2g(p1), 2g(p1) + 1, 2g(p2), 2g(p2) + 1, . . . ,

2g(p2k′), 2g(p2k′) + 1 ],

7



00000001 → 00000000 → 00000010 → 10000010
00000010 → 00000011 → 00000001 → 10000001
00000100 → 00000000 → 00001000 → 10001000
00001000 → 00001100 → 00000100 → 10000100
00010000 → 00000000 → 00100000 → 10100000
00100000 → 00110000 → 00010000 → 10010000

Table 2: Paths constructed for packets in σe,1/8.

and the third part path is [ d − 1 ]. In the first part
path, 01 and 10 buddies of s change to 10 and 01
buddies, respectively. In the second part path, 11
buddies of s change to 00 buddies, and some 00 bud-
dies of s change to 11 buddies, based on the path for
δ′. In the third part path, dimension d−1 is crossed.

We prove by induction on d that the paths thus
constructed for packets in σe,k/d satisfy the two prop-
erties that (1) the paths are edge-disjoint and (2) di-
mension d − 1 is crossed last in every path. When
2 ≤ d ≤ 4, k must be 0. σe,k/d = {〈u, v〉}. When
5 ≤ d ≤ 8, k can be 0 or 1. If k = 0, then
σe,k/d = {〈u, v〉}. When k = 1, the packets in σe,k/d

is listed in Table 1. It is easy to see that there are
paths that satisfy the two properties. Take d = 8
and k = 1 as an example, the paths that fulfill the
properties are listed in Table 2. The induction basis
is thus established.

Assume that for d < d0 and any k, the constructed
paths satisfy the two properties. Now consider the
input σe,k/d where d = d0. By the way we construct
the paths for packets in σe,k/d, the second property
that dimension d − 1 is crossed last is always true.
We prove that the paths are edge-disjoint by proving
the following claims.

Claim 1. The first part paths of the packets in σe,k/d

are edge-disjoint.

Consider a packet δ = (s, t) ∈ σe,k/d and assume
that its first part path is [ f1, f2, . . . , f2l ], 0 ≤ f1 <
f2 < · · · < f2l ≤ d − 1. Define nx(δ), 0 ≤ x ≤ d, to
be s + [ f1, f2, . . . , fi ], where i is the largest number
such that fi < x.

If the 0th buddy of δ is 00 or 11, then n2(δ) =
n0(δ) = s. If the 0th buddy of δ is 01 (or 10, re-

spectively), then the packet δ̃ = (s̃, t̃) ∈ σe,k/d, where
s̃ is s except that the 0th buddy of s̃ is 10 (01, re-
spectively), is the complement packet of δ in that
n2(δ) = n0(δ̃) = s̃ and n2(δ̃) = n0(δ) = s. As a
result

⋃

δ∈σe,k/d
n0(δ) =

⋃

δ∈σe,k/d
n2(δ), and there

is a one-to-one correspondence between the nodes in
⋃

δ∈σe,k/d
n0(δ) and in

⋃

δ∈σe,k/d
n2(δ).

Now consider two distinct packets δ1 = (s1, t1) and
δ2 = (s2, t2) in σe,k/d. By Lemma 1, s1 6= s2, that is,
n0(δ1) 6= n0(δ2). By the discussion above, n2(δ1) 6=
n2(δ2). We can extend the discussion above and say
that ni(δ1) 6= ni(δ2), for any even i.

Assume that the first part paths of δ1 and δ2 share
an common edge (ū, v̄), where ū and v̄ differ in bit
x. Then it must be that ū = nx(δ1) = nx(δ2) and
v̄ = nx+1(δ1) = nx+1(δ2). When x is even, nx(δ1) =
nx(δ2) implies that δ1 = δ2, a contradiction. When
x is odd, x + 1 is even, nx+1(δ1) = nx+1(δ2) implies
δ1 = δ2, a contradiction. So the first part paths of δ1

and δ2 are edge-disjoint.

Claim 2. The second part paths of the packets in
σe,k/d are edge-disjoint.

Consider a packet δ = (s, t) ∈ σe,k/d. Assume that
the first and second part paths of δ is [ f1, f2, . . . , f2l ]
and [ g1, g2, . . . , g2j ], respectively, for some l and j.
Define qi(δ) = s + [ f1, f2, . . . , f2l ] + [ g1, g2, . . . , gi ].
q0(δ) = nd(δ). By the proof of Claim 1, for any two
distinct packets δ1 and δ2, q0(δ1) 6= q0(δ2).

