Available online at www.sciencedirect.com

scuENCE@DIRECT@ Theoretical
Computer Science

ELSEVIER Theoretical Computer Science 328 (2004) 187-201

www.elsevier.com/locate/tcs

Reachability solution characterization of parametric
real-time systems

Farn Wang, Hsu-Chun Yet?

Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan 106, ROC

Abstract

We investigate the problem of characterizing the solution spaces for timed automata augmented
by unknown timing parameters (calléching parameter automat@l PA)). The main contribution of
this paper is that we identify three non-trivial subclasses of TPAs, nanpgr-bound, lower-bound
andbipartite TPAs, and analyze how hard it is to characterize the solution spaces. As it turns out,
we are able to give complexity bounds for the sizes of the minimal (resp., maximal) elements which
completely characterize the upward-closed (resp., downward-closed) solution spaces of upper-bound
(resp., lower-bound) TPAs. For bipartite TPAs, itis shown that their solution spaces are not semilinear
in general. We also extend our analysis to TPAs equipped with counters without zero-test capabilities.
© 2004 Elsevier B.V. All rights reserved.

Keywords:Reachability; Timing parameter automata

1. Introduction

Timed automata have been a popular model in the research of formal description and
verification of real-time systen8]. In real-world applications, systems are usually de-
scribed with unknown parameters to be analyzed. Here we use théng@ng parameters
to refer to those parameters which are compared with clocks in either timed au{sinata
or parametric TCTL formula§l4—16] A timed automaton extended with unknown tim-
ing parameters is calledtaming parameter automaton (TPAA valuation of unknown

* Corresponding author.

E-mail addressedarn@cc.ee.ntu.edu.t(. Wang),yen@cc.ee.ntu.edu.t@id.-C. Yen).
1 Supported in part by NSC Grants 92-2213-E-002-103 and 92-2213-E-002-104.
2 Partially supported by NSC Grant 92-2213-E-002-018.

0304-3975/$ - see front matter © 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2004.07.014

http://www.elsevier.com/locate/tcs
mailto:farn@cc.ee.ntu.edu.tw
mailto:yen@cc.ee.ntu.edu.tw

188 F. Wang, H.-C. Yen / Theoretical Computer Science 328 (2004) 187-201

parameters making the goal state reachable in a TPA is caietliaion In this paper, we
are mainly concerned with the following problem:

Thereachability solution characterization (RS@joblem: Given a TPA and a goal
predicatey, formulate a representation for the solution spac& with respect ta;.

By ‘formulating a representation’ we mean finding a proper characterization for the solution
space so asto allow queries arisen frequently in verification (such as emptiness, membership,
etc) to be answered effectively.

In [5], it has been shown that the emptiness problem (i.e., the problem of deciding whether
there exists a parameter valuation under which the associated timed language is nonempty)
becomes undecidable when three or more clocks are compared with unknown parametersin
TPAs. Knowing such a limitation, a line of subsequent research has been focuse&&tthe
problem for a number of restricted versions of TPAs (see, [@.8.,14—16]. These positive
results obtained in the last few years have all been focused on unknown timing parameters in
the specification of logic formulae. Butin practice, itis more likely that design engineers will
use unknown parameters in the system behaviour descriptions. Moreover, design engineers
will be more interested in knowing the condition for solution parameters valuations than in
knowing whether there exists a solution parameter valuation. In this work, we identify three
subclasses of TPAs and investigate the complexity issue of @&@problems. The three
subclasses are callegpper-bound TPAdower-bound TPAsandbipartite TPAs Consider
a TPA and w.l.o.g., we assume that orfyand < are used in the predicates of the TPA.

An upper-bound parametédtis one that only appears to the right of an inequality operator
(e.g..x < 0, x<0), whereas éower-bound parametdt appears to the left of an inequality
operator (e.g.f < x, 0<x). Upper-bound(resp.lower-bound TPAs are those whose
unknown parameters are alpper-boundresp.lower-bound parametersBipartite TPAs

refer to those for which every unknown parameter is either a lower-bound parameter or an
upper-bound parameter, but not both. Bipartite TPAs were considered in a recent article
[10] in which the emptiness problem (undecidable for general [BfAwas shown to be
decidable for such automata. In our setting, unknown parameters range over the set of
natural numbers. As the work @f] shows, unknown parameters of integer values can be
used for modelling, for instance, the maximal number of retransmissions Baheded
Retransmission Protoc@BRP), which is a data link protocol used by Philips. The interested
reader is referred t§5,6,10]for TPAs with their parameters ranging over the set of real
numbers. (Note that integer parameters are also considefgd]n

Intuitively, what makesupper-bound(resp.lower-bound TPAs easier to analyze, in
comparison with their general counterparts, lies in the fact that for each of such TPAs,
the solution space ispward-closedresp.downward-closed (A setSoverk-dimensional
vectors of natural numbers, for sorkes calledupward-closedresp.,downward-closed
if Vu € S,v>u = v € S(resp..Vu € S,v<u = v € S)). It is well known that an
upward-closed set (resp., downward-closed set) is completely characterizediyirtsl
(resp.,maxima) elements, which always form a finite set although the set might not be
effectively computable in general. As we shall see later in this paper, we are able to give
a complexity bound for the sizes of the minimal elements for a given upper-bound TPA.
Our analysis is carried out in a way similar to a strategy proposégti3h(by Valk and
Jantzen), in which a sufficient and necessary condition was derived under which the set of

