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Abstract

We investigate the problem of characterizing the solution spaces for timed automata augmented
by unknown timing parameters (calledtiming parameter automata(TPA)). The main contribution of
this paper is that we identify three non-trivial subclasses of TPAs, namely,upper-bound, lower-bound
andbipartite TPAs, and analyze how hard it is to characterize the solution spaces. As it turns out,
we are able to give complexity bounds for the sizes of the minimal (resp., maximal) elements which
completely characterize the upward-closed (resp., downward-closed) solution spaces of upper-bound
(resp., lower-bound) TPAs. For bipartite TPAs, it is shown that their solution spaces are not semilinear
in general.We also extend our analysis to TPAs equipped with counters without zero-test capabilities.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Timed automata have been a popular model in the research of formal description and
verification of real-time systems[3]. In real-world applications, systems are usually de-
scribed with unknown parameters to be analyzed. Here we use the termtiming parameters
to refer to those parameters which are compared with clocks in either timed automata[5]
or parametric TCTL formulae[14–16]. A timed automaton extended with unknown tim-
ing parameters is called atiming parameter automaton (TPA). A valuationof unknown
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parameters making the goal state reachable in a TPA is called asolution. In this paper, we
are mainly concerned with the following problem:

Thereachability solution characterization (RSC)problem: Given a TPAA and a goal
predicate�, formulate a representation for the solution space ofAwith respect to�.

By ‘formulating a representation’wemean finding a proper characterization for the solution
spacesoas toallowqueriesarisen frequently in verification (suchasemptiness,membership,
etc) to be answered effectively.
In [5], it has been shown that the emptiness problem (i.e., the problemof decidingwhether

there exists a parameter valuation under which the associated timed language is nonempty)
becomes undecidable when three ormore clocks are comparedwith unknown parameters in
TPAs. Knowing such a limitation, a line of subsequent research has been focused on theRSC
problem for a number of restricted versions of TPAs (see, e.g.,[4,8,14–16]). These positive
results obtained in the last few years have all been focused on unknown timing parameters in
the specificationof logic formulae.But in practice, it ismore likely that designengineerswill
use unknown parameters in the system behaviour descriptions. Moreover, design engineers
will be more interested in knowing the condition for solution parameters valuations than in
knowing whether there exists a solution parameter valuation. In this work, we identify three
subclasses of TPAs and investigate the complexity issue of theirRSCproblems. The three
subclasses are calledupper-bound TPAs, lower-bound TPAs, andbipartite TPAs. Consider
a TPA and w.l.o.g., we assume that only� and< are used in the predicates of the TPA.
An upper-bound parameter� is one that only appears to the right of an inequality operator
(e.g.,x < �, x��), whereas alower-bound parameter� appears to the left of an inequality
operator (e.g.,� < x, ��x). Upper-bound(resp. lower-bound) TPAs are those whose
unknown parameters are allupper-bound(resp.lower-bound) parameters.BipartiteTPAs
refer to those for which every unknown parameter is either a lower-bound parameter or an
upper-bound parameter, but not both. Bipartite TPAs were considered in a recent article
[10] in which the emptiness problem (undecidable for general TPA[5]) was shown to be
decidable for such automata. In our setting, unknown parameters range over the set of
natural numbers. As the work of[1] shows, unknown parameters of integer values can be
used for modelling, for instance, the maximal number of retransmissions in theBounded
RetransmissionProtocol(BRP), which is a data link protocol used byPhilips. The interested
reader is referred to[5,6,10] for TPAs with their parameters ranging over the set of real
numbers. (Note that integer parameters are also considered in[5,6].)
Intuitively, what makesupper-bound(resp. lower-bound) TPAs easier to analyze, in

comparison with their general counterparts, lies in the fact that for each of such TPAs,
the solution space isupward-closed(resp.downward-closed). (A setSoverk-dimensional
vectors of natural numbers, for somek, is calledupward-closed(resp.,downward-closed)
if ∀u ∈ S, v�u �⇒ v ∈ S (resp.,∀u ∈ S, v�u �⇒ v ∈ S)). It is well known that an
upward-closed set (resp., downward-closed set) is completely characterized by itsminimal
(resp.,maximal) elements, which always form a finite set although the set might not be
effectively computable in general. As we shall see later in this paper, we are able to give
a complexity bound for the sizes of the minimal elements for a given upper-bound TPA.
Our analysis is carried out in a way similar to a strategy proposed in[13] (by Valk and
Jantzen), in which a sufficient and necessary condition was derived under which the set of
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minimal elements of anupward-closed set is guaranteed to beeffectively computable. (Note,
however, that[13] reveals no complexity bounds for the sizes of the minimal elements.)
Taking advantage of certain properties offered by timed automata, we are able to refineValk
and Jantzen’s approach to yield complexity bounds for the sizes of the minimal elements
for the upward-closed sets associated with upper-bound TPAs, allowing us to characterize
their solution spaces. This in turn answers theRSCproblem for upper-bound TPAs. To a
certain extent, our result supplements the work of[10] (in which the emptiness problem
was shown to be decidable for bipartite TPAs) by tackling a more general problem. We
are also able to extend our analysis to the model of upper-boundtiming parameter vector
addition systems with states(TPVASSs), each of which can be viewed as a TPA equipped
with counters without zero-test capabilities. Once the sizes of minimal elements become
available, finding all such elements can be done by exhaustive search using the region graph
technique, although it would clearly be interesting to develop smarter (and more efficient)
algorithms. Some complexity results are also derived for lower-bound TPAs. For bipartite
TPAs, we are able to show that their solution spaces are not semilinear in general, in spite
of the fact that the emptiness problem is decidable[10].
We feel that the method developed in this paper for analyzing upward-closed sets is

interesting in its own right. Our strategy provides a refinement over the approach proposed
in [13] in the sense that the sizes of the minimal elements can now be deduced, provided
that certain conditions are met. It would be interesting to seek additional applications of
our technique.