We partition nodes into groups so that two nodes
v1 and v2 are in the same group if (1) their 01 buddies
match; and (2) their 10 buddies match. From qi(δ)
to qi+2(δ), for any even i, some 00 buddy is changing
to 11 buddy or some 11 buddy is changing to 00. So
qi(δ) and qi+2(δ) are in the same group. And,

Observation 1. For any two distinct packets δ1 and
δ2 in σe,k/d, where q0(δ1) and q0(δ2) are in different
groups. Then, for any even i and j, qi(δ1) and qj(δ2)
are in different groups and, therefore, qi(δ1) 6= qj(δ2).

For any even i, the number of one bits in qi(δ)
minus k is even and the number of one bits in qi+1(δ)
minus k is odd. So,

Observation 2. For any two packets δ1 and δ2 in
σe,k/d, qi(δ1) 6= qj(δ2), for any even i and odd j.
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Now consider two distinct packets δ1 and δ2 in
σe,k/d. Assume that the second part paths of δ1 and
δ2 share a common edge (ū, v̄). We prove the claim by
contradiction by considering the following two cases:

Case 1. q0(δ1) and q0(δ2) are in the same group.
Let (d′1, k

′
1, e

′
1, δ

′
1) and (d′2, k

′
2, e

′
2, δ

′
2) be the out-

puts of Procedure HALF on the inputs (d, k, e, δ1)
and (d, k, e, δ2), respectively. Because q0(δ1) and
q0(δ2) are in the same group, the source nodes
of δ1 and δ2 are in the same group. So d′1 = d′2,
k′
1 = k′

2, e′1 = e′2, and δ′1 and δ′2 are in the
same input σe′

1
,k′

1
/d′

1
. Consider the following sub-

cases:

• ū = qi(δ1) = qj(δ2) and v̄ = qi+1(δ1) =
qj+1(δ2) for some even i and j.
In this sub-case qi+2(δ1) = qj+2(δ2), be-
cause this is how the second part paths of δ1

and δ2 are constructed. This implies that
δ′1 and δ′2 share some common edge, a con-
tradiction to the induction hypothesis.

• ū = qi(δ1) = qj(δ2) and v̄ = qi+1(δ1) =
qj+1(δ2) for some odd i and j.
In this sub-case qi−1(δ1) = qj−1(δ2). This
implies that δ′1 and δ′2 share some common
edge, a contradiction to the induction hy-
pothesis.

• ū = qi(δ1) = qj(δ2) for some even i and odd
j.
By Observation 2, this is impossible.

• ū = qi(δ1) = qj(δ2) for some odd i and even
j.
By Observation 2, this is impossible.

Case 2. q0(δ1) and q0(δ2) are in different groups.
Assume that ū = qi(δ1) = qj(δ2) and v̄ =
qi+1(δ1) = qj+1(δ2), for some i and j. When
both i and j are even, the equality qi(δ1) =
qj(δ2) contradicts Observation 1. When both i
and j are odd, the equality qi+1(δ1) = qj+1(δ2)
contradicts Observation 1. When i is even and
j is odd or i is odd and j is even, the equality
qi(δ1) = qj(δ2) contradicts Observation 2.

Claim 3. Given two packets δ1 and δ2 not necessar-
ily distinct, the first part path of δ1 and the second
part path of δ2 are edge-disjoint.

The nodes in the first part path have k, k + 1, or
k − 1 one bits. Consider any edge e1 = (n1, n2) in
the first part path of δ1. If n1 has k one bits, then
it changes some 01 buddy to 00 or changes some 10
buddy to 11 and becomes n2. If n1 has k+1 one bits,
then it changes some 11 buddy to 01. If n1 has k− 1
one bits, then n1 changes some 00 buddy to 10. On
the other hand, Consider any edge e2 = (n3, n4) in
the second part path of δ2. If n3 has k one bits, then
it changes some 00 buddy to 01 or changes some 11
buddy to 10. If n3 has k +1 one bits, then it changes
some 01 buddy to 11. If n3 has k−1 one bits, then it
changes some 10 buddy to 00. All three cases in the
second part path of δ2 are different from those in the
first part path of δ1. So e1 6= e2.

Claim 4. Given two distinct packets δ1 and δ2, the
path of δ1 and the third part path of δ2 are edge-
disjoint.

Bit d− 1 of the target node of δ2 is 1, which is dif-
ferent from all the intermediate nodes in the first part
paths and the second part paths of δ1. By Lemma
1, the targets of δ1 and δ2 are distinct. The claim
follows.

