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Design of Robust Linear State Feedback 
Laws: Ellipsoidal Set-theoretic Approach* 

SHENG-DE W A N G t , ,  and TE-SON KUO~- 

A method based on ellipsoidal set-theoretic approach is developed for 
designing an optimal boundedness control law for a class o f  linear systems 
with uncertain parameters. 

K e y  W o r d s - - R o b u s t  c o n t r o l ;  r o b u s t n e s s ;  l i nea r  s y s t e m ;  s t a t e  f e e d b a c k ;  b o u n d i n g  e l l ipso ids .  

Al~str~ct--This paper is concerned with the problem of 
designing robust state feedback laws for linear systems with 
uncertain parameters. The parameter uncertainties under 
consideration are assumed to be measurable, unknown but 
bounded and present in both state and input matrices. Using 
the ellipsoidal set-theoretic approach, we formulate and 
solve the optimal boundedness control problem. A linear 
state feedback law is developed such that the system states 
are minimally bounded in appropriate sense. 

1. I N T R O D U C T I O N  

THE PaOm.EM OF designing a state feedback 
control that guarantees the desired performance 
of a class of uncertain linear systems has been 
investigated by several authors (Leitmann, 1979; 
Eslami and Russell, 1980; Corless and Leitmann, 
1981; Noldus, 1982; Barmish, 1983, 1985). 
Among these, the so-called uniform ultimate 
boundedness control approach (Corless and 
Leitmann, 1981) has been developed to guar- 
antee, for all admissible uncertainties, that the 
system states enter and remain within a small 
region around the origin after a finite interval of 
time. For such approaches, the resultant 
feedback control law is often a nonlinear 
function of the states (Leitmann, 1979; Corless 
and Leitman, 1981; Barmish, 1985). 

There is also a variety of results which can be 
used to design linear controllers for linear 
systems with parameter uncertainty. Thorp and 
Barmish (1981) used the Lyapunov direct 
method to derive a stabilizing linear state 
feedback law. On the other hand, Chang and 
Peng (1972) used the concept of fuzzy dynamical 
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programming and proposed the guaranteed cost 
control approach for desigining a linear state 
feedback law which stabilizes the system for all 
prescribed uncertainties. Vinkler and Wood 
(1979) generalized the method and proposed a 
counterpart which makes use of a muitistep 
design procedure. In these methods, the main 
attention is focused on the system matrix 
uncertainty and hence the input matrix uncer- 
tainty is not explicitly treated. 

In the work of Eslami (1982), a robust method 
was proposed to minimize the sensitivity of 
linear systems with large parameter variations. 
The difference between the actual and the 
nominal values of the system response was 
considered as the sensitivity measure of the 
plant. An optimal controller gain was developed 
such that a combined-quadratic cost consisting of 
the standard regulator cost and the sensitivity 
measure due to system parameter variations is 
minimized. 

In this paper we treat the problem similarly 
to that of Eslami (1982), but from a different 
point of view. We start from the representation 
of unknown but bounded uncertainties and use 
the concept of ellipsoidal set-theoretic approach 
(Schweppe, 1973) to formulate the optimal 
boundedness control problem. A linear state- 
feedback law is developed such that the system 
states are minimally bounded in some appropri- 
ate sense. 

A set-theoretic approach to solving con- 
strained control problems has been presented by 
Usoro et al. (1982, 1984) for systems with 
control and state constraints which are subject to 
input disturbances. The objective in Usoro et al. 
(1982, 1984) was to construct a control system 
that uses only available control effort to keep the 
system states within prescribed bounds. The 
present framework differs from the previous 
research in that, in this paper, the parameter 
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perturbations are considered and the objective is 
to minimize the "size" of the bounding ellipsoid 
which contains system states. 

In this paper the notation A'  denotes the 
transpose of the matrix A, and I is the identity 
matrix. For the sake of brevity, the arguments of 
time functions are sometimes suppressed. 

2. SYSTEM U N C E R T A I N T I E S  A N D  
B O U N D I N G  ELLIPSOIDS 

In this section we start from the representation 
of unknown but bounded uncertainties and use 
the concepts of bounding ellipsoids to model the 
system states. 