2. Models of parametric timed systems

Let Z (N andR+, resp.) be the set of all integers (nonnegative integers, and nonnegative
reals, resp.), andZk (Nk, resp.) be the set ofk-dimensional vectors of integers (nonnegative
integers, resp.). Let0 be thezero vector. Let v(i),1� i�k, denote theith component of a
kdimensional vectorv. Given two vectorsu andv(∈ Nk), u�v if ∀1� i�k, u(i)�v(i),
andu < v if u�v andu �= v. We define thenormof v, denoted by‖v‖, to bemax{|v(i)| |
1� i�k}, i.e., the absolute value of the largest component inv. For a set of vectorsV =
{v1, . . . , vm}, thenorm of V is defined to bemax{‖vi‖ | 1� i�m}. In our subsequent
discussion, we letN∞ = N ∪ {∞} (∞ is a new element capturing the notion of something
being ‘arbitrarily large’, and for everyt ∈ N, t < ∞ holds). We also letNk∞ = (N ∪
{∞})k = {(v1, . . . , vk) | vi ∈ (N ∪ {∞}),1� i�k}. For a v ∈ Nk∞, we also write
‖v‖ to denotemax{v(i) | v(i) �= ∞}, (i.e., the largest component inv excluding∞) if
v �= (∞, . . . ,∞); ‖(∞, . . . ,∞)‖ = 1. Unless stated otherwise, we always assume that
numbers are represented inbinary, and thesizeof a numbert ∈ N is �log2 t�.
A setU(⊆ Nk) is calledupward-closedif ∀u ∈ U , ∀v, v�u �⇒ v ∈ U . An element

u (∈ Nk) is said to beminimalif there is nov (�= u) ∈ U such thatv < u.Wewritemin(U)
to denote the set ofminimal elements ofU. For an elementv ∈ Nk∞, letreg(v) = {w ∈ Nk |
w�v}. A setD(⊆ Nk) is calleddownward-closedif ∀u ∈ D, ∀v,0�v�u �⇒ v ∈ D.
An elementu (∈ Nk∞) is said to bemaximalif there is nov (�= u) ∈ D such thatv > u.
We writemax(D) to denote the set of maximal elements ofD. For a given dimension, it
is well known that every upward-closed (resp., downward-closed) set has a finite number
of minimal (resp., maximal) elements. However, such finite sets may not be effectively
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computable in general. In an article[13] by Valk and Jantzen, the following result was
proven which suggests a sufficient and necessary condition under which the set of minimal
elements of an upward-closed set is effectively computable:

Theorem 1(Valk and Jantzen[13] ). For each upward-closed setU(⊆ Nk), min(U) is
effectively computable iff for everyv ∈ Nk∞, the problem‘reg(v) ∩ U �= ∅?’ is decidable.

2.1. Timing parameter automata (TPA)

Given a setPof basic propositions, a setXof clocks, and a setH of unknown parameters,
astate predicate� of P, X, andH has the following syntax rules.

� ::= f alse | p | x ∼ c | x ∼ � | �1 ∨ �2 | ¬�1,

wherep ∈ P , x ∈ X, c ∈ N , � ∈ H , ∼ ∈ {� , <,=, � , >}, and�1, �2 are state
predicates. Notationally, we letB(P,X,H) be the set of all state predicates onP,X, andH.
Parentheses and traditional shorthands like⇒,∧ can also be used. It is worthy of pointing
out that, like the model given in[3], clock constraints are assumed to bediagonal-free(i.e.,
the comparison between two clocks is not allowed). The interested reader is referred to
[7] for details about why relaxing the diagonal-free constraints will render several forward
analysis algorithms reported in the literature incorrect.

Definition 1 (Timing parameter automata, state and interpretation). A TPA A is a tuple
(Q, q0, X,H,�, E, �,�), whereQ is a finite set of modes (operation modes, or control
locations),q0 ∈ Q is the initial mode,X is a set of clocks with readings inR+, H is a set
of parameter variables with values inN, � is a mapping fromQ such that for eachq ∈ Q,
�(q) ∈ B(∅, X,H) is the invariance condition true inq,E ⊆ Q×Q is the set of transitions,
� : E �→ B(∅, X,H) is a mapping which defines the transition-triggering conditions, and
� : E �→ 2X defines the set of clocks to be reset on each transition. Astateof TPAA is a
pair (q, �) such thatq ∈ Q and� is a mapping fromX toR+ (i.e.,� represents the current
clock readings). LetUA be the state set ofA. An interpretation Ifor H is a mapping from
H toN.