By the four claims, we know that the paths we
construct for the packets in σe,k/d are edge-disjoint.
The lemma follows.

Theorem 2. For any minimal oblivious routing al-
gorithm A, the competitive ratio of A is at least

(3/4)log2(d−1)

d
·
⌊(d−1)/4⌋
∑

k=0

(d − 1)! · k!

(d − 1 − k)! · (2k + 1)!
.

Proof. Let m be a large integer. Consider the bad
input σ̂ and the edge ê mentioned in Lemma 3. Let
σ = (σ̂)m. Because A is an oblivious algorithm and
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by Lemma 3,

exp(loadA(σ, ê)) = m · exp(loadA(σ̂, ê))

≥ m · (3/4)log2(d−1)

·
⌊(d−1)/4⌋
∑

k=0

(d − 1)! · k!

(d − 1 − k)! · (2k + 1)!
.

Therefore,

exp(costA(σ))

= exp(max
e∈E

(loadA(σ, e)))

≥ exp(loadA(σ, ê))

≥ m · (3/4)log2(d−1)

·
⌊(d−1)/4⌋
∑

k=0

(d − 1)! · k!

(d − 1 − k)! · (2k + 1)!
.

On the other hand, by Lemma 4, costADV(σ) ≤
m · costADV(σ) = m · d. By the definition of com-
petitiveness in Equation 1, the competitive ratio of

A is at least exp(costA(σ))−β
costADV(σ) . When m is large, β is

negligible. The theorem follows.

5 A Randomized Minimal

Oblivious Routing Algorithm

In this section we provide a randomized minimal
oblivious routing algorithm called MinRand and an-
alyze its competitive performance. Consider an ar-
bitrary input of m packets σ = {δ1δ2 · · · δm}. Min-

Rand processes each packet in σ independently. Let
δ = 〈s, t〉 be a packet in σ. MinRand chooses a mini-
mal path for δ randomly and uniformly from all possi-
ble minimal paths connecting s and t. We analyze the
competitive performance of MinRand in the following.
First, it’s easy to see that the following lemma is true.

Lemma 5. Let δ be a packet and let e be an edge
that e ∈ SE(δ, ie) for some ie. The expected load of
δ on e is exp(loadMinRand({δ}, e)) = 1

|SE(δ,ie)|
.

Theorem 3. The competitive ratio of MinRand is at
most

αMinRand =

d−1
∑

k=0

9 · d! · k!

(d − 1 − k)! · (2k + 1)!
.

Proof. First we show that for any input σ and any
edge e, exp(loadMinRand(σ, e)) ≤ αMinRand

6 · costADV(σ).

Let edge e0 = 0d (0)−−→ . Note that all hypercube edges
are symmetrical. For any input σ and any edge e,
there is an input σ′ that exp(loadMinRand(σ

′, e0)) =
exp(loadMinRand(σ, e)) and costADV(σ′) = costADV(σ).
Therefore, without loss of generality we focus on the

edge e0 = 0d (0)−−→ in the following. Further, we as-
sume that σ contains no packets that could never
cross e0, because such packets have no effect on the
expected load on e0. For any packet δ ∈ σ, assume
that e0 ∈ SE(δ, iδ), for some iδ.

We define the weight of an edge e = (u, v) with
respect to e0, denoted as w(e), as follows. If bit 0
of u is 0 and u has k one bits, then define w(e) =

1

(2k+1

k )·(k+1)
; else if bit 0 of v is 1 and v has k + 1 one

bits, then define w(e) = 1

(2k+2

k+1 )·(k+1)
; otherwise define

w(e) = 0. Consider a packet δ = (s, t) in σ. Define
the cumulative weight of ADV on δ as WADV(σ) =
∑

e∈τ(δ) w(e), where τ(δ) is the path taken by ADV

for the packet δ. We argue in the following that
WADV(δ) ≥ exp(loadMinRand(δ, e)) = 1

|SE(δ,iδ)| .

Let δ = (s, t), k1 be the distance from s to node
0d, and k2 be the distance from 0d−11 to t. It’s easy
to see that

(1) bit 0 of s is 0 and s has k1 one bits;

(2) bit 0 of t is 1 and t has k2 + 1 one bits;

(3) the distance from s to t is k1 + k2 + 1;

(4) iδ = k1 + 1; and

(5) |SE(δ, iδ)| =
(

k1+k2+1
k1

)

· (k2 + 1).

