
Parallel Computing 18 (1992) 625-637
North-Holland

625

PARCO 681

A hybrid scheme for efficiently
executing nested loops
on multiprocessors

C h i e n - M i n W a n g a and S h e n g - D e W a n g b

"Institute of Information Science, Academia Sinica, Nankang, Taipei 11529, Taiwan
h Department of Electrical Engineering, National Taiwan Unicersity, Taipei 10764, Taiwan

Received 22 January 1991
Revised 5 November 1991

Abstract

Wang, C.-M. and S.-D. Wang, A hybrid scheme for efficiently executing nested loops on multiprocessors,
Parallel Computing i 8 (! 992) 625-637.

In this paper, we address the problem of scheduling parallel processors for efficiently executing nested loops.
The goal is to achieve optimal load-balancing by using a few scheduling and cc, mmunication operations as
possible. For this purpose, we propose a new scheduling scheme called multilecel interleaced guided st'if-sched-
uling (MIGSS). It is a hybrid scheduling scheme blending with run-time scheduling techniques and compile-time
loop restructuring. Its run-time scheduling is based on guided self-scheduling. A compile-time loop transfor-
mation method is proposed to enhance the parallel execution performance. It is proved that, by this scheme,
we can achieve optimal load-balancing and avoid significant communication overheads. Experimental results
clearly show the relative performance improvement of MIGSS over guided self-scheduling.

Keywords. Guided self-scheduling: hybrid scheduling scheme: load-balancing; loop transformation: multipro-
cessor; nested loop: run-time overhead.

1. In troduct ion

Recently, it has become more and more difficult to achieve order of magnitude speedups
by uniprocessor systems because device technology places an upper bound on the speed of
any single processor. Multiprocessor systems offer a promising and powerful alternative for
high-speed computing. Because of the flexibility, scalability, and high performance provided
by multiprocessor systems, it is widely believed that this architecture will be a dominant
architecture in the development of the future general purpose supercomputers.

In principle, the speedup obtained by multiprocessor systems depends only on the paral-
lelism of thc application at hand. The more processors in a multiprocessor system the more
speedup can be obtained. However, in order to correctly execute a parallel program on a
multiprocessor system, processors must be appropriatei~ ~ ~.oordina~,cd. The overheads of
communication, synchronization and scheduling are then incurred and may undo the benefit

Correspondence to: Sheng-De Wang, Department of Electrical Engineering, National Taiwan University, Taipei

10764, Taiwan

0167-8191/92/$05.00 © 1992 - Elsevier Science Publishers B.V. All rights reserved

626 C.-M. Wang, S.-D. Wang

of multiprocessor systems. In order to efficiently execute a parallel program on a multiproces-
sor system, the problem of scheduling parallel processors must be solved.

Most scheduling schemes proposed in the past [5,9,18,21,22] consider only an idealized
form of the problem where task execution times are fixed and known in advance. This
approach is called static scheduling. In reality, branching statements in programs, memory
access interference, random processor latencies, and other 'random events' make task
execution times impossible to predict accurately. For these cases, scheduling should be
performed at run-time in order to execute parallel programs efficiently. This approach is
called dynamic scheduling.

In this paper, we focus our attention on dynamic scheduling schemes to generate very
efficient schedules of nested parallel loops for execution on multiprocessor systems. Nested
parallel loops, whose iterations can be executed in parallel on different processors, provide
the greatest potential of parallelism to be exploited for multiprocessor systems [14]. In
addition, scheduling of nested parallel loops incurs less overhead at run-time.

Dynamic scheduling will incur scheduling overhead at run-time. Scheduling overhead can
be significant if scheduling is clone by system calls to the operating system. One existing
technique to reduce scheduling overhead is processor self-scheduling [8,13,23]. In this scheme,
an iteration of a parallel loop is assigned to a processor whenever it becomes available.
Rather than issue a system call to the operating ~ystem for scheduling, processors can
schedule themselves by performing a fetch-and-add operation on a shared variable. If the
multiprocessor system has efficient hardware-implemented synchronization primitives for this
operation, the scheduling overhead can be reduced significantly.