2.1. System equations and assumptions on 
uncertainties 

The uncertain linear systems under considera- 
tion are described by state equations of the form 

£(t) = [A + AA(w(t))]x( t )  + [B + AB(v( t ) )]u( t )  

(1) 

where x ( t )~  R n is the state vector, u( t ) e  R "  is 
the control vector and w(t) ~ R q, O(t) ~ R s are 
vectors of uncertain parameters. In this paper, 
the following assumptions concerning the uncer- 
tainties are made on system (1). 
(A1) zXA(.):Rq--~ R n×n and AB(.):RS--~ R n×m 

are continuous matrix functions which are 
assumed to be linear in their arguments. 

(A2) The uncertain parameters 

w(.):R--~ W c R  q 

v(.):R--~ V = R  ~ 

are Lebesgue measurable, where W and V 
are prescribed compact convex subsets of 
appropriate spaces. 

While the assumption that W and V are 
compact convex sets may seem severe, a class of 
bounded sets is. For example, 

W = (w(t)  I Wmi~ --< Ilw(t)ll --< Wmax) 

and 

W = {w(t) l(Wi)min 

<-- wi(t) <-- (w~) . . . .  w~(t) is ith component of w(t)) 

are compact convex sets. 
For the system described by (1), we consider a 

linear state feedback law of the form 

u(t) = K(t)x(t) .  (2) 

The closed-loop system then becomes 

£(t) = (A + BK)x( t )  + AA(w)x ( t )  

+ AB(v)Kx( t ) .  (3) 

We observe that the dynamic equation in (3) can 

be viewed as a state equation driven by a 
state-dependent disturbance due to parameter 
variations, which can be written in the form 

Yc(t) = (A + BK)x( t )  + r(x(t),  t) (4) 

where r(x(t), t) is the state-dependent distur- 
bance defined as 

"r(x(t), t) = AA(w)x  + AB(v)K( t )x .  (5) 

We assume that the initial state x(0) is bounded 
a s  

x(O) ~ ~x(O) =- {x l (x - x0)'W-l(x -x0)  -< 1} 

(6a) 

or, in terms of its support function (Schweppe, 
1973), 

x(0) ~ f~(0) -= (x Ix'r/-<x0 + V~'q-'0; 

for all r/, r / ' r /= 1} (6b) 

where Xo is the center of f2x(0) and q~ is a 
positive semidefinite matrix defining ellipsoidal 
set ~ ( 0 )  of possible initial states. Note that in 
the ellipsoid defined by (6a) qu is required to be 
positive definite, whereas in (6b) a positive 
semidefinite tp is sufficient to specify an ellipsoid 
(actually, a degenerate ellipsoid). In the 
following, we will use the form of (6a) to specify 
an ellipsoidal set, but with the understanding 
that positive semidefinite qs is sufficient to define 
an ellipsoid in terms of its support function. 
Furthermore, we assume that the disturbance 
r(x(t), t) at time t is contained within an 
ellipsoidal set ff~(t), i.e. 

• (x(t), t) ~ ff2~(t) =- ( r l  r'Q-~(/)r--< 1} (7) 

where the center of Q~(t) is assumed to be at the 
origin and Q(t) is the positive semidefinite 
matrix defining the ellipsoid f2~(t). Since 
z(x(t),  t) is state-dependent, it is obvious that 
matrix Q(t) must be related to the state 
bounding ellipsoid. We will determine matrix Q 
in the following subsection. 

2.2. Bounding ellipsoids 
Following the development of set-theoretic 

formulation (Schweppe, 1973; Usoro et aL, 
1982), it can be shown that the state x(t) of the 
system described by (4) at time t is contained 
within an ellipsoidal set ~x(t) and is given by 

x(t) ~ ff2x(t)-~ {x[(x - xc(t))'F-~(t) 

×(x-xc(t))<-l) (8) 

where F(t) satisfies the matrix differential 
equation 

~'= (A + BK)F + F(A + BK)'  + CF + (Q/~)  

(9a) 
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with 
r(0) = • (9b) 

where ~ ( t )>  0 is a free parameter which enters 
in the construction of the bounding ellipsoid, 
and x~(t), the center of g)x(t), is described by the 
nominal system equation 

with 
A¢(t) = (A + BK)x~(t) 

x (0) =x0. 