Now consider the case where k1 ≤ k2. No matter
which path ADV takes for δ, it must crosses an out-
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going edge of s. Call this edge e1. Then,

WADV(δ) ≥ w(e1) =
1

(

2k1+1
k1

)

· (k1 + 1)

≥ 1
(

k1+k2+1
k1

)

· (k1 + 1)
≥ 1
(

k1+k2+1
k1

)

· (k2 + 1)

=
1

|SE(δ, iδ)|
.

Consider the other case that k1 > k2. In this case δ
must crosses an incoming edge of t. Call this edge e2.
Then,

WADV(δ) ≥ w(e2) ≥
1

(

2k2+2
k2+1

)

· (k2 + 1)

≥ 1
(

k1+k2+1
k2+1

)

· (k2 + 1)
≥ 1
(

k1+k2+1
k1

)

· (k2 + 1)

=
1

|SE(δ, iδ)|
.

In both cases,

WADV(δ) ≥ 1

|SE(δ, iδ)|
. (2)

Let I = {δ | e0 ∈ SE(δ, i), for some i.}, the set of
packet δ that e0 is in some minimal path for δ. Let
m(δ) be the number of packets in σ that are equiva-
lent to δ. Because MinRand is an oblivious algorithm,

exp(loadMinRand(σ, e0))

=
∑

δ∈I

exp(loadMinRand({δ}m(δ), e0)).

By Lemma 5,

exp(loadMinRand({δ}m(δ), e0)) ≤
m(δ)

|SE(δ, iδ)|
.

Therefore,

exp(loadMinRand(σ, e0)) ≤
∑

δ∈I

m(δ)

|SE(δ, iδ)|

=
∑

δ∈σ

1

|SE(δ, iδ)|

≤
∑

δ∈σ

WADV(δ), by Equation 2,

=
∑

e∈E

(loadADV(σ, e) · w(e))

≤
∑

e∈E

(costADV(σ) · w(e))

≤ costADV(σ)
d−1
∑

k=0

(

(

d−1
k

)

· d
(

2k+1
k

)

· (k + 1)

+

(

d−1
k

)

· d
(

2k+2
k+1

)

· (k + 1)

)

= costADV(σ)

d−1
∑

k=0

3 · d! · k!

2 · (d − 1 − k)! · (2k + 1)!
.

Generally, the derivation is true for any edge in the
hypercube, as a result, for any edge e ∈ E,

exp(loadMinRand(σ, e))

≤ costADV(σ)
d−1
∑

k=0

3 · d! · k!

2 · (d − 1 − k)! · (2k + 1)!
.

Let

R = 6 · costADV(σ)

d−1
∑

k=0

3 · d! · k!

2 · (d − 1 − k)! · (2k + 1)!
.

Consider any edge e ∈ E, by Chernoff’s bound [14,
17],

P [ loadMinRand(σ, e) ≥ R ] ≤ 2−R.

Then, for any edge e1, e2, · · · ∈ E,

P [ ∃e, loadMinRand(σ, e) ≥ R ]

= P [ loadMinRand(σ, e1) ≥ R

or loadMinRand(σ, e2) ≥ R or · · · ]

≤ P [ loadMinRand(σ, e1) ≥ R ]

+ P [ loadMinRand(σ, e1) ≥ R ] + · · ·
≤ |E| · 2−R.
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It is easy to see that

exp(costMinRand(σ))

≤ R + P [ ∃e, loadMinRand(σ, e) ≥ R ]

· (The max value of costMinRand(σ))

≤ R + |σ| · |E| · 2−R.

Note that

R = 6 · costADV(σ) ·
d−1
∑

k=0

3 · d! · k!

2 · (d − 1 − k)! · (2k + 1)!

≥ 6 · |σ||E| · 1,

and

|σ| · |E| · 2−R ≤ |σ| · |E|
26·|σ|/|E|

.

As |σ| grows, |σ| · |E| grows slower than 26·|σ|/|E|, so
|σ| · |E| · 2−R = O(1). In particular, when |σ| ≥ N2,

|σ| · |E| · 2−R ≤ 2d·d·22d

26·2d/d
< 1. As a result, when |σ| ≥

N2, exp(costMinRand(σ)) ≤ R + 1; when |σ| < N2,
exp(costMinRand(σ)) ≤ |σ| < N2. Now we are ready
to say that,

exp(costMinRand(σ)) ≤ R + N2

=

(

d−1
∑

k=0

9 · d! · k!

(d − 1 − k)! · (2k + 1)!

)

· costADV(σ) + N2.

The theorem follows.

6 Comparison of the Lower and

Upper Bounds

Let

φ(k) =
(d − 1)!k!