However, processor self-scheduling suffers a serious disadvantage. The total number of
scheduling operations performed by processor self-scheduling is equal to the total number of
iterations in a nested loop. Although the overhead of scheduling an iteration by processor
self-scheduling is small, there can be so many scheduling operations such that the total
scheduling overhead is still significant. To reduce the number of scheduling operations,
guided self-scheduling (GSS) was proposed [20]. For a simple parallel loop, if iterations have
constant execution time, GSS not only obtains an optimal schedule under any initial processor
configuration but also uses the minimum possible number of synchronization points necessary
to achieve optimal load-balancing.

A major disadvantage of GSS is that it does not always perform well for a nested loop. For
a nested loop, the schedule generated by GSS is often not an optimal one. Further, the
number of scheduling operations used by GSS may be very large, and hence GSS may incur
significant communication overhead. To efficiently execute nested loops on multiprocessor
systems, we propose a new scheduling scheme called multilevel interleaved guided self-schedul-
ing (MIGSS). It is a hybrid scheduling scheme based on GSS and several loop transforma-
tions. It can be proved that MIGSS not only can achieve optimal load-balancing for a nested
loop but also can avoid significant communication overhead.

The rest of this paper is organized as follows. Section 2 gives background information and
necessary definitions. A brief introduction to guided self-scheduling is also given in this
section. Section 3 and Section 4 present interleaved guided self-scheduling and multilevel
interleaved guided self-scheduling, respectively. Section 4 also gives the experimental results.
Finally, conclusions are given in Section 5.

2. Background

The multiprocessor system considered in this paper is a shared memory multiprocessor
system that contains p identical processors. It is assumed that each processor has its own

Executing nested loops on multiprocessors 627

local memory and processors communicate through shared memory modules. Neither proces-
sors nor shared memory modules are distinguishable from their ~eighbors. Eacil shared
memory module is capable of being accessed by any processor through the interconnection
network. Systems in this class include the AUiant FX series, the Denelcor HEP, the University
of Illinois Cedar system, the New York University Ultracomputer, and the IBM RP3
multiprocessor.

In a parallel program, we may observe the following three types of loops: serial or DOSER
loops, do all or DOALL loops, and do across or DOACR loops. Iterations of a DOSER loop
must be executed serially while iterations of a DOALL loop can be executed in parallel and in
any order. In a DOACR loop, the execution of successive iterations can be partially
overlapped. To simplify our notations, each loop is assumed to be normalized (i.e. its iteration
space is of the form [1, . . . , N], N ~ Z+). We may assume that any (serial or do all or do
across) DO loop has the following form:

DO 1--1, N

"CB}

ENDDO

where I is the loop index, N is the loop bound, and B is the loop body. The loop body may
contain a set of statements with constant (independent of I) execution time, or other loops. If
no other loop is contained in the loop body, the DO loop is called an innermost loop.
Otherwise, the DO loop is called an outer loop. In a nested loop, an individual loop can be
enclosed by many outer loops. The nest level of an individual loop is equal to one plus the
number of the enclosing outer loops. The nest depth of a nested loop is the maximum nest
level of loops in the nested loop. In a perfectly (or one-way) nested loop of nest depth m,
there exists exactly one loop at each nest level, i, i = 1, 2 , . . . , m. Therefore, a perfectly (or
one-way) nested loop of nest depth m is a loop of the form:

DO 11:1, N 1

Do I2 :1~ , N 2

DO I m = l t N m

(B }

ENDDO

u u u

ENDDO

ENDDO

A loop is k-way nested if there exist k disjoint loops at the same level. For converfience, it
is assumed that individual loops in an arbitrarily nested loop are numbered increasingly, in
lexicographic order. Furthermore, the number of iterations of loop i is denoted by N~. Nested
loops that contain combinations of DOALL, DOACR, and DOSER loops are called hybrid
loops. In this paper, we concern with the dynamic scheduling of hybrid nested loops
composed of DOSER and DOALL loops only.

;,'ost self-scheduling schemes assign a single iteration for execution at a time. Guided
seO:Jcheduling (GSS) [20] follows another approach by assigning several consecutive iterations,
called an iteration block, to each idle processor. Each idle processor will receive a block of
[R/p] iterations when there are R iterations unassigned. Suppose that a DOALL loop with N
iterations is to be executed on P processors. The number of synchronizations points used by
this scheme can be proved to be p in the best case, and O(p In[N/p|) in the worst case.