F. Wang, H.-C. Yen / Theoretical Computer Science 328 (2004) 187-201 189

minimal elements of an upward-closed set is guaranteed to be effectively computable. (Note,
however, tha{13] reveals no complexity bounds for the sizes of the minimal elements.)
Taking advantage of certain properties offered by timed automata, we are able to refine Valk
and Jantzen’s approach to yield complexity bounds for the sizes of the minimal elements
for the upward-closed sets associated with upper-bound TPAs, allowing us to characterize
their solution spaces. This in turn answers R&Cproblem for upper-bound TPAs. To a
certain extent, our result supplements the workld] (in which the emptiness problem

was shown to be decidable for bipartite TPAs) by tackling a more general problem. We
are also able to extend our analysis to the model of upper-btunig parameter vector
addition systems with statéEPVASS)s each of which can be viewed as a TPA equipped
with counters without zero-test capabilities. Once the sizes of minimal elements become
available, finding all such elements can be done by exhaustive search using the region graph
technique, although it would clearly be interesting to develop smarter (and more efficient)
algorithms. Some complexity results are also derived for lower-bound TPAs. For bipartite
TPAs, we are able to show that their solution spaces are not semilinear in general, in spite
of the fact that the emptiness problem is decidgbf.

We feel that the method developed in this paper for analyzing upward-closed sets is
interesting in its own right. Our strategy provides a refinement over the approach proposed
in [13] in the sense that the sizes of the minimal elements can now be deduced, provided
that certain conditions are met. It would be interesting to seek additional applications of
our technique.

2. Models of parametric timed systems

LetZ(NandR™, resp.) be the set of all integers (nonnegative integers, and nonnegative
reals, resp.), angd* (N*, resp.) be the set &tdimensional vectors of integers (nonnegative
integers, resp.). Lé be thezero vectorLetv(i), 1<i <k, denote theéth component of a
kdimensional vectop. Given two vectorsi andv(e N¥), u <v if V1<i <k, u(i) <v(i),
andu < v if u<<v andu # v. We define theormof v, denoted byjv||, to bemax{|v(i)| |
1<i <k}, i.e., the absolute value of the largest component iRor a set of vectory =
{vi, ..., vy}, thenormof V is defined to benax{|v;|| | 1<i<m}. In our subsequent
discussion, we lel,, = N U {oo} (o0 is @ new element capturing the notion of something
being ‘arbitrarily large’, and for every € N,t < oo holds). We also leV%, = (N U

{ooh)¥ = {(v1,...,v) | v; € (N U {oo}),1<i<k}. For av € NX, we also write
lv|| to denotemax{v(i) | v(i) # oo}, (i.e., the largest component inexcludingoo) if
v # (00,...,00); (00, ...,00)| = 1. Unless stated otherwise, we always assume that

numbers are representediimary, and thesizeof a number € N is [log, ¢].
AsetU(C N5 is calledupward-closedf Vu € U, Vv,v>u —> v € U. An element
u (€ N¥)is said to beninimalif there is nov (£ 1) € U suchthav < u. We writemin(U)
to denote the set of minimal elementd.bfFor an element e Né‘o, letreg(v) = {w € N¥ |
w<v}. A setD(C N¥) is calleddownward-closedf Yu € D, Vv,0<v<u => v € D.
An elementu (e Ngo) is said to bemaximalif there is nov (# u) € D such thatv > u.
We write max (D) to denote the set of maximal elementsibfFor a given dimension, it
is well known that every upward-closed (resp., downward-closed) set has a finite number
of minimal (resp., maximal) elements. However, such finite sets may not be effectively

190 F. Wang, H.-C. Yen / Theoretical Computer Science 328 (2004) 187-201

computable in general. In an artid&3] by Valk and Jantzen, the following result was
proven which suggests a sufficient and necessary condition under which the set of minimal
elements of an upward-closed set is effectively computable:

Theorem 1 (Valk and Jantzefil3]). For each upward-closed séf(C N¥), min(U) is
effectively computable iff for everye NX, the problentreg(v) N U # #?'is decidable

2.1. Timing parameter automata (TPA)

Given a seP of basic propositions, a s¥tof clocks, and a séd of unknown parameters,
astate predicatey of P, X, andH has the following syntax rules.

nu= false | p | x~c | x~0 | nvny | —ny,

wherep € P,x € X,c € N,0 € H, ~ € {,<,=, >, >}, andnq, n, are state
predicates. Notationally, we |&(P, X, H) be the set of all state predicates®yrX, andH.
Parentheses and traditional shorthands4ikeA can also be used. It is worthy of pointing

out that, like the model given i3], clock constraints are assumed todiggonal-fregi.e.,

the comparison between two clocks is not allowed). The interested reader is referred to
[7] for details about why relaxing the diagonal-free constraints will render several forward
analysis algorithms reported in the literature incorrect.

Definition 1 (Timing parameter automata, state and interpretafioA TPA A is a tuple
(0,90, X, H, u, E, 7, m), whereQ is a finite set of modes (operation modes, or control
locations),go € Q is the initial mode X is a set of clocks with readings iR™, H is a set

of parameter variables with valuesiy i is a mapping fronQ such that for each € Q,

u(q) € B(¥, X, H) isthe invariance conditiontrue@ E € Q x Q is the set of transitions,

T7: E+— B(@, X, H) is a mapping which defines the transition-triggering conditions, and
n: E — 2% defines the set of clocks to be reset on each transiticstateof TPAAis a

pair (¢, v) such thay € Q andv is a mapping fronXto R* (i.e., v represents the current
clock readings). Let/4 be the state set &. An interpretation Ifor H is a mapping from
HtoN.