Let A be specified in Definition1. Given an interpretationI, AI is the timed automa-
ton obtained fromA with all parameters interpreted according toI. Given a predicate� ∈
B(P,X,H) and an interpretationI, �I is the new predicate obtained from� with all pa-
rameters interpreted according toI.

Definition 2 (Satisfaction of state predicate with interpretation). Astate(q, �)satisfiesstate
predicate� ∈ B(Q,X,H) with interpretationI , written as(q, �)�I �, iff
• (q, �) � �I f alse;
• (q, �) �I q ′ iff q = q ′;
• (q, �) �I x ∼ � iff �(x) ∼ I (�) where� ∈ H ;
• (q, �) �I x ∼ c iff �(x) ∼ c wherec ∈ N ;
• (q, �) �I�1 ∨ �2 iff (q, �)�I�1 or (q, �)�I�2; and
• (q, �) �I¬�1 iff (q, �) � �I�1.
If for all I, we have(q, �)�I�, then we may write(q, �)��.
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Definition 3 (Transitions). Given two states(q, �), (q ′, �′), there is amode transitionfrom
(q, �) to (q ′, �′) in Awith interpretationI , in symbols(q, �) →I (q

′, �′), iff, (q, q ′) ∈ E,
(q, �)�I�(q) ∧ �(q, q ′), (q ′, �′)�I�(q ′),

∀x ∈ �(q, q ′)(�′(x) = 0), and∀x �∈ �(q, q ′)(�′(x) = �(x)).

For notational convenience, given a clock reading� and a� ∈ R+, we define a new clock
reading�+ � to be(�+ �)(x) = �(x)+ �, for all x ∈ X. We also write(q, �)+ � to denote
the new state(q, � + �).

Definition 4 ((q, �)-run of interpreted TPA). An infinite computation ofA starting at state
(q, �) with interpretationI is called a(q, �)-run and is a sequence ((q1, �1, t1), (q2, �2, t2),
. . .) such that
• q = q1 and� = �1;
• t1t2 . . . is a monotonically increasing sequence such that for eacht ∈ R+, there is an
i ∈ N with ti� t (meaning that the run is divergent);

• for each integeri�1 and for each real 0��� ti+1− ti , (qi, �i )+��I�(qi) (meaning that
the invariance condition�(qi) continuously holds throughout the time interval[ti , ti+1]);
and

• for eachi�1,A goes from(qi, �i ) to (qi+1, �i+1) because of
- a mode transition, i.e.,ti = ti+1 ∧ (qi, �i ) →I (qi+1, �i+1); or
- time passage, i.e.,ti < ti+1 ∧ (qi, �i )+ ti+1 − ti = (qi+1, �i+1).

2.2. The reachability solution characterization problem

Let 〈0〉 be the mapping that maps every clock to zero. The initial state of a TPAA is
(q0, 〈0〉). Given a TPAA, a goal state-predicate� ∈ B(Q,X,H), and an interpretationI ,
we say that� is reachablein A with I , in symbolsA�I�, iff there exist a(q0, 〈0〉)-run
= ((q1, �1, t1), (q2, �2, t2), . . .) in A, ani�1, and a� ∈ [0, ti+1 − ti], such that(qi, �i )+
��I�. An interpretationI satisfyingA�I� is called asolution for A and�. The set of
all solutions forms the so-calledsolution space. With respect to a given pair ofA and
� ∈ B(Q,X,H), the problem offinding a proper characterization for the solution space
of A with respect to� arises naturally in many real-world applications. Such a problem
is called theReachability Solution Characterization (RSC)problem. Throughout the rest
of this paper, we writeRSC(A, �) to denote the solution space of TPAA with respect to
predicate�.

2.3. Lower-bound, upper-bound, and bipartite TPAs

One of the major motivations in this work is to find practical classes of TPAs for which
we can develop algorithms with known complexities for their RSC problem. First, we need
the following concepts. A predicate� ∈ B(P,X,H) is in literal form iff in �, negation
symbols only appear in front of elements inP; there are no negative signs immediately
before inequality literals; and only� and< are used in inequality atoms. Every predicate
can be transformed to a literal form in linear time. (For instance,¬(x��) hasx < � as
its equivalent literal form.) A TPAA = (Q, q0, X,H,�, E, �,�) is called aliteral TPA iff
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�(q) is in literal form for allq ∈ Q; and�(q, q ′) is also in literal form for allq, q ′ ∈ Q.
Notice that every TPA can also be transformed to a literal TPA in linear time. In a literal
TPA, if an unknown parameter� appears to the right of an inequality operator in a literal
(e.g.x��, x < �), then� is called anupper-bound parameter. If it appears to the left of an
inequality operator in a literal (e.g.��x, � < x), then it is called alower-bound parameter.

Definition 5 (Bipartite, lower-bound, and upper-bound TPAs). A bipartiteTPA A is a lit-
eralTPAsuch that its setH of lower-boundparameters and setH of upper-boundparameters
are disjoint, i.e.,H ∩H = ∅. If H = ∅, thenA is also called anupper-boundTPA.If H = ∅,
thenA is also called alower-bound TPA.A predicate� in literal form is called anupper-
bound(resp.,lower-bound) predicate if all of its constituent parameters areupper-bound
(resp.,lower-bound) parameters.