(d − 1 − k)!(2k + 1)!
.

The lower bound given in Section 4 is

LB =
(3/4)lg(d−1)

d
·
⌊ d−1

4
⌋

∑

k=0

φ(k).

The upper bound given in Section 5 is

UB = 9d ·
d−1
∑

k=0

φ(k).

Lemma 6.

k ≥ d − 7

5
⇐⇒ φ(k + 1)

φ(k)
≤ 1.

Proof. φ(k+1)
φ(k) = (k+1)(d−1−k)

(2k+2)(2k+3) = 2−1−k
2(2k+3) . Therefore,

φ(k+1)
φ(k) ≤ 1 ⇐⇒ d − 1 − k ≤ 2(2k + 3) ⇐⇒ k ≥

d−7
5 .

Lemma 7.

d−1
∑

k=0

φ(k) ≤ 16 ·
⌊ d−1

4
⌋

∑

k=0

φ(k).

Proof. Let

U =

d−1
∑

k=0

φ(k) =

⌈ d−7

5
⌉−1

∑

k=0

φ(k) +

d−1
∑

k=⌈ d−7

5
⌉

φ(k),

L =

⌊ d−1

4
⌋

∑

k=0

φ(k) =

⌈ d−7

5
⌉−1

∑

k=0

φ(k) +

⌊ d−1

4
⌋

∑

k=⌈ d−7

5
⌉

φ(k).

Let n(a, b) = b−a+1, the number of integers between
a and b, inclusive. Then n(⌈d−7

5 ⌉, d− 1) ≤ 4d+7
5 , and

n(⌈d−7
5 ⌉, ⌊d−1

4 ⌋) ≥ d+3
20 . As a result,

n(⌈d−7
5 ⌉, d − 1)

n(⌈d−7
5 ⌉, ⌊d−1

4 ⌋)
≤ 16d + 28

d + 3
≤ 16. (3)

Therefore,

U =

⌈ d−7

5
⌉−1

∑

k=0

φ(k) +

d−1
∑

k=⌈ d−7

5
⌉

φ(k)

≤ 16 ·
⌈ d−7

5
⌉−1

∑

k=0

φ(k) +

d−1
∑

k=⌈ d−7

5
⌉

φ(k),

12



by Lemma 6 and Eq. (3),

≤ 16 ·
⌈ d−7

5
⌉−1

∑

k=0

φ(k) + 16 ·
⌊ d−1

4
⌋

∑

k=⌈ d−7

5
⌉

φ(k)

= 16 · L.

Theorem 4.

UB

LB
= O(d3).

Proof.

UB

LB
=

9d2

(3/4)lg(d−1)
·
∑d−1

k=0 φ(k)
∑⌊ d−1

4
⌋

k=0 φ(k)

≤ 9d2

(3/4)lg(d−1)
· 16 = O(d3).

Theorem 5. The order of the lower bound for min-
imal oblivious routing is

Ω(
(5/4)d

d5
).

Proof. By Sterling’s formula, there are three con-
stants x0, c1, and c2 that when x is at least x0,

c1

√
2πx(

x

e
)x ≤ x! ≤ c2

√
2πx(

x

e
)x.

A lower bound for
∑⌊(d−1)/4⌋

k=0 φ(k) is derived in the

following. Let d′ = d − 1,

⌊ d−1

4
⌋

∑

k=0

φ(k) ≥ φ(⌊d − 1

5
⌋)

=
(d − 1)!(k)!

(d − 1 − k)!(2k + 1)!

∣

∣

∣

∣

k=⌊ d−1

5
⌋

=

(

1

(k + 1)(d − 1 − k)(2k + 1)

· (d − 1)!

(d − 2 − k)!
· (k + 1)!

(2k)!

)∣

∣

∣

∣

k=⌊ d−1

5
⌋

≥ 1

d3
· c1

√
2πd′(d′

e )d′

c2

√

2π(4d′/5)( (4d′/5)
e )4d′/5

· c1

√

2π(d′/5)(d′/5
e )d′/5

·c2

√

2π(2d′/5)(2d′/5
e )2d′/5

= (
c1

c2
)2 ·
√

5

8
· 1

d3
· (5

4
)d′

.

As a result, our lower bound for minimal oblivious
routing is

(3/4)lg(d−1)

d
·
⌊ d−1

4
⌋

∑

k=0

φ(k)

≥ (3/4)lg(d−1)

d
· (c1

c2
)2 ·
√

5

8
· 1

d3
· (5

4
)d′

= Ω(
(5/4)d

d5
).
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