Let A be specified in Definitiorl. Given an interpretatioh, A’ is the timed automa-
ton obtained fromA with all parameters interpreted according t@iven a predicatg €
B(P, X, H) and an interpretatioh 5’ is the new predicate obtained fragrwith all pa-
rameters interpreted accordinglto

Definition 2 (Satisfaction of state predicate with interpretatjor state(q, v) satisfiestate
predicate; € B(Q, X, H) with interpretation, written as(g, v)F=; n, iff

e (q,v) 1 false;

e (q.v)Fi1q"iff g = ¢’

e (q,v)Eix ~ 0iff v(x) ~ I1(0) wherel € H,

e (q,v) Eix ~ ciff v(x) ~ ¢ wherec € N;

o (q.v)Finy Vv uyiff (g, v)En or (g, v)Ern,; and

e (q,v) Fr—niff (g, v) Frn.

If for all I, we have(q, v)Fn, then we may writég, v)F.

F. Wang, H.-C. Yen / Theoretical Computer Science 328 (2004) 187-201 191

Definition 3 (Transitiong. Given two stategg, v), (¢’, V'), there is anode transitiorfrom
(g, v) to (¢’, V) in Awith interpretation/, in symbols(g, v) —; (¢’, V), iff, (¢,q’) € E,
(g, VEIug) At(g, q"), (g, VIE g,

Vx € n(q, ¢")(V'(x) = 0), andVx ¢ n(q, ¢")(v'(x) = v(x)).

For notational convenience, given a clock readiegd a5 € R, we define a new clock
readingv + d to be(v+ 0)(x) = v(x) + 9, forall x € X. We also write(g, v) + 0 to denote
the new statéq, v + 9).

Definition 4 ((q, v)-run of interpreted TPA An infinite computation oA starting at state
(g, v) with interpretatiorl is called a(g, v)-run and is a sequenceéd, v1, t1), (g2, v2, 12),
...) such that

e g =qi1andv =vy;

e 11t7... is @a monotonically increasing sequence such that for eachR™, there is an
i € N with 7; >t (meaning that the run is divergent);

o foreachintegei>1 and foreachrealQ 0 <t+1—1, (g;, vi) + 0F 1 1(g;) (meaning that
the invariance conditiop(g;) continuously holds throughout the time interim@) 7; +11);
and

e for eachi >1, A goes from(g;, v;) t0 (g;+1, vi+1) because of

- amode transition, i.et; = t; 11 A (gi, Vi) =71 (¢i+1, Vi+1); OF
- time passage, i.€%;, < tit1 A (qi, Vi) + tiv1 — ti = (gi+1, Vi+1)-

2.2. The reachability solution characterization problem

Let (0) be the mapping that maps every clock to zero. The initial state of aARA
(o, (0)). Given a TPAA, a goal state-predicatee B(Q, X, H), and an interpretation,
we say that is reachablein A with 7, in symbolsA~-#, iff there exist a(qo, (0))-run
= ((q1, v1, 11), (g2, v2,12),...) in A ani >1, and & € [0, ;41 — t;], such thatg;, v;) +
JoFn. An interpretationl satisfying A~>;# is called asolutionfor A and#. The set of
all solutions forms the so-callesblution spaceWith respect to a given pair ¢k and
n € B(Q, X, H), the problem ofinding a proper characterization for the solution space
of A with respect to; arises naturally in many real-world applications. Such a problem
is called theReachability Solution Characterization (RS@pblem. Throughout the rest
of this paper, we writeRSC(A,) to denote the solution space of TRAwith respect to
predicate;.

2.3. Lower-bound, upper-bound, and bipartite TPAs

One of the major motivations in this work is to find practical classes of TPAs for which
we can develop algorithms with known complexities for their RSC problem. First, we need
the following concepts. A predicate € B(P, X, H) is in literal form iff in 5, negation
symbols only appear in front of elementsi there are no negative signs immediately
before inequality literals; and onls{ and < are used in inequality atoms. Every predicate
can be transformed to a literal form in linear time. (For instareg,> 0) hasx < 0 as
its equivalent literal form.) ATPA = (Q, qo. X, H, i, E, 7,) is called diteral TPAff

192 F. Wang, H.-C. Yen / Theoretical Computer Science 328 (2004) 187-201

u(q) is in literal form for allg € Q; andt(q, ¢’) is also in literal form for ally, ¢’ € Q.
Notice that every TPA can also be transformed to a literal TPA in linear time. In a literal
TPA, if an unknown parametér appears to the right of an inequality operator in a literal
(e.g.x<0,x < 0),thend is called arupper-bound parametelf it appears to the left of an
inequality operator in a literal (e.§<x, 6 < x), then itis called dower-bound parameter

Definition 5 (Bipartite, lower-bound, and upper-bound TBA# bipartite TPA A is a lit-
eral TPA such that its séf of lower-bound parameters and $2bf upper-bound parameters
are disjoint,i.e.HNH = @.If H = ¢, thenAiis also called anpper-bound TPAf H = ¢,
thenA is also called dower-bound TPAA predicatey in literal form is called anupper-
bound(resp.,lower-bound predicate if all of its constituent parameters apper-bound
(resp. lower-bound parameters.

There are two interpretations on a bipartite TPA which are important in defining the
computability of the RSC problem. The first is theximum interpretatiod™ with which
IM@®) = 0forall@ € HandI/M() = oo for all 0 € H. The second is theninimum
interpretation/™ with which /™(0) = oo forall € H andI™(6) = O for all§ € H. Note
that maximum and minimum interpretations are not really interpretations as we defined
in Definition 1 which does not map parameterscao While interpreting(q, v)F;m#n and
(g, v)Emn, we shall assume ~ oo = trueandoo ~ ¢ = falsg where~¢ {<, <}.