There are two interpretations on a bipartite TPA which are important in defining the
computability of the RSC problem. The first is themaximum interpretationIM with which
IM(�) = 0 for all � ∈ H andIM(�) = ∞ for all � ∈ H . The second is theminimum
interpretationIm with whichIm(�) = ∞ for all � ∈ H andIm(�) = 0 for all � ∈ H . Note
that maximum and minimum interpretations are not really interpretations as we defined
in Definition 1 which does not map parameters to∞. While interpreting(q, �)�IM� and
(q, �)�Im�, we shall assumec ∼ ∞ = trueand∞ ∼ c = false, where∼∈ {<, �}.
We assume the basic knowledge ofregion graphconstructions for timed automata pre-

sented in[2,3]. Suppose that the biggest timing constant used inA and� is CA:�. In [2,3],
given a timed automatonA (or a TPA with an interpretation), aregionfor a state(q, �) is a
triple (q, �,	) such that� records the integer parts of clock readings, at(q, �), up toCA:�
(when a clock reading is bigger thanCA:�, it is represented as∞), and	 records the total
ordering of the fractional parts of zero and clock readings at(q, �). As [2,3] indicates, the
reachability problem of timed automata can be solved in the domain ofregion graphs, each
of which has its region set as the node set and (timed and discrete) transition relation from
region to region as the arc set. A rough bound on the number of regions in a region graph
for AIM was computed as
(|Q|, CA:�, |X|) = 2|Q|((2+ CA:�)|X|)|X|. Here|X||X| is a
rough bound w.r.t. the	-component. Coefficient 2 at the beginning indicates that for each
total-ordering among the fractional parts of clock readings, either all such fractional parts
are nonzero or the first one is zero. Accordingly, there are two kinds of regions. The first is
for regions in which some clocks are of an integer reading withinCA:�, whereas the second
is for those in which no clock is. In the case that the fractional parts of clocks’ readings
are the same, then along each region paths of time progression, the regions will alternate
through between these two kinds of regions. But from a region of the first kind to one of
the second, the elapsed time along the path does not increment by one. In fact, it takes two
alternations in sequence, at least, to increment the elapsed time by one. Thus we can divide
the bound (on numbers of regions) by two, and get a tighter bound on the elapsed times
along paths.

Lemma 2. A�IM � iff there is a run, of less than(
(|Q|, CA:�, |X|) − 1)/2 time units
long, from the initial state(q0, 〈0〉) to a state satisfying�.
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From now on, we shall let�A:� = (
(|Q|, CA:�, |X|) − 1)/2 for convenience. In sub-
sequent sections, we consider the problem of characterizingRSC(A, �) when both TPAA
and goal predicate� are upper-bound (or lower-bound). It is worthy of noting that in either
case, the clock constraints in� can be built into TPAA. Consequently, the RSC problem
can further be modified into one with only state reachability.

3. Computing minimal elements for models with upward-closed solution spaces

3.1. Upper-bound TPAs

Now consider upper-bound TPAs with upper-bound goal predicates. By establishing an
ordering on the elements ofH (i.e.,H = {�1, . . . , �k}, for somek), an interpretation for
parameters inH can now be regarded as ak-dimensional vector inNk. With a slight abuse
of notation, for an interpretationI we write I (�) to denoteI (i), where� = �i . Given an
interpretationI and a��0(� ∈ Nk), we defineI + � as the new interpretation such that
for all � ∈ H , (I + �)(�) = I (�) + �(�). The following lemma shows that the solution
space for each upper-bound TPA w.r.t. an upper-bound goal predicate isupward-closed.

Lemma 3. For any upper-boundTPAAandupper-bound goal predicate�, if A�I� is true,
then∀��0, (A�I+��). In words, the set of interpretations satisfying� is upward-closed.

In view of the above lemma, each solutionI can actually be regarded as arepresentative
for a convex space of solutions, calledfunnelof I. Given an interpretationI, we use〈I 〉 to
represent the funnel pointing atI, i.e.,〈I 〉 = {I + � | ��0}. I is called thepointof funnel
〈I 〉. (Note that〈I 〉 has a uniqueminimal element, namely,I.)A set of funnels〈I1〉, . . . , 〈Im〉
is calledmutually independentiff each funnel is not a subset of the unions of the others, that
is, ∀1� i�m(〈Ii〉 �⊆ ⋃

1� j�m;i �=j 〈Ij 〉), or equivalently∀1� i < j�m ∃
 ∈ H ∃
′ ∈
H(Ii(
) < Ij (
) ∧ Ii(
′) > Ij (
′)).
Given an upper-bound TPA and an�, Lemma3 suggests thatRSC(A, �) is upward-