For perfectly nested DOALL loops, GSS can become more efficient by using loop
coalescing [19]. Suppose that we have a perfectly nested DOALL loop L of nest depth m.

628 C.-M. Wang, S.-D. Wang

Loop coalescing coalesces all m individual DOALL loops into a single DOALL loop L' with
N = l-l~ m ~N~ iterations through a set of transformations f~, i = 1, 2, m, that map the index
I of the coalesced loop L' to the indexes I i, of the original loop L such that I~ =f~(1). Each
processor can compute locally fi for a given index I. The global index I is kept in shared
memory as a shared variable. The number of synchronization points used by GSS is
O(p In[N/p]). Comparing it with O(mN) synchronization points used by self-scheduling

DOALL I = i, 10

DOSER J = i, 5

DOALL K = i, 4

{B}
ENDDO

ENDDO

ENDDO

(a)

DOSER J = i, 5

DOALL L = I, 40

I = (L - i) / 4 + 1

K = (L - I) mod 4 + 1
{B}

f

ENDDO

ENDDO

(I,)

PARBEGIN

DOSER J = i, 5

DOALL L = i, 20

I = (L - i) / 4 + 1

K = (L - i) mod 4 + 1

{B}
ENDDO

ENDDO

DOSER J = i, 5

DOALL L = 21, 40

I = (L - i) / 4 + 1

K = (L - i) mod 4 + 1

{B}
ENDDO

ENDDO

PAREND

(c)

Fig. i. An example of GSS and IGSS.

Executing nested loops on multiprocessors 629

without loop coalescing, we observe that the number of synchronization points can be greatly
reduced.

For hybrid perfectly nested loops, loop coalescing can not be directly applied. Consider the
hybrid perfectly nested loop L in Fig. l(a), which was given in [20] as an example. By loop
coalescing, we have a total of N = 200 iterations. However, assigning consecutive iterations of
the coalesced loop to each idle processor will fail because of the presence of the DOSER loop
in L. Only the first four consecutive iterations can be assigned at once. In other words, at
most four processors can be used in parallel. This problem ca~ bt~ eliminated by applying loop
interchange [2,24]. It was proved [20] that, in a hybrid perfectly nested loop, any DOALL loop
can be interchanged with any DOSER loo0 in a deeper nest level. Loop interchange can be
applied repeatedly and independently for any pair of (DOALL, DOSER) loops. Hence, the
first loop and the second loop can be interchanged and then loop coalescing is applied as
shown in Fig. l(b). Now the first 40 successive iterations can be assigned at once.

The last case that remains to be discussed is multiway nested loops. When there 0o not
exist bi-directional dependences across loops at the same nest level, a loop transformation
called loop distribution [15] can be used to transform a multiway nested loop into several
one-way nested loops. For a multiway nested loop with bi-directional dependences across
loops at the same nest level, barrier synchronizations can be used and the scheduling of
multiway nested loops is identical to the scheduling of perfectly nested loops [20].

3. Interleaved Guided Self-Scheduling

For a hybrid perfectly nested loop, the GSS algorithm tries to permute the indexes through
loop interchange so that the largest possible set of parallel iterations corresponds to succes-
sive iterations of the coalesced loop. This strategy aims at reducing the number of synchro-
nization points. However, the issue of load-balancing is ignored at all. As a result, it does not
always obtain an optimal schedule. For example, consider executing the loop L in Fig. l(a)
on 12 processors scheduled under GSS. As mentioned in the previous section, the loop L will
be transformed into the loop in Fig. l(b) through loop interchange and loop coalescing. Note
that barrier synchronizations are needed for the DOSER loop in Fig,. l(b). Figure 2(a) and
Fig. 2(b) show the barrier synchronizations needed for the loop L and the loop in Fig. l(b),
respectively. Each node represents four parallel iterations of the innermost DOALL loop and
each horizontal line represents a barrier. Now 40 parallel iterations can be assigned at once.
However, due tO barrier synchronizations, the next 40 iterations cannot start execution until
the previous 40 iterations all finish execution. Therefore, the completion time will become
20b if each iteration takes b units of execution time and the startup time of each processor is
the same. However, the optimal completion time is only 17b for the case of utilizing 12
processors. Clearly, the schedule generated by GSS is not optimal.