We assume the basic knowledgeredion graphconstructions for timed automata pre-
sented in2,3]. Suppose that the biggest timing constant usedlamdy is C.,. In [2,3],
given a timed automatof (or a TPA with an interpretation), @gionfor a stateq, v) is a
triple (¢, 7, ¢) such thaty records the integer parts of clock readingsig@aty), up toC.
(when a clock reading is bigger thahy., it is represented aso), and¢ records the total
ordering of the fractional parts of zero and clock readingg at). As [2,3] indicates, the
reachability problem of timed automata can be solved in the domaayiafn graphseach
of which has its region set as the node set and (timed and discrete) transition relation from
region to region as the arc set. A rough bound on the number of regions in a region graph
for A™ was computed agd(|Q|, Cax, 1X]) = 2|Q1((2 + Ca.IXDXI. Here| XX is a
rough bound w.r.t. the>-component. Coefficient 2 at the beginning indicates that for each
total-ordering among the fractional parts of clock readings, either all such fractional parts
are nonzero or the first one is zero. Accordingly, there are two kinds of regions. The first is
for regions in which some clocks are of an integer reading withiy, whereas the second
is for those in which no clock is. In the case that the fractional parts of clocks’ readings
are the same, then along each region paths of time progression, the regions will alternate
through between these two kinds of regions. But from a region of the first kind to one of
the second, the elapsed time along the path does not increment by one. In fact, it takes two
alternations in sequence, at least, to increment the elapsed time by one. Thus we can divide
the bound (on numbers of regions) by two, and get a tighter bound on the elapsed times
along paths.

Lemma 2. A~ m 7 iff there is a run of less than(A(|Q|, Ca.;, |X]) — 1)/2 time units
long, from the initial state(qo, (0)) to a state satisfying.

F. Wang, H.-C. Yen / Theoretical Computer Science 328 (2004) 187-201 193

From now on, we shall lef' 4., = (A(|Q|, Ca.y, |X|) — 1)/2 for convenience. In sub-
sequent sections, we consider the problem of characterR$t@y A, 1) when both TPAA
and goal predicate are upper-bound (or lower-bound). It is worthy of noting that in either
case, the clock constraints incan be built into TPAA. Consequently, the RSC problem
can further be modified into one with only state reachability.

3. Computing minimal elements for models with upward-closed solution spaces
3.1. Upper-bound TPAs

Now consider upper-bound TPAs with upper-bound goal predicates. By establishing an
ordering on the elements &f (i.e., H = {01, ..., 0}, for somek), an interpretation for
parameters it can now be regarded ascalimensional vector izv¥. With a slight abuse
of notation, for an interpretationwe write 7 (0) to denotel (i), wheref = 0;. Given an
interpretationl and a4 >0(4 € N¥), we definel + 4 as the new interpretation such that
forall 0 € H, (I + A)(0) = 1(0) + 4(0). The following lemma shows that the solution
space for each upper-bound TPA w.r.t. an upper-bound goal predicgievésd-closed

Lemma 3. Forany upper-bound TPA A and upper-bound goal predigaifeA~- ;7 is true,
thenv4 >0, (A~+;141). In words the set of interpretations satisfyimgs upward-closed

In view of the above lemma, each solutibcan actually be regarded asegpresentative
for a convex space of solutions, callkohnelof I. Given an interpretatioh we use(/) to
represent the funnel pointing gti.e., (1) = {I + 4 | 4>0}. | is called thepoint of funnel
(I). (Note that{7) has a unique minimal element, namelyA set of funnelg 1), ..., (I,;)
is calledmutually independeriff each funnel is not a subset of the unions of the others, that
is, V1<i <m((li) € Ur< j<mizj (1)), OF equivalentil<i < j<m 3o € H 3o’ €
H(L (o) < I (@) A L) > T;(o))).

Given an upper-bound TPA and anLemma3 suggests thaRSC(A, n) is upward-
closed. Using the basic theory of timed automata (see, [8]9,,the problem, given an
interpretation/ € NX, deciding teg(I) N RSC(A,n) # #?'is clearly decidable. This
observation, in conjunction with Theoreln yields the computability of the set of min-
imal elements ofRSC(A, i), although it reveals no information regarding the size of
min(RSC(A, n)). Inthe remainder of this section, we shall take advantage of certain prop-
erties of timed automata to derive complexity bounds for computing RSC (A, 1)). Our
analysis involves the following two steps. We first show that the solution SRACE A, 1)
is a finite union of funnels. Then, with an inductive scheme on the number of unknown
upper-bound parameters, we derive a finite bound on the magnitudes of parameter val-
ues of point solutions of the funnels in the finite union. The position of an existent so-
lution is important in identifying the finite structure of the solution space. l%ebe the
interpretation that maps evetye H to 1+ a. Lemma2 implies that if the solution space
for an upper-bound TPA is nonempty, ther(121-Ca.IXD-1)/2 j5 5 solution.