closed. Using the basic theory of timed automata (see, e.g.,[3]), the problem, given an
interpretationI ∈ Nk∞, deciding ‘reg(I ) ∩ RSC(A, �) �= ∅?’ is clearly decidable. This
observation, in conjunction with Theorem1, yields the computability of the set of min-
imal elements ofRSC(A, �), although it reveals no information regarding the size of
min(RSC(A, �)). In the remainder of this section, we shall take advantage of certain prop-
erties of timed automata to derive complexity bounds for computingmin(RSC(A, �)). Our
analysis involves the following two steps.We first show that the solution spaceRSC(A, �)
is a finite union of funnels. Then, with an inductive scheme on the number of unknown
upper-bound parameters, we derive a finite bound on the magnitudes of parameter val-
ues of point solutions of the funnels in the finite union. The position of an existent so-
lution is important in identifying the finite structure of the solution space. LetI a be the
interpretation that maps every� ∈ H to 1+ a. Lemma2 implies that if the solution space
for an upper-bound TPA is nonempty, thenI (
(|Q|,CA:�,|X|)−1)/2 is a solution.
Let J be apartial interpretationof the parameters inH, that is,J is undefined for some

parameters inH. For convenience, we writeJ (
) = ∞, if 
 is undefined inJ. (By doing
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so,J becomes a vector inNk∞, wherek = |H |.) We conveniently use〈J 〉 as the union
of all 〈I 〉 such thatI (
) = J (
) for every
 defined inJ (i.e., J (
) �= ∞). Notice that
〈J 〉 = ⋃

I∈Nk,∀J (
)�=∞(I (
)=J (
)) 〈I 〉. Thus, we may also write〈I 〉 ⊆ 〈J 〉 if I agrees with
J on every
 defined inJ. Given a partial interpretationJ, in symbols, we letH̄ J be the
set of variables inH uninterpreted byJ , that is,H̄ J = {
 | J (
) is undefined}. In 〈J 〉,
there can be nonsolution interpretations forA and �. The following notation is for the
characterization of those solution interpretations in〈J 〉. Given aJ, we let�J

A:� be the space
of solutionsI for A�I� with 〈I 〉 ⊆ 〈J 〉. If J happens to be a total interpretation, then (1)
�J
A:� = 〈J 〉 = {v | v�J } in caseA�J �; and (2)�J

A:� = ∅ otherwise. For convenience,
given a partial interpretationJ anda ∈ N , we letJ [
 := a] be a new partial interpretation
that agrees withJ in every parameter except thatJ [
 := a](
) = a.

Lemma 4. If J is a partial interpretation andI ∈ �J
A:� is a total interpretation, then

�J
A:� = 〈I 〉 ∪

⋃


∈H̄ J ;0�a<I (
)
�J [
:=a]
A:� . (1)

Proof. We prove this by an induction on the size ofH̄ J . In the base case,|H̄ J | = 0, J
happens to be a total interpretation, and moreover

⋃

∈H̄ J ;0�a<I (
) �J [
:=a]

A:� = ∅. Thus,
the base case is proven.
In the induction step, we assume that the lemma is true for all|H̄ J |�k with k�0. Let us

consider a solution interpretationI ′ ∈ �J
A:�. If 〈I ′〉 ⊆ 〈I 〉, then the lemma is proven. Now

let us consider the case that〈I ′〉 �⊆ 〈I 〉. In this case, this means that there is an
 ∈ H̄ J

such thatI ′(
) < I (
). By enumerating all the possibilities of
 ∈ H̄ J and all the possible
values in[0, I (
)], we obtain the expression of⋃
∈H̄ J ;0�a<I (
) �

J [
:=a]
A:� . �

The importance of Lemma4 is that once we can find a solution interpretationI in the
solution space, the lemma suggests a way to inductively and compositionally construct the
solution space by means of unions of funnels. But according to Lemma2, we do know how
to find this special interpretationI based on a given partial interpretation. As we shall see
later, the ability to effectively compute a total interpretationI ∈ �J

A,� plays a critical role
in deriving a complexity bound for the size ofmin(RSC(A, �)).

3.2. Complexity analysis

Let(∞, . . . ,∞)be thepartial interpretation that is undefinedonevery parameter. Lemma
4, together with the fact thatRSC(A, �) = �(∞,...,∞)

A:� , suggests an algorithm for computing

theconstituent funnels ofRSC(A, �), provided thatI ∈ �J
A:� is computable for everypartial

interpretationJ . That is, if we view�J
A:� as a procedure-call with parametersA, �, andJ,

then we can construct the solution space representation by invoking�(∞,...,∞)
A:� .

By examining all components of Formula (1), we find that every component in (1) is
with straightforwardly known complexity exceptI ∈ �J

A:�. It is obvious that if we can
find bounds on the vectorI ∈ �J

A:� for eachJ , then we can multiply and sum up all the
component complexities to derive the complexity for theRSCproblem.Themajor difficulty
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is to carefully account for all the component complexities so that bounds can be derived.
LetAJ be the new timed automaton obtained fromA by substituting every defined� in J
for J (�); and substituting every undefined�′ in J for ∞. The bounds can be obtained by
using Lemma2. That is, we can construct the region graph forAJ and� and use the length
of the longest simple path in the graph to bound the vector components inI. In the same
reasoning of Lemma2, we know that there is an interpretationI ∈ �J

A:� makingA�I� iff
AJ��. According to[3], the size of region graph is bounded by

2|Q| · |X||X| · (CAJ :� + 2)|X|. (2)

In a region graph of this size, the time-span of the shortest path from one region to another
can always be bounded by|Q| · |X||X| · (CAJ :� +2)|X|. According to the same reasoning of
Lemma2, we can bound each component of theI with |Q| · |X||X| · (CAJ :� + 2)|X|. Notice
thatCAJ :n is now the biggest timing constant used inAwith parameters replaced according
to J. It should also be noted that whenJ (
) = ∞, thenJ (
) is not considered as a timing
constant candidate forCAJ :n.