To complete the description of the state 
bounding ellipsoid, we need to know the matrix 
Q(t), which can be determined as follows. It can 
be seen from (5) that the disturbance 1"(x(t), t) 
due to parameter variation is the vector sum of 
the two terms rl = AA(w)x and 1"z= AB(v)Kx. 
Since rl and 1"2 are linear transformations of x, it 
can be shown (Schweppe, 1973) that these two 
terms are bounded, respectively, by 

1"1 ~ ~"~'1 ~ {1"1 I 1 " ' l [ / ~ 4 ( w ) F / ~ A ' ( 1 4 " ) ] - 1 1 " 1  ~ 1} 

(10) 

and 

1"2 ~ ~r~ = (rz I ~[AB(v)KFK'AB'(v)I-'r2 < 1} 

(11) 

where the centers of f~ l  and f~2 are assumed to 
be at the origin since AA(.) and AB(.) are 
uncertain terms and it seems to be reasonable to 
assume it varies around the origin. Unfortun- 
ately, the vector sum of two ellipsoids is 
generally not an ellipsoid. It is desirable to find a 
bounding ellipsoid which contains the vector sum 
of the two ellipsoids described by (10) and (11). 
Following the development of Schweppe (1973), 
the bounding ellipsoid which contains the vector 
sum of (10) and (11) is described by (6), where 
Q(t) is given by 

Q(t) = 7~zXA(w)FAA'(w) 
+ 72AB(v)KFK'AB'(v) (12) 

with 71 and 7z being positive scalars satisfying 

1 1 
- -  + - -  = 1 .  03)  
7~ 72 

with the initial condition 

F(0) = W. (lab) 

Let the positive scalars cr and fl be defined by 

¢ £ 
g~' ~ ~ ~ . 

Y1 7z 
From (13), it is obvious that ~ = c~ + ft. With this 
relation and the above definitions, (14) can be 
rewritten as 

~r+fl  
~ = (A + BK +---2-- I)F 

+ F  A + B K +  2 

+ _t 
~Y 

+ ~ AB(u)KFK'AB'(v) (15a) 
P 

with 
F(0) = W. (15b) 

where ~ and fl are positive scalars which provide 
the designer some degrees of freedom in the 
construction of the bounding ellipsoid. 

The ellipsoidal set described by (8) and (15) is 
a bounding ellipsoid of the system states 
incurred by the state feedback law u = Kx and 
the system uncertainties AA(.) and AB(.). With 
the state feedback control u = Kx, if the system 
state is bounded by fflx(t) in (8), then the control 
u is bounded by an ellipsoid ffl,(t) which is 
simply a linear transformation of the ellipsoid 
fix(t). It can be shown that 

f~, = {u I (u - Kxc)'(KFK')-'(u - Kxc) <- 1}. 

Remark 1. It is noted that the matrix F(t) in (8) 
and (14) determine the size and shape of the 
bounding ellipsoid of the system states. The 
orientation of fix(t) is determined by the 
eigenvectors of F(t), and the lengths of 
semi-major axes of glx(t) are determined by 
eigenvalues of F(t). It is noted that the trace of 
F(t), tr (F(t)), may serve as a measure of the 
"mean size" of the bounding ellipsoid. 

It is seen that simply taking 7t = 7 2 = 2  is a 
satisfactory choice. When combined with (12), 
the matrix differential equation (9) describing F 
becomes 

# = ( A +  BK + { I)F + F(A + BK + ~ I)' 

zXA(w)rzXA'(w) zXB(v)KrK'zXB'(v) 
+ (~/Y,) ~ (¢/Y2) (14a) 

3. OPTIMAL BOUNDEDNESS CONTROL 
In this section we formulate the optimal 

boundedness control problem and present a 
solution approach for the problem. The infinite 
time case for time-invariant uncertain systems is 
also considered. 