Let J be apartial interpretationof the parameters iH, that is,/J is undefined for some
parameters ifd. For convenience, we writé(«) = oo, if o is undefined inl. (By doing

194 F. Wang, H.-C. Yen / Theoretical Computer Science 328 (2004) 187-201

so, J becomes a vector iN§O, wherek = |H|.) We conveniently uséJ) as the union
of all (I) such that/ (o) = J(«) for everyo defined inJ (i.e., J(«) # oo). Notice that
() = Urent v o) 2o (=1) {I)- Thus, we may also writ¢l) < (J) if I agrees with
J on everyo defined inJ. Given a partial interpretatiod, in symbols, we letd” be the
set of variables irH uninterpreted by/, that is, H/ = {o | J(«) is undefinegl. In (J),
there can be nonsolution interpretations foand ;. The following notation is for the
characterization of those solution interpretation&/in Given aJ, we IetQI{m7 be the space
of solutionsl for A~+;n with (I) C (J). If Jhappens to be a total interpretation, then (1)
Q/JM =(J) ={v | v>J}incaseA~-;n; and (Z)Q/Jw = () otherwise. For convenience,
given a partial interpretatiohanda € N, we letJ[x := a] be a new partial interpretation
that agrees witld in every parameter except thatx := a](a) = a.

Lemma 4. If Jis a partial interpretation and € Qfm is a total interpretationthen

Ql, =()U U Qle=al, (1)

aeH’:0<a<I (%)

Proof. We prove this by an induction on the size Bf . In the base cas¢H”’| = 0, J
happens to be.a total interpretation, and moreQVYer 7u.0< 41 Qf\':f;““' = {. Thus,
the base case is proven.

In the induction step, we assume that the lemma is true foHzl| <k with k> 0. Let us
consider a solution interpretatidh € Qfm. If (I') C (I), then the lemma is proven. Now
let us consider the case thdt) ¢ (I). In this case, this means that there isoan H”’
such that’(«) < I(«). By enumerating all the possibilities efe H” and all the possible
values in[0, 7 ()], we obtain the expression bf,. 77.0< ,<1() Qﬁf;::“]. a

The importance of Lemmad is that once we can find a solution interpretatian the
solution space, the lemma suggests a way to inductively and compositionally construct the
solution space by means of unions of funnels. But according to LePama do know how
to find this special interpretatidnbased on a given partial interpretation. As we shall see
later, the ability to effectively compute a total interpretation wa plays a critical role
in deriving a complexity bound for the size min(RSC (A, 1)).

3.2. Complexity analysis

Let(oco, ..., 0o) be the partial interpretation that is undefined on every parameter. Lemma
4, together with the fact that SC (A,) = Qﬁ """ o), suggests an algorithm for computing
the constituentfunnels &SC (A,), provided thaf e Qfm is computable for every partial
interpretation/. That is, if we vieWQ/JM as a procedure-call with parametés;, andJ,

then we can construct the solution space representation by invﬂ%?jg"oo).
By examining all components of Formula (1), we find that every component in (1) is
with straightforwardly known complexity except e Q/Jw. It is obvious that if we can

find bounds on the vectadr € wa for eachJ, then we can multiply and sum up all the
component complexities to derive the complexity for the RSC problem. The major difficulty

F. Wang, H.-C. Yen / Theoretical Computer Science 328 (2004) 187-201 195

is to carefully account for all the component complexities so that bounds can be derived.
Let A/ be the new timed automaton obtained frérby substituting every define@in J

for J(0); and substituting every undefinétin J for co. The bounds can be obtained by
using Lemma2. That is, we can construct the region graphAdrandy and use the length

of the longest simple path in the graph to bound the vector componehtiithe same
reasoning of Lemma, we know that there is an interpretatidre Q{w making A~y iff

A7 ~sn. According to[3], the size of region graph is bounded by
2101 XX (C iy + 2 @)

In a region graph of this size, the time-span of the shortest path from one region to another
can always be bounded b@| - | X|*!- (C 4., +2)!*I. According to the same reasoning of
Lemma2, we can bound each component of thvith | Q| - | X|'*I - (Cs,, +2)!¥]. Notice

thatC .., is now the biggest timing constant usedmwith parameters replaced according

to J. It should also be noted that whéiia) = oo, thenJ (o) is not considered as a timing
constant candidate faf,..,,.

Lemma 5. For every partial interpretation Jthere is anl € wa such that for every
0eH, 1(0)<IQ]-X|""- (Cysy +2XI.

We want to construct the inductive definition of the magnitudeCgf.,. That is, we
want to defineC 4., based on those partial interpretations which define one less parameters
thanJ does. The following lemma unwinds Formula (2) for a bound on the complexity of
I e Qfm for eachJ. For convenience, we lgt/| be the number of parameters defined
inJ.

Lemma 6. In formula(l), for every partial interpretation Jhere is an/ € Q/J;:,7 such that
foreveryd € A7, 1(0)isO((| Q| - [x|XZo<i<inl X1 (Cyy 4 2) X1,

Proof. Base cas€gJ/| = 0. In this case, the bound[i®| - |X|' X! - (C .y + 2)!XI, which is
exactly the time-span bound of the longest simple path in the region graplafai; with
IM. This case is true according to Lemma

The inductive hypothesis is that there is A& ijtn such that for every) € H”, 1(0)
is O((|Q| - |X|XhXo<i<in X1 (., + 2)X™!) This means that in the induction step,
the biggest timing constant used 47'%:=4! is of the same complexity. Thus we deduce,
according to Formula (2), that the size bound of the region graph 6= is

|1+|J\

0210/ - 1X|X - ((1Q] - (| X|XIy)Xo<i<is IXI", (Can + 217+ 2
=00l X (0] - (x| XM Zocicin X (0 4 2 WX
=0((1QI - [X|XhXosi<aen X (cyy 4+ 2) X,

Since|J| + 1 = |J[0 := a]| and the reachability does not need a path along which the
elapsed time is greater than the number of regions, the complexity is prokéen.