For a hybrid multiway nested loop, it is possible to eliminate this problem by applying
high-level spreading to independent loops at the same nest level. Spreading is the act of
allocating different program fragments to different processors. It is called high-level spreading
if spreading is done at the loop or subroutine level. By applying high-level spreading,
independent loops at the same nest level can be executed in parallel. This provides another
type of parallelism and can prevent processors from waiting for barriers to be opened.

For hybrid perfectly nested loops, high-level spreading can not be applied directly because
there is only one loop at each nest level. To generate an optimal schedule for a hybrid
perfectly nested loop, we propose a scheduling scheme called interleaved guided selJ'-schedul-
ing (IGSS). The basic idea 6f IGSS is to split a hybrid perfectly nested loop into several
independent loops and then apply high-level spreading to the generated loops. Since the

630 C.-M. Wang, S.-D. Wang

resulting loops are independent, loop splitting must be applied to outer DOALL loops only.
As in the GSS algorithm, loop interchange and loop coalescing can be applied to the resulting
loops for reducing the number of synchronization points.

For example, the loop L in Fig. l(a) can be transformed into the loop in Fig. l(c). The
corresponding barrier synchronizations are shown in Fig. 2(c). High-level spreading is
achieved by executing instances of the two DOALL loops in an interleaved order. In other
words, the ith instance of the first DOALL loop is to be assigned immediately after all
iterations of the (i - 1)th instance of the second DOALL loop were assigned and the ith
instance of the second DOALL loop is to be assigned immediately a~'ter all iterations of the
ith instance of the first DOALL loop were assigned. Instances are executed on processors
scheduled under GSS. Hence, it is called interleaved GSS. Some important properties of
IGSS are stated in the following lemmas. Their proofs are directly from GSS and omitted
here.

[,emma 1. For any instance, each of the last p - 1 iteration blocks assigned for execution
contains exactly one iteration.

Lemma 2. If iterations hate constant execution time b, all prvcessors finish executing an instance
within b units of time different from each other.

In general, several independent loops can be generated by loop splitting. It is called s-way
interleaved GSS or IGSS(s) if the number of independent loops generated by loop splitting is
s. In the following theorem, we give sufficient conditions that optimal load-balancing can be
achieved by IGSS(s). Consider the perfectly nested loop in Fig. 3(a). Suppose that it is
transformed into the loop in Fig. 3(b), where E~_~ iN[= N I. Let L[denote the j th instance of
the ith DOALL loop and T,/denote the time instant that all iterations of L[are completed.
We have the following theorem.

Theorem 1. If iterations have constant execution time b and, for each DOALL loop i,
(N I - N ~) N 3 >_ p - 1, then no processor will stay idle unless all instances hat'e been assigned.

Proof. We shall prove this theorem by contradiction. According to IGSS, a processor will stay
idle only when it try to execute an instance of some DOALL loop and the previous instance of
the same DOALL loop had not been finished. Without loss of generality, we may assume that
the first time a processor stayed idle was at the time instant t when processor r tried to
execute the (j + 1)th instance of the ith DOALL loop and the jth instance of the ith DOALL
loop had not been finished. Obviously, t < T/.

According to the assumption and Lemma 2, we know that no processor will stay idle before
the time instant T~ j - b . In other words, we have T / - b < t. Furthermore, iterations in
instances L[+t through "-,i- l~J+ ! is to be assigned after the time instant T/ - b. By definition, the
number of iterations in instances L{+ i through "-,,-11J+l is (N ! - N ~) N 3 > p _ - 1. According to
Lemma 1, at least p - 1 iteration blocks were assigned after the time instant T / - b. Since
iterations have constant execution time b, at time instant t processor r will receive an
iteration block for execution. However, this contradicts the assumption. Therefore, this
theorem must be true. [2

Note that the total number of synchronization points used by IGSS(s) is at most s times
the total number of synchronization points used by GSS. Fewer generated loops are preferred
for reducing the number of synchronization points. The optimal number of independent loops