3.1. Problem formulation 
Using the results of Section 2, we can state the 

optimal boundedness control problem as a 
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constrained optimization problem as follows: For 
a given system described by (1) and control 
weighting factor p > 0, find the linear feedback 
gain K and the free parameters ~ and /3 to 
minimize the cost functional; 

max J(K; w, v, to) (16) 
w ~ W  
v ~ V  

with 

J(K; w, v, to) =- [tr (F) + p tr (KrK')I dt (17) 

subject to constraint (15). 

Remark 2. The inclusion of the second terms in 
cost functional (17) is to take into account the 
minimization of the control effort. The weighting 
factor p should not be determined in advance. 

The problem formulated above is minimax in 
nature. Before solving this problem, it is 
worthwhile investigating some useful properties 
associated with the problem. We show in the 
following theorem that the cost functional 
J(K; w, v, to) is convex with respect to w and v 
under some appropriate conditions. 

Theorem 1. If the assumptions (A1)-(A2) hold, 
then J(K; w, v, to) is convex in w and v. 

Proof (see Appendix A). Since a convex scalar 
function of a vector defined on a compact convex 
set attains its maximum on the extreme points of 
the set, we immediately have 

min max J(K; w, v, to) = min max J(K; w, v, to) 
K w ~ W  K w ~ O W  

v ~ V  v ¢ O W  

where OW and OV denote the boundaries of W 
and V, respectively. If, furthermore, the sets W 
and V are convex polyhedrons, the search for 
the maximizing uncertainty w and v can be 
reduced to the sets of the vertices of W and V. 

Based on the above observation, the maxi- 
mization part of the problem will be solved by 
making use of an exhaustive search over a set of 
finite vertices assuming that the uncertain sets W 
and V are convex polyhedrons. 

3.2. Solution of the minimization problem 
The constrained minimization problem formu- 

lated above can be solved by making use of the 
Lagrange solution approach. The Hamiltonian 
for this constrained minimization is defined by 

H(F, K, p, t) = tr (F) + p tr ( K r g ' )  + tr (A'~') 

(18) 

where A is an n x n matrix Lagrange multiplier. 
On using the gradient matrix calculation 
formulae (Athans, 1968), the Lagrange approach 

requires the following optimality conditions: 

OH (i) 0 = ~ = 2 p K F  + 2B'Ar 

+ (~)AB'(v)AAB(v)KF; (19) 

OH 
(ii) - ik  = --~ = I + pK'K 

+ A ( A +  B K ~ - ~ , )  

o~ + fl I ) ' A  + (A + BK + - - ~  

+ (~)ILA'(w)AAA(w) 

+ (~)K'AB'(v)AAB(v)K (20a) 

with 

(iii) ~ =  

A(T) =0 ;  

OH = ( A + B K + - ~ I ) F  
OA 

/3 + F(A + BK + - - ~  / 

with 

OH 
(iv) = tr ( rA)  

0~ 

r ( t o )  = ~P; 

(20b) 

(21a) 

(21b) 

1 
- ~5 tr (ZXA(w)nXA'(w)A) = 0;  (22) 

OH 
(v) - ~  = tr (FA) 

1 
-/3-- ~ tr (AB(v)KFK'AB'(v)A) = 0. (23) 

From (19), we have 

[ (pI + (~ )AB ' (v )AAB(v ) )K-  B'A]F =O. 

Since this equation must hold for all F(t), it 
reduces to 

K = - R - I ( A ) B ' A  (24) 

where R(A) is defined as 

R(A) = pI + (~)AB'(v)AAB(v).  (25) 
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Substituting (24) into (20) and (21), and defining 

Q(A)=- I + (~ )&A' (w)A~A(w)  (26) 

we have the following equations: 

~÷/3~'  

- ABR- t (A )BA  + Q(A) (27a) 

with terminal condition 

A(T) = 0 (27b) 
and 

( )' + F  A - BR- t (A)B 'A  + ~ + ~ I 
2 

[ 1 ~ 1 + ~]a~(v)R- (A)B ArABR- (A)an'(v) 