196 F. Wang, H.-C. Yen / Theoretical Computer Science 328 (2004) 187-201

z=2Ay=2Az<aAw<p

z>2Ay>2 m=1Ay=1AzSc¢mﬂ>2Ay>2 c=TAy=11Aw <
q0 q1 q2 q3
x:=0;y:=0;2:=0; _/
z = é :;y=5 z=7& ‘\i;y= 11
z:=0; y:=0; z = 0; y:i=0;

Fig. 1. An example of upper-bound TPAs.

Using Lemmad¢ and6, we have the following result:

Theorem 7. Given an upper-bound TPA A and an upper-bound predigatenin(RSC
(A,)| is bounded bY((| Q| - |X]| - CAW)‘X‘”'H‘), where ¢ is a constant

Once the sizes of minimal elements become available, finding all such elements can be
done by exhaustive search using the region graph technique, although it would clearly be
desirable to develop smarter (and more efficient) algorithms.

In Fig. 1, we have a simple upper-bound TPA to show how our algorithm inductively
invokes the basic region graph construction proceduf@]irio build the solution space
characterization. There are two ways that we can reach the final qnodée first is from
modego throughg; to g . The time elapsed in such a path is of the patterb 3 + 2 for
somei > 1. Note that ar€qo, ¢g1) guarantees that> 1. Since clockgz andw are never reset
in this way, whery ¢ is reached; = w > 17 and we can infer that= f = 17 characterizes
a minimal solution.

The second way to reag}y is from g and throughyy, g2, andgs. The time elapsed in
the computation fromgg to g2 is of the pattern 35-i 4+ 1 for some > 1. Thus in this way,
we can infer that> 16 when transitiorig1, g2) takes place. Then the time elapsed in the
computation fromy, to g is of the pattern 711 - j for somej > 1. Again, arc(gz, g3)
guarantees thgt> 1. Thus in this way, the time elapsed frg@mthroughgs, g2, g3togy is
of the pattern 16+ 1+ 77, for somei >1, j > 1. From this, we can infer that= 16 and
f = 93 characterizes another minimal solution.

In the execution of our algorithm, we will first find a minimal solution by interpreting
o = oo andff = co. Two candidates ar€l7, 17) and(16, 93). In formula (1) in Lemma,
if we choosel = (17, 17), then the formula says that the solution space is characterized by
(17,17) U (Ug<ae17 2%, oo)) U (Uo<a<17 Q(oo). The characterization ", ;’o) can
be obtained by mterpretm@ asain A. From the reasoning in the last two paragraphs we
know that when &« < 17, the only solution i§16, 93). This can be obtained by finding
the elapsed time of the path4g with « = 16 andf = oco. Similarly, the characterization

of Qf,f’j?’“) can be obtained by interpretirfgasa in A. From the reasoning above, we know
that when G< § < 17, there is no solution.

3.3. Timing parameter vector addition systems with states

Ourtechnique can also be applied to analyzing upper-bound TPVAS &sdimensional
vector addition systerfVAS) is a pair(vg, V) wherevg € N™ is called thestart vector

F. Wang, H.-C. Yen / Theoretical Computer Science 328 (2004) 187-201 197

andV, a finite subset of”, is called the set cdddition rules A vectorz € N is said to be
reachable inVASug, V) if z = vg+v1+---+v; for somej >0, where each; (1<i < j)

is inV and, for each i</, vo + v1 + - -- + v; >0. The coveringproblem of VASs is
that of, given a VAS(vp, V) and a vectowr, deciding whether there is a reachable vector
z such thatz; > v (i.e., z coversv). An m-dimensional vector addition system with states
(VASS) is a 5-tuple(vg, V, po, S, 0) wherevg andV are the same as defined abo8as

a finite set ofstates d € S x S x V is thetransition relation andpg € S is theinitial
state Elements(p, ¢, v) of § are calledransitionsand are usually written gs — (g, v).

A configuration of a VASS is a pailp, u), wherep € S andu € N™. (pg, vo) is theinitial
configuration The transitionp — (g, v) can be applied to the configuratigp, u) and
yields the configuratioky, u + v), provided that: + v > 0. The reader is referred {6,11]

for more about VASs and VASSs.

ATPVASSAisatuple(vg, V, 0, qo0, X, H, u, E, 7, ®) wherevg andV represent the start
vector and the addition rules, respectively, associated with {PAyo, X, H, u, E, 7, 7).
One may view a TPVASS as a TPA equipped with counters without zero-test capabilities.
The dimensionof a TPVASS is the dimension of its constituent VAS. It is important to
point out that the wayimeis introduced in this computational model differs from that in
the conventionatimed (or time) Petri nets. Unlike the case in the strong firing semantics
of timed(or time) Petri nets, it isxotrequired to fire all the enabled transitions at any point
in time during the course of a computation. In our setting it is perfectly legal for time to
elapse, causing enabled transitions to become disabled without being fired.

Using the technique of region graphs, we have:

Lemma 8. Given a TPVASS ,Aan interpretation] and an upper-bound predicatg
B(Q, X, H), we can construct a VASH 4 ,; = (vo, V, po. S,0) and a states € §
such thatA~n iff there is a computation fronipo, vo) to (s, v) in M4 4 7, for somev.
Furthermore [S| = O(1Q| - |X|X!- (max{Ca.y, 1111} + 2)'X1).