Lemma 5. For every partial interpretation J, there is anI ∈ �J
A:� such that for every

� ∈ H̄ J , I (�)� |Q| · |X||X| · (CAJ :� + 2)|X|.

We want to construct the inductive definition of the magnitude ofCAJ :�. That is, we
want to defineCAJ :� based on those partial interpretations which define one less parameters
thanJ does. The following lemma unwinds Formula (2) for a bound on the complexity of
I ∈ �J

A:� for eachJ . For convenience, we let|J | be the number of parameters defined
in J .

Lemma 6. In formula(1), for every partial interpretation J, there is anI ∈ �J
A:� such that

for every� ∈ H̄ J , I (�) isO((|Q| · |X||X|)
∑
0� i� |J | |X|i · (CA:� + 2)|X|1+|J |

).

Proof. Base case:|J | = 0. In this case, the bound is|Q| · |X||X| · (CA:� + 2)|X|, which is
exactly the time-span bound of the longest simple path in the region graph forA and� with
IM. This case is true according to Lemma2.
The inductive hypothesis is that there is anI ∈ �J

A:� such that for every� ∈ H̄ J , I (�)

is O((|Q| · |X||X|)
∑
0� i� |J | |X|i · (CA:� + 2)|X|1+|J |

). This means that in the induction step,
the biggest timing constant used inAJ [�:=a] is of the same complexity. Thus we deduce,
according to Formula (2), that the size bound of the region graph forAJ [�:=a] is

O(2|Q| · |X||X| · ((|Q| · (|X||X|))
∑
0� i� |J | |X|i · (CA:� + 2)|X|1+|J | + 2)|X|)

= O(2|Q| · |X||X| · ((|Q| · (|X||X|))|X| ∑0� i� |J | |X|i · (CA:� + 2)|X|1+|J |·|X|))
= O((|Q| · |X||X|)

∑
0� i�1+|J | |X|i · (CA:� + 2)|X|2+|J |

).

Since|J | + 1 = |J [� := a]| and the reachability does not need a path along which the
elapsed time is greater than the number of regions, the complexity is proven.�
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Fig. 1. An example of upper-bound TPAs.

Using Lemmas4 and6, we have the following result:

Theorem 7. Given an upper-bound TPA A and an upper-bound predicate�, ‖min(RSC
(A, �))‖ is bounded byO((|Q| · |X| · CA:�)|X|c∗|H |

), where c is a constant.

Once the sizes of minimal elements become available, finding all such elements can be
done by exhaustive search using the region graph technique, although it would clearly be
desirable to develop smarter (and more efficient) algorithms.
In Fig. 1, we have a simple upper-bound TPA to show how our algorithm inductively

invokes the basic region graph construction procedure in[2] to build the solution space
characterization. There are two ways that we can reach the final modeqf . The first is from
modeq0 throughq1 to qf . The time elapsed in such a path is of the pattern 3· 5 · i + 2 for
somei�1. Note that arc(q0, q1) guarantees thati�1. Since clockszandware never reset
in this way, whenqf is reached,z = w�17 and we can infer that
 = � = 17 characterizes
a minimal solution.
The second way to reachqf is from q0 and throughq1, q2, andq3. The time elapsed in

the computation fromq0 to q2 is of the pattern 3· 5 · i + 1 for somei�1. Thus in this way,
we can infer that
�16 when transition(q1, q2) takes place. Then the time elapsed in the
computation fromq2 to qf is of the pattern 7· 11 · j for somej�1. Again, arc(q2, q3)
guarantees thatj�1. Thus in this way, the time elapsed fromq0 throughq1, q2, q3 to qf is
of the pattern 15i + 1+ 77j for somei�1, j�1. From this, we can infer that
 = 16 and
� = 93 characterizes another minimal solution.
In the execution of our algorithm, we will first find a minimal solution by interpreting


 = ∞ and� = ∞. Two candidates are(17,17) and(16,93). In formula (1) in Lemma4,
if we chooseI = (17,17), then the formula says that the solution space is characterized by
〈(17,17)〉 ∪ (

⋃
0�a<17�

(a,∞)
A:� ) ∪ (

⋃
0�a<17�

(∞,a)
A:� ). The characterization of�(a,∞)

A:� can
be obtained by interpreting
 asa in A. From the reasoning in the last two paragraphs, we
know that when 0�
 < 17, the only solution is(16,93). This can be obtained by finding
the elapsed time of the path toqf with 
 = 16 and� = ∞. Similarly, the characterization

of �(∞,a)
A:� can be obtained by interpreting� asa in A. From the reasoning above, we know

that when 0�� < 17, there is no solution.