(28a) 
with the initial condition 

r(to) = ~ .  (28b) 

Furthermore, from (22) and (23) we have 

[ tr (F&A'(w)A&A(w)) ] u2 
a: = L tr (FA) _1 (29) 

[tr (F K'AB'(v)AaB(v)K) ] 
/3 = k tr-E  . (30) 

Using the Hamilton-Jacobi approach (Bell et 
al., 1982; Sage, 1968), we can show (see 
Appendix B) that the optimizing cost functional 
J(K; w, v, to) defined by (17) is given by 

J(K; w, v, to) = tr (A'(t0)q J) (31) 

where W=F(to) is the positive semidefinite 
matrix defining the bounding ellipsoid of the 
initial state as described by (6), and A(to) is the 
solution of (27) evaluated at time to. 

Once the minimization problem has been 
solved the optimizing cost functional can be 
evaluated using (31). The minimization problem 
posed above has therefore been reduced to 
solving a set of simultaneous nonlinear equations 
given by (27)-(30). Observe that (27) is a 
Ricatti-type equation with R(A) and Q(A) being 

linear functions of A and that (28) is a linear 
matrix differential equation. If the solution of 
this set of equations is obtained, then the linear 
feedback gain matrix is given by (24). 

In general, it is difficult to solve a set of 
nonlinear equations. But, fortunately, owing to 
the special structure of the equations in 
(27)-(30), the difficulty may be alleviated 
considerably. To show the special structure in 
(27)-(30), it may be pointed out that the 
coupling between (27) and (28) arises from 
conditions (29) and (30). If the parameters o~ and 
/3 are given, then we can solve (27) for A, and 
subsequently solve (28) for F. Based on these 
observations, an iterative procedure may be used 
to solve the set of nonlinear equations. 

3.3. The infinite time case 
For a linear time-invariant system with 

uncertain but constant parameters w and v, the 
steady-state solution of (27) will approach a 
constant one, which satisfies the following 
algebraic Ricatti-type equation: 

0 = A ( A '  ~x +/3 ,'~ *-T-l) 

( )' o~ +/31 A - ABR- t (A)BA + Q(A). + A +  2 

(32) 

This corresponds to the solution of an infinite 
time optimal boundedness problem, i.e. t0---~ - ~  
in (17). It should be noted that, even in the 
infinite time case, the optimal values of the 
parameters a and /3 given by (29) and (30), 
respectively, are still time-varying, since they 
depend on F(t). In many cases, it is desirable to 
use fixed values for c~ and /3. To this end, it is 
suggested to use the following sub-optimal but 
constant ot and/3: 

a~ = [tr  (&A'(w)A&A(w))] ~a 
~r~-~ ] (33) 

/3 = [tr (K'AB'(v)AAB(v)K)]  ~ , 2 ~  J . (34) 

Thus, the problem is reduced to solving the 
Ricatti-type equation (32), and the correspond- 
ing cost functional is given by 

J(K; w, v, to) = tr (A'W), to--~ - ~ 

where the optimal feedback gain is given by 
K = -R- t (A)B 'A .  
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4. A NUMERICAL EXAMPLE 

To illustrate the design procedure, we 
consider the example given in Wang et al. 

(1987), which is described by the following linear 
uncertain system: 

x +  u. 
"~=  l + w  l + w  l + v  

The uncertain parameters are bounded as w e W 
and v e V, where 

W = (w l lwl <- l } 

V-- {v I l v l -  0.2}. 

Obviously, the sets W and V are convex 
polyhedrons. The optimal boundedness problem 
is solved for this example. By Theorem 1, it is 
obvious that the maximizing uncertainties occur 
at [w[ = 1 and [v[ =0.2.  The optimal feedback 
gain K, the free parameters cr and 13, and the 
corresponding cost J are numerically determined 
to be K = [ - 5 . 4 3  -6.61], ~ = 0 . 8 1 ,  /3=1.177 
and J=291 .8 ,  where the matrix ko has been 
assumed to be the identity matrix in the 
evaluation of the cost J. It can be seen from the 
results obtained in this example that it is 
somewhat less conservative than that obtained in 
Wang et al. (1987). This is expected since the 
criterion used in this paper is a scalar measure 
[see (17)], whereas in Wang et al. (1987) the 
upper bound of the cost functional is minimized 
in matrix ordering sense. 