"r
l

~
°

C
~

(~

II

U

(
2

~
-

~

~-

o

(~

(~

C
~

(~

C
~

c
~

C

~

I

li

I! o

c.
,

II

li

632 C.-M. Wang, S.-D. Wang

DOALL I1 = i, N1

DOSER I2 = i, N2

DOALL I3 = i, N3

{B)
ENDDO

ENDDO

ENDDO

(a)

PARBEGIN

DOSER I2 = i, N2

DOALL I = i, A~ N3

{s}
ENDDO

ENDDO

DOSER I2 = i, N2

DOALL I = i, A~ N3

{s)
ENDDO

ENDDO

DOSER I2 = i, /9'2

DOALL I = I, N~ N3

{B}
~.NDDO

ENDDO

PAREND

(b)

Fig. 3. An example of IGSS(s).

DOALL I = i, N1

DOSER J = I, N2

DOALL K = i, N3

A(I,J,K) = A(I,J-I,K-I) + A(I,J-I,K)

ENDDO

ENDDO

ENDDO

(a)

PARBEGIN

DOALL I = i, N1-M
DOSER L = i, N2N3

A(I,J,K) = A(I,J-I,K-I) + A(I,J-I,K)

ENDDO

ENDDO

DOSER J = I, N2

DOALL L = i, N'N3

A(I,J,K) = A(I,J-I,K-I) + A(I,J-I,K)

ENDDO

ENDDO

DOSER J = I, N2

DOALL L - N'N3+I, MN3

A(I,J,K) = A(I,J-I,K-I) + A(I,J-I,K)

ENDDO

ENDDO

PAREND

(b)
Fig. 4. A example of MIGSS(2).

to be generated should be changed depending on the target program and on the target
multiprocessor. In our experience, two-way interleaved GSS performs well for most cases.

As a numerical example, consider executing the loop in Fig. l(c,) on 12 processors
scheduled under IGSS(2). As shown in Fig. l(c), either DOALL loop contains 20 iterations.
Hence, 16 synchronization points are needed for every instances. Therefore, a total of 160
synchronization points is needed. Compared with GSS, the total number of synchronization
points is increased from 115 to 160. The completion time is reduced from 20b to 17b.

4. Multilevel Interleaved Guided Self-Scheduling

A disadvantage of IGSS is that the number of synchronization points used by IGSS is not
minimum for achieving optimal load-balancing. To make matters worse, both GSS and IGSS
ignore communication overhead. For example, consider the hybrid nested loop in Fig. 4(a).

Executing nested loops on multiprocessors 633

Suppose that N~ = 10, N 2 = 5 and N a = 4. At most 400 global read operations and 200 global
write operations are needed. Compared with 160 synchronization operations used by IGSS(2),
communication overhead is a more serious problem in this example.

According to the semantic of DOSER loops, there are data communications between
different iterations of a DOSER loop. In order to reduce the number of communication
operations, a DOSER loop should be executed serially on a single processor. However, loop
interchange and loop coalescing are necessary to achieve optimal load-balancing. Since loop
interchange and loop coalescing make iterations of a DOSER loop be spread to different
processors, many communication operations are needed. In order to achieve optimal load-bal-
ancing by using as less communication operations as possible, we propose a scheduling
scheme called multilevel interleaved guided self-scheduling (MIGSS). The basic idea of MIGSS
is to perform loop interchange and loop coalescing only when it is necessary.

For example, consider executing the perfectly nested loop in Fig. 4(a) on p processor. The
number of communication operations is minimum if each instance of the DOSER loop at nest
level 2 IS executed serially on a single processor. Only N~ iterations of the DOALL loop at
nest level 1 are scheduled for parallel execution. However, optimal load-balancing cannot be
achieved in thir way. Our solution is to split the DOALL loop at level 1 into two loops. The
first loop is intc.nded to reduce the number of communication operations. For this purpose,
each instance of th~ DOSER loop at level 2 is executed serially on a single processor. The
DOALL loop at level 1 is scheduled under GSS. The second loop is intended to achieve
optimal load-balancing and is executed by IGSS. Figure 4(b) shows the result of MIGSS(2).