Consider theRSCproblem for amm-dimensional TPVASS\ (with respect to predicate
). FromA we construct a new TPVASS of dimensian+ 1 in such a way that from each
configuration satisfying, a transition incrementing the new (i.en ¢ 1)th) position by
one is introduced. Clearly, trRSCproblem has a solution iff in the new TPVASS, there
is a computation reaching a configuration with nonzero in the(1)th position. Based
upon the discussion above and the fact thatrasimensional VASSA (with n and| as
the number of states and the largest integer mention&driespectively) can be simulated
by an(m + 3)-dimensional VASA’ whose largest integer is bounded/byx{n?, I} (from
Lemma 2.1[9]), we have:

Corollary 9. Given an m-dimensional TPVASSaA interpretation Jand an upper-bound
predicaten € B(Q, X, H), we can construct a(n +4)-dimensional VAV 5 , = (vj, V')
such thatA~-n iff there is a computation frony, to a vector” > (0, ..., 0, 1) in the VAS
for somev”. Furthermore | Wy || is bounded bynax{(2|Q| - | X|'X!. (max{Cay, |11} +
22 VI, llvoll}-

It is known from[11] that given a VASW = (vg, V), a vectorv can be covered ikV
iff there exists a short covering path whose length is bounded (87" "), wherec is

198 F. Wang, H.-C. Yen / Theoretical Computer Science 328 (2004) 187-201

a constant and is the size of the VAS. By treating ttdimensiorandnorm of a VAS as
two separate parameters, an improved bound (ofzd *'"*'ogm) for the length of the shortest
covering path (whersandmare the norm and dimension of the VAS, respectively, éisd
a constant) can be found b2]. This, in conjunction with Corollar®, allows us to derive
the following result.

Theorem 10. Given an upper-bound TPVASS A and an upper-bound prediciaig n(RSC
(A,)| is bounded bYD((| Q| - |X| - Caz?™" " 1XI"") \wherec, d are constants

In what follows, we propose a framework using which the sizes of the minimal elements
in an upward closed set can be calculated. The idea is the followif@3]nthe key in
proving decidability lies in the ability of, given an arbitrary e N%, testing whether
‘reglv) NU # ¥?'. Now suppose in addition to the ability to testg(v) N U # @?°, we are
also able to compute the size of a witnessing veetar reg(v) N U, if such a vector exists.

That is, the small witness property holds for the system under consideration. In this case,
the following result can be proven along a line similar to the proof of Thedrpnesented
in [13]. More precisely,

Theorem 11. For each upward-closed séf(C N%), if given av € NX, a witnessw
for ‘reg(v) N U # @' (if one existy can be computed such thid || < f(||v|]), for some
k

——
function f then||min(U)|| < (f o--- o f)(D).

4. Computing maximal elements for TPAs with downward-closed solution spaces

For TPAs with unknown lower-bound timing parameters, we still want to find charac-
terization for the solution interpretation. In this case, there is one thing worth ndttieg:
solution space for the unknowns is downward-cloggegometrically, this means that the
solution space is a union of “bottom-up” funnels. For convenience, we call such bottom-up
funnelscones which can be characterized by the maximal solutions of those cones. If we
can find the upper-bounds for the maximal solutions, if any, of those cones, then we can
shape the solution space in this case.

Lemma 12. Given alower-bound TPA A and a lower-bound predicgi€ A~ ;1 for some
I such that there is afi with 7 (0) > I 4., then for all1” such that/” agrees with/ on all
parameters excegt (0) > I(0), A~ .

Proof. If 1(0) > I'a, then there is a run along which a clokks incremented beyond
I' 4.y and tested against conditian~ 7 (0) where~e {* > ", “ >"}. This means that there

is a path in the region graph o whose length of time is greater thdy., and at the

end of the pathy ~ I(0) is tested. LetX’ be the set of clocks whose reading is greater
thanI 4., at the end of the path. Since the length of time-i$'4.,,, we can pick a sequence

of I'4.; + 1 regions along the path such that two successive regions are separated by one
time unit. Among these regions, there must be two identical regions and between these two

F. Wang, H.-C. Yen / Theoretical Computer Science 328 (2004) 187-201 199

regions, the time-length is no less than 1. By repeating this cycle any number of times, we
get a new path (or rury)’ along which the readings of some clocks, including all clocks in
X', becomes arbitrarily large when tested against lower-bound conditions with unknowns.
This p’ is not only a run ofA’™ bus but also a run ad’’. This means no matter how big
I'(0) is, we can still find a path to make a runad” to maken’M reachable. (J

Lemmal2implies that to search for maximal solutions in cones, we only have to check
the reachability ofA~~;y with 7(0)<I'4.; + 1 for all 0. If | is a solution, then so is the
cone characterized WI(O)gFA:,, 0< 1(0), which puts no restrictions on those parameters
Owith I(0) = I o.,+ 1. Thus, a simple way to formulate the algorithm for the RSC problem
of lower-bound TPAs is with the following formula for the corresponding solution space:

\/ /\ 0<1(0). 3)

LA~ AY0,0< T (0) < T gy +1 1(0) < T ay

Theorem 13. Given a lower-bound TPA A and a lower-bound predicatehe size of
lmax(A, n)| can be computed in PSPACE

Proof. In expression (3), we need PSPACE to query each questidn-ofy given that
the constants used i’ is no greater thaii' 4., + 1. To see this, we know that each such
basic query needs the search of a region graph with at the 1@st ([|IX! - (I' 4., + 2)¥]
regions. Expanding the expression in complexity notation, we get

010! - 1XI"™- 210] - IX|X!. (Cay + 2T 4 2)XT)
= 020! XX @X1|QIXI | x| X . (Cay + 21X
= 0@ QXL X XFHXT. (C 4+ 2.

With a counter, we can explore the region graphs in full. The number of bits in this
counter is

O(log2 X1+ QX1 x| XIHXT. (€, +2)X%)
= O(IX| + 1+ (1X|+ Dlog|Q| + (IX|* +|X|)log |X| + |X|*0g(CA:y + 2)).