5. CONCLUDING REMARKS 

In this paper, we have formulated and solved 
the optimal boundedness problem. The formula- 
tion is based on the ellipsoidal set-theoretic 
approach. It is of interest to note that the results 
obtained in this paper are very similar to those in 
our previous research (Wang et al., 1987), which 
is based on the linear quadratic (LQ) approach. 
Note that the free parameters o~ and/3 have the 
same meaning in these two approaches: both 
provide degrees of freedom for the construction 
of the upper bounds. Although this is surprising, 
it may be expected from the conceptual 
similarity between the LQ upper bound and the 
state bounding ellipsoids. 

The results presented in this paper may be 
used in the following two ways: 
(1) The bound-minimizing control law can be 

used as a stabilizing control provided that 
the stability with respect to large parameter 
variations is the main concern. 

(2) It can be viewed as a sensitivity reduction 
control law if the main concern is 
performance degradation due to small 
parameter variations. 
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APPENDIX A: PROOF OF THEOREM t 

In order to prove Theorem 1, we should invoke the 
following lemma. 

Lemma AI  (D'Appolito and Hutchinson, 1972). If f(x,  y, t) 
is a continuous scalar function of x, y and t and if f(x,  y, t) is 
convex in x for every y and t, with second order partials with 
respect to x continuous in y and t, then 

I,~ f(x, g(x, y) = y, t) dt 

is a convex function of x for every y. 

Theorem 1. If assumptions (A1)-(A2) in Section 2 hold, 
then J(K; w, v, to) is convex in w and v. 
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Proof. By Lemma A1 and the fact that the integrand in the 
cost functional (17) is linear in tr (F), it remains to show that 
tr (F) is convex in w and v. It is well known that the solution 
to the matrix differential equation (15) can be written in the 
form 

r(t)  = ~( t )  AA(w)FAA'(w) 

+ d, (AI) 

where ~( t )  is the transition matrix associated with 
A + BK + (or + 13)1/2. Taking the trace operation on both 
sides of (A1) and using the gradient matrix calculation 
formulae (Athans, 1968) and the trace property tr (AB)= 
tr (BA), we have 

and 

0 tr (F) 
0AA = 2 ( ~ ' ~  ® r )  (A2) 

8 tr ( r )  = 2 ( ~ ' ~  ® KFK') 
8AB (A3) 

where ® denotes the Kronecker product (Bellman, 1970). 
Since ~ ' ~ ,  F and KFK' are semidefinite, the gradients in 
(A2) and (A3) are positive semidefinite (Bellman, 1970), and 
t r(F)  is convex in AA(.) and AB(.). By the assumptions 
(A1)-(A2) given in Section 2, tr (F) is also convex in w and 
v. This completes the proof. 

APPENDIX B: OPTIMIZING THE COST 
FUNCTIONAL 

In this appendix, we will show that the optimizing cost 
functional is given by (31). To this end, we assume that the 
cost functional defined in (17) has the following optimal 
value: 

J(K; w, o, to) = [tr (F) + p tr (KFK')] dt 
fl 

= F(F, t) (B1) 

i.e. F(F, t) is the value of the cost function evaluated along 
an optimal F(t) at a general initial time t. With the 
Hamiltonian defined in (18) and the cost functional given by 
(B1), the Hamilton-Jacobi equation (Sage, 1968) can be 
written as 

OF 
~ -  + H(F, K, p, t) = 0 (B2) 

o r  

- ~ + t r ( F ) + p t r ( K F K ' ) + t r ( A @ ) = O  (B3) 

where K is the opt!real feedback gain given by (24). 
Substituting (15a) for F into (B3) and noting that 

OF= tr [/~'(t)F] 
Ot 

and that (B3) must hold for all F, we obtain (27). This 
completes the proof. 