Note that the more iterations in the first loop the less communication operations are used.
On the other hand, too many iterations in the first loop may make optimal load-balancing
impossible to be achieved. An important problem is to determine the minimum number of
iterations in the second loop such that optimal load-balancing still can be achieved. Suppose
that the minimum number of iterations in the second loop to ensure optimal load-balancing is
M. If iterations have constant execution time b, according to Lemma 2, all processors finish
executing the first loop within N2N3b units of time different from each other. For optimal
load-balancing, all processors finish executing these two loops within b units of time different
from each other. Therefore, it must satisfy MN2N3b>(p-1)N2N3b. Hence, we have
M >__ p - 1. For convenience, we choose M = p in the MIGSS algorithm.

The above scheme can be applied to any perfectly nested (DOALL, DOSER, DOALL)
loop. To reduce as many communication operations as possible, this transformation should be
performed whenever there is a perfectly nested (DOALL, DOSER, DOALL) loop and the
outer DOALL loop contains more than p iterations. In general, any perfectly nested loop can
be expressed as the loop in Fig. 5 because consecutive DOALL or DOSER loops can be
coalesced into a single DOALL or DOSER loop. The complete MIGSS algorithm is shown in
Fig. 6. The process starts from the DOALL loop at level 1. After loop splitting is applied to
DOALL loops at level i - 1, there are two DOALL loops at level i - 1. The latter DOALL
loop is further transformed into two DOSER loops, each containing a DOALL loop at level i
as its loop body. The above process can then be applied to DOALL loops at level i. As a
result, IGSS is applied to DOALL loops at each level. Hence, it is called multilevel IGSS.

By this scheme, the number of communication operations can be greatly reduced. As an
illustration, we conduct an experiment to show the performance improvement of MIGSS over
GSS. A simulator is implemented to study the performance of variant scheduling schemes. It
accepts a nested loop as input. Communications and synchronizations must be explicitly
specified. The hybrid perfectly nestcd loop in Fig. 4(a) with N~ = 16 and N 2 = N 3 = i0 is
chosen in the experiment. Each iteration is assumed to take 30 cycles of computation time. It
is also assumed that no global read operations are needed when the DOSER loop at level 2 is
executed serially. Synchronizations operations are always needed for scheduling and barriers.

634 C.-M. Wang, S.-D. Wang

DOALL II = i, N1

DOSER I2 = i, N2

DOALL I3 = I, N3

DOSER I4 = i, N4

DOALL 12m+1 = I,

{B}

ENDDO

N2n~-i

ENDDO
ENDDO

ENDDO
ENDDO

Fig. 5. A general hybrid perfectly nested loop.

Input:

1. L i : a DOALL loop that has N i and contains B i as its loop body.

Output:

I. A parallel program that is semantically equivalent to L i and suitable for MIGSS,

Algorithm:

1. If B i is not a DOSER loop then return L i.

2. Let L/be the DOSER 1o, ~ "n B i. I fBj is not a DOALL loop then return L i.

3. Let L k be the DOSER loop in Bj.

4. Loop Splitting: Generate DOALL loops L~ and L 2.

(a) B~ ~ serialized code of B i and N~ ~-- N i - p.

(b) B2i ~-- Bi and N2i ~... p.

5. IGSS: Generate POSER loops L; and L~ and DOALL loops L 1 and Lk 2.

(a) Blkt" Bk and Nlk

(c)B) ~.--L~ andN 1 ~'-Nj.

(d) # <-- L~ and N~I (-'Nj.

6. Recursion: B) ~ MIGSS(L l) and ~ e-- MIGSS(Lk2).

Fig. 6. The MIGSS algorithm.

Executing nested loops on multiprocessors 635

0

O.

1.3

1.28 -

1.26 -

1 . 2 4 -

1.22 -

1.2 -

1.18

1.16

1.14

1.12

1.1

1.08 -

1.06

1.04

1.02

1

0.98

0.96

1

.-,,,,, "~...,,.
• ",..~.

.~.

I I I T l

2 3 4 5 6 7

log(P)
IGSS(2) /GSS -~ MGSS/GSS o MIGSS(2)/GSS

Fig. 7. Speedup ratios for toy = 2.