3.3. Timing parameter vector addition systems with states

Our techniquecanalsobeapplied toanalyzingupper-boundTPVASSs.Anm-dimensional
vector addition system(VAS) is a pair(v0, V ) wherev0 ∈ Nm is called thestart vector,
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andV, a finite subset ofZm, is called the set ofaddition rules. A vectorz ∈ Nm is said to be
reachable inVAS(v0, V ) if z = v0+v1+· · ·+vj for somej�0, where eachvi(1� i�j)
is in V and, for each 1� i�j , v0 + v1 + · · · + vi�0. Thecoveringproblem of VASs is
that of, given a VAS(v0, V ) and a vectorv, deciding whether there is a reachable vector
z such thatz�v (i.e., z coversv). An m-dimensional vector addition system with states
(VASS) is a 5-tuple(v0, V , p0, S, �) wherev0 andV are the same as defined above,S is
a finite set ofstates, � ⊆ S × S × V is thetransition relation, andp0 ∈ S is the initial
state. Elements(p, q, v) of � are calledtransitionsand are usually written asp → (q, v).
A configuration of a VASS is a pair(p, u), wherep ∈ S andu ∈ Nm. (p0, v0) is theinitial
configuration. The transitionp → (q, v) can be applied to the configuration(p, u) and
yields the configuration(q, u+ v), provided thatu+ v�0. The reader is referred to[9,11]
for more about VASs and VASSs.
ATPVASSA is a tuple(v0, V ,Q, q0, X,H,�, E, �,�)wherev0 andV represent the start

vector and the addition rules, respectively, associated with TPA(Q, q0, X,H,�, E, �,�).
One may view a TPVASS as a TPA equipped with counters without zero-test capabilities.
The dimensionof a TPVASS is the dimension of its constituent VAS. It is important to
point out that the waytime is introduced in this computational model differs from that in
the conventionaltimed(or time) Petri nets. Unlike the case in the strong firing semantics
of timed(or time) Petri nets, it isnot required to fire all the enabled transitions at any point
in time during the course of a computation. In our setting it is perfectly legal for time to
elapse, causing enabled transitions to become disabled without being fired.
Using the technique of region graphs, we have:

Lemma 8. Given a TPVASS A, an interpretation I, and an upper-bound predicate� ∈
B(Q,X,H), we can construct a VASSMA,�,I = (v0, V , p0, S, �) and a states ∈ S

such thatA�I� iff there is a computation from(p0, v0) to (s, v) in MA,�,I , for somev.
Furthermore, |S| = O(|Q| · |X||X| · (max{CA:�, ‖I‖} + 2)|X|).

Consider theRSCproblem for anm-dimensional TPVASSA (with respect to predicate
�). FromAwe construct a new TPVASS of dimensionm+ 1 in such a way that from each
configuration satisfying�, a transition incrementing the new (i.e., (m + 1)th) position by
one is introduced. Clearly, theRSCproblem has a solution iff in the new TPVASS, there
is a computation reaching a configuration with nonzero in the (m + 1)th position. Based
upon the discussion above and the fact that anm-dimensional VASSA (with n and l as
the number of states and the largest integer mentioned inA, respectively) can be simulated
by an(m+ 3)-dimensional VASA′ whose largest integer is bounded bymax{n2, l} (from
Lemma 2.1[9]), we have:

Corollary 9. Given anm-dimensional TPVASSA, an interpretation I, and an upper-bound
predicate� ∈ B(Q,X,H),we can construct an(m+4)-dimensional VASWA,� = (v′

0, V
′)

such thatA�I� iff there is a computation fromv′
0 to a vectorv

′′�(0, . . . ,0,1) in the VAS,
for somev′′. Furthermore, ‖WA,�‖ is bounded bymax{(2|Q| · |X||X| · (max{CA:�, ‖I‖} +
2)|X|)2, ‖V ‖, ‖v0‖}.
It is known from[11] that given a VASW = (v0, V ), a vectorv can be covered inW

iff there exists a short covering path whose length is bounded byO(22
cn logn

), wherec is
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a constant andn is the size of the VAS. By treating thedimensionandnormof a VAS as
two separate parameters, an improved bound ofO(s2

d∗m∗logm
) for the length of the shortest

covering path (wheresandmare the norm and dimension of theVAS, respectively, andd is
a constant) can be found in[12]. This, in conjunction with Corollary9, allows us to derive
the following result.

Theorem 10. Givenanupper-boundTPVASSAandanupper-boundpredicate�,‖min(RSC
(A, �))‖ is bounded byO((|Q| · |X| · CA:�)2

c·m· logm·|X|d|H |
), wherec, d are constants.

In what follows, we propose a framework using which the sizes of the minimal elements
in an upward closed set can be calculated. The idea is the following. In[13], the key in
proving decidability lies in the ability of, given an arbitraryv ∈ Nk∞, testing whether
‘ reg(v)∩U �= ∅?’. Now suppose in addition to the ability to test ‘reg(v)∩U �= ∅?’, we are
also able to compute the size of a witnessing vectorw in reg(v)∩U , if such a vector exists.
That is, the small witness property holds for the system under consideration. In this case,
the following result can be proven along a line similar to the proof of Theorem1 presented
in [13]. More precisely,

Theorem 11. For each upward-closed setU(⊆ Nk), if given av ∈ Nk∞, a witnessw
for ‘ reg(v) ∩ U �= ∅’ ( if one exists) can be computed such that‖w‖�f (‖v‖), for some

function f, then‖min(U)‖�(
k︷ ︸︸ ︷

f ◦ · · · ◦ f )(1).