As can be seen from the above, we need only polynomial space in the counters and poly-
nomial space to record a single region in order to explore the region graph.

Then according to formula (3), we negd| counters of logl” 4., + 1) bits each to carry
out the enumeration of the outer disjunction. Thus, the total memory used is stillin PSPACE.

O

For lower-bound TPVASSSs, the argument used in the proof of Ledwmes not work,
since a ‘loop’ in the region graph may not be repeatable due to the possibility of a loss in
the counter value.

So far we have seen that for restricted subclasses such as upper-bound and lower-bound
TPAs, their solution spaces are upward-closed and downward-closed, respectively, and
hence semilinear. This, together with a recent res|lt@f showing the emptiness problem
to be decidable for bipartite TPAs, leaves us to wonder whether the solution space of a
bipartite TPA remains semilinear or not. Following a resulfghthat the solution spaces

200 F. Wang, H.-C. Yen / Theoretical Computer Science 328 (2004) 187-201

for general TPAs are not necessarily semilinear, it is reasonably easy to show that the
solution spaces of bipartite TPAs are not semilinear in general.

5. Conclusion

We have studied in detail the sizes of the minimal (maximal, resp.) elements of upward-
closed (downward-closed, resp.) solution spaces associated with upper-bound (lower-bound,
resp.) TPAs. A line of future research for upper-bound TPAs (and TPVASSS) is to explore
the possibility of manipulating and characterizing the computations and the solution spaces
in a symbolic fashion. Earlier work involving symbolic approaches of reasoning about para-
metric systems includd§,10]. Finding how tight our complexity bounds for upper-bound
and lower-bound TPAs are remains a question to be answered.

Acknowledgements

The authors thank the anonymous referees for their comments and suggestions, which
greatly improved the correctness as well as the presentation of this paper.

References

[1] P. Abdulla, A. Annichini, A. Bouajjani, Symbolic verification of lossy
channel systems: application to the bounded retransmission protocol, in: Proc. TACAS’99, Lecture Notes in
Computer Science, Vol. 1579, Springer, Berlin, 1999, pp. 208—222.

[2] R. Alur, C. Courcoubetis, D. Dill, Model-checking in dense real-time, Inform. and Comput. 104 (1) (1990)
2-34.

[3] R.Alur, D. Dill, Automata for modeling real-time systems, in: Proc. 17th ICALP, Lecture Notes in Computer
Science, Vol. 443, Springer, Berlin, 1990, pp. 332-335.

[4] R. Alur, K. Etessami, S. La Torre, D. Peled, Parametric temporal logic for model measuring, in: Proc. 26th
ICALP, Lecture Notes in Computer Science, Vol. 1644, Springer, Berlin, 1999, pp. 169-178.

[5] R. Alur, T. Henzinger, M. Vardi, Parametric real-time reasoning, in: Proc. 25th ACM STOC,1993,
pp. 592-601.

[6] A. Annichini, E. Asarin, A. Bouajjani, Symbolic techniques for parametric reasoning about counter
and clock systems, in: Proc. 12th CAV, Lecture Notes in Computer Science, Vol. 1855, Springer,
Berlin, 2000,
pp. 419-449.

[7] P. Bouyer, Untameable timed automata, in: Proc. STACS 2003, Lecture Notes in Computer Science,
Vol. 2607, Springer, Berlin, 2003, pp. 620—631.

[8] E.A. Emerson, R. Trefler, Parametric quantitative temporal reasoning, in: Proc. |IEEE LICS,1999,
pp. 336—343.

[9] J. Hopcroft, J. Pansiot, On the reachability problem for 5-dimensional vector addition systems, Theoret.
Comput. Sci. 8 (1979) 135-159.

[10] T. Hune, J. Romijn, M. Stoekinga, F. Vaandrager, Linear parametric model checking of timed automata,
in: Proc. TACAS, Lecture Notes in Computer Science, Vol. 2031, Springer, Berlin, 2001, pp. 189-203.

[11] C. Rackoff, The covering and boundedness problems for vector addition systems, Theoret. Comput. Sci. 6
(1978) 223-231.

[12] L. Rosier, H. Yen, A multiparameter analysis of the boundedness problem for vector addition systems,
J. Comput. System Sci. 32 (1986) 105-135.

F. Wang, H.-C. Yen / Theoretical Computer Science 328 (2004) 187-201 201

[13] R. Valk, M. Jantzen, The residue of vector sets with applications to decidability in petri nets, Acta Inform.
21 (1985) 643—-674.

[14] F. Wang, Parametric timing analysis for real-time systems, Information and Computation 130 (2) (1996)
131-150 also in: Proc. 10th IEEE LICS, 1995.

[15] F. Wang, Parametric analysis of computer systems, Formal Methods in System Design 17 (2000) 39-60.

[16] F. Wang, H. Yen, Parametric optimization of open real-time systems, in: Proc. SAS 2001, Lecture Notes in
Computer Science, Vol. 2126, Springer, Berlin, 2001, pp. 299-318.

	Reachability solution characterization of parametric real-time systems
	Introduction
	Models of parametric timed systems
	Timing parameter automata (TPA)
	The reachability solution characterization problem
	 Lower-bound, upper-bound, and bipartite TPAs

	Computing minimal elements for models with upward-closed solution spaces
	Upper-bound TPAs
	Complexity analysis
	Timing parameter vector addition systems with states

	Computing maximal elements for TPAs with downward-closed solution spaces
	Conclusion
	Acknowledgements
	References