The overheads of communication and synchronization operations have a severe impact on
the speedup o.~:ained. In general, it is not a constant and dependent on many factors. These
factors in turns depend on the actual multiprocessor system. Since we are concerned with the
relative performance improvement of MIGSS over GSS, in our experiment, the time to
perform a communication or synchronization operation is assumed to be a constant. Let to,
be the overhead constant. To show the influence of different overheads, we conduct the
experiment for to,. = 2 and to,. = 10, respectively.

Four scheduling schemes are simulated. They are GSS, IGSS(2), MGSS, and MIGSS(2).
Figures 7 and 8 show the speedup ratios of the other three schemes over GSS. First, observe
that the speedup ratio of MGSS over GSS is equal to 1 when P > 16. Recall that the
multilevel scheduling technique is effective only when N= > P and N= = 16 in the experiment.
Therefore, for P > 16, MGSS is identical to GSS. For the same reason, MIGSS(2) is identical
to IGSS(2) when P > 16.

Next, observe that, when the number of available processors is small, the speedup ratio of
IGSS(2) over GSS is less than 1 while the performance improvement of MGSS and MIGSS(2)
over GSS is significant. This can be explained by the fact that the interleaved scheduling
technique aims at load-balancing while the multilevel scheduling technique aims at reducing
the communication overhead. When the number of available processors is small, reducing the
communication overhead is more important than load-balancing. Other evidence comes from
the observation that the performance improvement of MGSS and MIGSS(2) over GSS
becomes more significant as the overhead constant increases

On the contrary, when the number of available processor: grows, load-balancing becomes
more and more important. It can be observed that, as tht ~ umber of available processors
approaches the total number of parallel iterations (160 in the experiment), the performance
improvement of IGSS(2) and MIGSS(2) over GSS becomes more significant. It can also be

636 C-M. Wang, S.-D. Wang

0 l
Q .
:3

1.4

1.35 -~

1 . 3 -

1.25 -

1 . 2 - -

1.15 -

1 . 1 - -

1.05 -

0 .95 -

0 .9

1

"~"&.

.,

I I I I I

2 3 4 5 6 7

log(P)
I G S S (2) I G S S + M G S S I G S S o M I G S S (2) i G S S

Fig. 8. Speedup ratios for toy = 10.

observed that the speedup ratios of IGSS(2) and MIGSS(2) over GSS decrease as the
overhead constant increases.

The common characteristics of Figs. 7 and 8 is that the speedup ratio of MIGSS(2) over
GSS is approximately equal to the speedup ratio of MGSS over GSS for a small" number of
processors and to the speedup ratio of IGSS(2) over GSS for a large number of processors. In
other words, the performance improvement of MIGSS(2) over GSS for a small number of
processors is primarily due to the proposed multilevel scheduling technique and the perfor-
mance improvement of MIGSS(2) over GSS for a large number of processors is primarily due
to the proposed interleaved scheduling technique. Therefore, MIGSS performs well in either
case.

5. Conclusions

The optimal load-balancing and the minimization of overheads are two most important
objectives in scheduling parallel processors. In this paper, two self-scheduling schemes were
reviewed. Processor self-scheduling can achieve optimal load-balancing but fails to minimize
overheads. Guided self-scheduling performs well for a simple parallel loop but does not
perform well for a hybrid nested loop.

To achieve both objectives for hybrid nested loops, we propose a new scheduling scheme. It
is a hybrid scheme of the run-time scheduling and the compile-time loop transformations. Its
run-time scheduling is based on the guided seal-scheduling algorithm. The difference to the
guided self-scheduling is in that it performs at compile-time appropriate loop transformations
to achieve both objectives. Optimal load-balancing can be achieved through loop splitting and
high-level spreading. This technique can prevent processors from waiting for barriers to be
opened. The minimization of communication overheads can be achieved through multilevel

Executing nested loops on multiprocessors 637

spreading. Tasks with coarser granularity are preferred unless optimal load-balancing cannot
be achieved. We have derived a sufficient condition to achieve optimal load-balancing. An
experiment has been conducted and the results clearly show the performance improvement of
the proposed scheme over guided self-scheduling.