4. Computing maximal elements for TPAs with downward-closed solution spaces

For TPAs with unknown lower-bound timing parameters, we still want to find charac-
terization for the solution interpretation. In this case, there is one thing worth noting:the
solution space for the unknowns is downward-closed.Geometrically, this means that the
solution space is a union of “bottom-up” funnels. For convenience, we call such bottom-up
funnelscones, which can be characterized by the maximal solutions of those cones. If we
can find the upper-bounds for the maximal solutions, if any, of those cones, then we can
shape the solution space in this case.

Lemma 12. Given a lower-boundTPAAand a lower-bound predicate�, if A�I� for some
I such that there is an� with I (�) > �A:�, then for allI ′ such thatI ′ agrees withI on all
parameters exceptI ′(�) > I (�), A�I ′�.

Proof. If I (�) > �A:�, then there is a run along which a clockx is incremented beyond
�A:� and tested against conditionx ∼ I (�) where∼∈ {“ > ” , “�”}. This means that there
is a path in the region graph ofAI

M
whose length of time is greater than�A:� and at the

end of the path,x ∼ I (�) is tested. LetX′ be the set of clocks whose reading is greater
than�A:� at the end of the path. Since the length of time is> �A:�, we can pick a sequence
of �A:� + 1 regions along the path such that two successive regions are separated by one
time unit. Among these regions, there must be two identical regions and between these two



F. Wang, H.-C. Yen / Theoretical Computer Science 328 (2004) 187–201 199

regions, the time-length is no less than 1. By repeating this cycle any number of times, we
get a new path (or run)�′ along which the readings of some clocks, including all clocks in
X′, becomes arbitrarily large when tested against lower-bound conditions with unknowns.
This �′ is not only a run ofAIM bus but also a run ofAI ′

. This means no matter how big
I ′(�) is, we can still find a path to make a run inAIM to make�IM reachable. �
Lemma12 implies that to search for maximal solutions in cones, we only have to check

the reachability ofA�I� with I (�)��A:� + 1 for all �. If I is a solution, then so is the
cone characterized by

∧
I (�)��A:� ��I (�), which puts no restrictions on those parameters

�with I (�) = �A:�+1. Thus, a simple way to formulate the algorithm for theRSCproblem
of lower-bound TPAs is with the following formula for the corresponding solution space:

∨

I :A�I �∧∀�,0� I (�)��A:�+1

∧

I (�)��A:�

��I (�). (3)

Theorem 13. Given a lower-bound TPA A and a lower-bound predicate�, the size of
‖max(A, �)‖ can be computed in PSPACE.

Proof. In expression (3), we need PSPACE to query each question ofA�I� given that
the constants used inAI is no greater than�A:� + 1. To see this, we know that each such
basic query needs the search of a region graph with at the most 2|Q| · |X||X| · (�A:� + 2)|X|
regions. Expanding the expression in complexity notation, we get

O(2|Q| · |X||X| · (2|Q| · |X||X| · (CA:� + 2)|X| + 2)|X|)
= O(2|Q| · |X||X| · (2|X||Q||X| · |X||X|2 · (CA:� + 2)|X|2))
= O(2|X|+1|Q||X|+1 · |X||X|2+|X| · (CA:� + 2)|X|2).

With a counter, we can explore the region graphs in full. The number of bits in this
counter is

O(log(2|X|+1|Q||X|+1 · |X||X|2+|X| · (CA:� + 2)|X|2))
= O(|X| + 1+ (|X| + 1) log |Q| + (|X|2 + |X|) log |X| + |X|2 log(CA:� + 2)).

As can be seen from the above, we need only polynomial space in the counters and poly-
nomial space to record a single region in order to explore the region graph.
Then according to formula (3), we need|H | counters of log(�A:� + 1) bits each to carry

out the enumeration of the outer disjunction. Thus, the totalmemory used is still in PSPACE.
�

For lower-bound TPVASSs, the argument used in the proof of Lemma12does not work,
since a ‘loop’ in the region graph may not be repeatable due to the possibility of a loss in
the counter value.
So far we have seen that for restricted subclasses such as upper-bound and lower-bound

TPAs, their solution spaces are upward-closed and downward-closed, respectively, and
hence semilinear. This, together with a recent result of[10] showing the emptiness problem
to be decidable for bipartite TPAs, leaves us to wonder whether the solution space of a
bipartite TPA remains semilinear or not. Following a result in[5] that the solution spaces
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for general TPAs are not necessarily semilinear, it is reasonably easy to show that the
solution spaces of bipartite TPAs are not semilinear in general.

5. Conclusion

We have studied in detail the sizes of the minimal (maximal, resp.) elements of upward-
closed (downward-closed, resp.) solutionspacesassociatedwithupper-bound (lower-bound,
resp.) TPAs. A line of future research for upper-bound TPAs (and TPVASSs) is to explore
the possibility of manipulating and characterizing the computations and the solution spaces
in a symbolic fashion. Earlier work involving symbolic approaches of reasoning about para-
metric systems includes[6,10]. Finding how tight our complexity bounds for upper-bound
and lower-bound TPAs are remains a question to be answered.
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