References

[11

[21
[31
[41

[51
[61

[7]

[81

[91

[lOl

[!1]
[12]

[13]

1141

[151

[161

[17]

[18l

[191

[201

I21]
[22]

[231

[241

A.V. Aho, R. Sethi and J.D. Ullman, Compilers: Principles, Techniques, and Tool (Addison-Wesley, Reading,
MA, 1986).
J.R. Allen and K. Kennedy, Automatic loop interchange, ACM SIGPLAN Notices 19 (6) (Jun. 1984) 233-246.
Alliant Computer System Corp., FX/Series Architecture Manual, Acton, MA, 1985.
U. Banerjee, Speedup of ordinary programs, Ph.D. dissertation, Univ. of Illinois at Urbana-Champaign, DCS
Rep. UIUCDCS-R-79-989, Oct. 1979.
E.G. Coffman, Jr., Ed., Computer and Job-Shop Scheduling Theory (Wiley, New York, 1976).
R.G. Cytron, Doacross: Beyond vectorization for multiprocessors, Proc. 1986 lnternat. Conf. on Parallel
Processing (Aug. 1986)836-844.
R.G. Cytron, Limited processor scheduling of Doacross loops, Proc. 1987 Internat. Conf. ol Parallel Processing
(1987) 226-234.
Z. Fang, P.C. Yew, P. Tang and C.Q. Zhu, Dynamic processor self-scheduling for general parallel nested loops,
Proc. 1987 htternat. Conf. on Parallel Processing (1987) 1-10.
M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theorey of NP-Completeness
~Freeman, San Francisco, CA, 1979).
A. Gottlieb, R. Grishman, C.P. Kruskal, K.P. McAuliffe, L. Rudolph and M. Snir, The NYU Ultracomputer-Deo
signing and MIMD shared-memory parallel machine, IEEE Trans. Comput. C-32 (Feb. 1983).
R.L. Graham, Bounds on multiprocessing timing anomalies, SIAMJ. Appi. Math. 17 (2)(Mar. 1969).
E. Horowitz and S. Sahni, Fundamentals of Computer Algorithms (Computer Science Press, Rockville, MD,
1978).
C. Kruskal and A. Weiss, Allocating independent subtasks on parallel processors, IEEE Trans. Software Engrg.
SE-I1 (Oct. 1985).
D.J. Kuck et al., The effects of program restructuring, algorithm change and architecture choice on program
performance, Proc. 1984 Internat. Conf. on Parallel Processing (Aug. 1984).
D.A. Padua, Multiprocessors: Discussion of some theoretical and practical problems, Ph.D. dissertation, Univ. of
Illinois at Urbana-Champaign, DCS Rep. UIUCDCS-R-79-990, Nov. 1979.
C.D. Polychronopoulos, D.J. Kuck and D.A. Padua, Execution of parallel loops on parallel processor systems,
Proc. 1986 blternat. Conf. on Parallel Processing (1986) 519-535.
C.D. Polychronopoulos, On program restructuring, scheduling, and communication for parallel processor
systems, Ph.D. dissertation, CSRD 595, Center of Supercomput. Res. Develop., University of Illinois, Aug. 1986.
C.D. Polychronopoulos and U. Banerjee, Processor allocation for horizontal and vertical parallelism and related
speedup bounds, IEEE Trans. Comput. C-36 (4) (Apt i~,87) 410-420.
C.D. Polychronopoulos, Loop coalescing: A compiler transformation for parallel machines, Proc. 1987 hlternat.
Conf. Parallel Processing, St. Charles, IL (Aug. 1987).
C.D. Polychronopoulos and Dd. Ku.-'k, Guided self-scheduling, A practical scheduling scheme for parallel
supercomputers, IEEE Trans. Comput. C-36 (12)(Dec. 1987) 1425-1439.
S. Sahni, Scheduling muitipipline and multiprocessor computers, IEEE Tram Comput. C-33 (Jul. 1984).
H.S. Stone, Muitiprocessor scheduling with the aid of network flow algorithms, IEEE Trans. Software Engrg
SE-3 (1) (Jan. 1977) 85-93.
P. Tang and P.C. Yew, Processor self-scheduling for multiple-nested parallel loops, Proc. 1986 hlternat. Conf. on
Parallel Processing (Aug. 1986) 528-535.
M.J. Wolfe, Optimizing supercompilers for supercomputers, Ph.D. dissertation, Center for Supercomput. Res.
Develop. Rep. 329, Univ. Illinois, Urbana, 1982.

