
Pergamon 0305-0548(94)00025-5

Computers Ops Res. Vol. 22, No. 3, pp. 321-334, 1995
Copyright © 1995 Elsevier Science Ltd

Printed in Great Britain. All rights reserved
0305-0548/95 $9.50 + 0.00

A N E F F I C I E N T P R U N I N G A L G O R I T H M F O R V A L U E
I N D E P E N D E N T K N A P S A C K P R O B L E M U S I N G A D A G

S T R U C T U R E

CHA-HON SUN~ a n d SHENG-DE WANG~

Department of Electrical Engineering, EE Building, Rm. 441, National Taiwan University,
Tapei 106, Taiwan, Republic of China

(Received October 1992." in revised form March 1994)

Scope and Purlmse--The knapsack problem is a well known optimization problem. It has been proved
to be NP-complete. Solving the knapsack problem can be viewed as a way to study some problems in
number theory. There are some applications based on the knapsack problem, such as task scheduling and
memory management problems in Operating Systems, crytography, Integer Linear Programming (ILP)
problems, etc. The value independent knapsach problem (VIKP) is a special case of knapsack problem.
Due to exponential explosion, the space consideration has been a bottleneck in this problem. In this paper,
we use a data structure, directed acyclic graph (DAG), to store all the solutions of VIKP efficiently. We
will show that the space usage using DAG is less than that of other data structures proposed in the past.

Abstract--In this paper, we propose an efficient pruning algorithm to solve the value independent knapsack
problem. It stores all the solutions in a directed acyclic graph (DAG) using only O(M.n) space, where n
is the problem size and M is the subset summation. Our algorithm is suitable for the case of M<<2 n. Also,
we find a symmetric property that can improve many heuristic algorithms proposed in the past.

1. I N T R O D U C T I O N

Given a positive integer multiset A with cardinality n and a nonnegative integer M, we are required
to find all the subsets, called solution sets, of A such that these subset sums are equal to M. The
problem is the so called "value independent knapsack problem (VIKP)." Some also call the problem
"Stickstacking Problem." The most important applications are cargo loading, cutting stock and
job scheduling. A major difference between our algorithm and others proposed in the past is that
our algorithm finds "all" rather than "one" of the solutions. The VIKP has been proven to be
NP-complete in Ref. 1,1]. An n-element set has exact 2 n possible subsets. Many heuristic algorithms
[1-3, 6, 7] have been proposed to solve the problem. However, these algorithms have exponential
complexities both in time and space. Bruce 1,8] proposed a partitioning algorithm to solve the
number of the solutions using recursive technique. It is not further discussed how to find these
solutions in Ref. 1,8]. Kolesar 1,2] proposed a branch and bound algorithm which has the complexities
of time T = 0(2 ~) and space S = O(2n). Horowitz and Sahni 1,1] proposed a two-list algorithm which
has the following complexities: T --- O(max(2 ~/2, Q. n)), S -- O(2~/2), where Q is the number of solution
sets. Ahrens and Finke 1,7] independently proposed a dynamic programming approach similar to
Ref. [1]. The linked list data structure is used in Refs I-1, 2, 8]. A two-list four-table algorithm using the
heap structure is proposed by Schroeppel and Sharmir [3]. The complexities are T = 0(2 ~/2) and
S= O(2n/4). In Ref. [7], Ahrens and Finke proposed a similar four-table algorithm which uses
tournament sorting technique. Some approximation approaches are derived to find feasible solution

"t'Cha-Hon Sun is a Ph.D. candidate at the Department of electrical engineering, National Taiwan University, Taipei,
Taiwan. His research interests include parallel and distributed algorithms, cryptography, and reliability analysis.

~Sheng-De Wang received a B.S. degree from National Tsing Hua University, Hsinchu, Taiwan, and M.S. and Ph.D. degrees
in electrical engineering from National Taiwan University, Taipei, Taiwan. He is a professor in the department of
electrical engineering at National Taiwan University, Taipei, Taiwan. His research interests include artificial intelligence,
parallel processing, and neuro-computing.

321

322 CHA-HoN SUN and SHENG-DE WANG

instead of optimal one. Ibrarra and Kim [10] proposed an approximation algorithm to find a
feasible solution in the 0-1 Knapsack Problem.

Because of NP-completeness, many parallel algorithms were also proposed to get high speedup
or reduce storage requirement. Karnin [4] improved the two-list four-table algorithm on a
multiprocessor system with 2 "/6 processors to yield T = 0(2 "/2) and S = 0(2"/6). Ferreira [5] proposed
a one-list algorithm which has the following complexities: P = O((2"/2)~ -"), T=O((n.2"/2) ~) and
S = O(2"/2), where P is the processor number and 0 ~< e < 1. As for our algorithm, the complexities
are as follows: T = O(min(Mn 2, Qn) + Mn/L) and S = O(min(Mn, Q. n) + Mn), where L is the bit length
of one memory cell. It should be pointed out that our algorithm is suitable in the case of M<<2".
In fact, small storage requirement makes our algorithm excellent and practical in many applications.

We organize the rest of this paper as follows. In Section 2, we make some notation defintions
and introduce the two-list algorithm [1, 7] and a bit-shifting technique briefly. In Section 3, we
introduce our algorithm using five Subsections. In Subsection 3.1, a symmetric property related
with knapsack problem is examined. In Subsection 3.2, we introduce a partition approach. In
Subsection 3.3, an innovative algorithm, which saves the solution sets in a directed tree structure
is presented. In Subsection 3.4, a modified algorithm is proposed to reduce the computation time
and space without loss of any information. A DAG is built instead of a directed tree. In Subsection
3.5, we give the final algorithm to further reduce the computation time. In Section 4, we show the
experimental results and discuss these results briefly. Section 5 is a further discussion on our
algorithm. At last we make some conclusions in Section 6.

2. DEFINITION AND PRELIMINARY

2.1. Notation definition
The following notation will be used in this paper.

A~, a set, {al, a2 av}, that contains the first v elements of A. Thus, for an n-element set,
the notations A, and A can be used interchangeably;

]A~[, the number of elements in set A~, i.e. [A~[= v;
SUM(Av), the summation of all elements in A~. i.e. ~y= 1 ai;
(A~, m), a VIKP with multiset Av and positive integer m;
MAX(A~), the value of the maximal element in A~;
MIN(A~), the value of the minimal element in A,;
B, {BI , B 2 BQ}, the set of the solution sets of (A,, M), where SUM(B~)=M, VB~eB

and IB] = Q;
B, {B1, B 2 Be}, the complement of set B, where B~ is the complement of B~ under A,,

i.e. /~ = A , - B~.
f(A~, m), the number of the solution sets given (A,, m). Thus, f(A,, M)= [BI = Q.

The VIKP, (A,, M), can be stated mathematically as follows.

Find V=(v 1, v 2 v,) (1)

subject to ~ alva=M, (2)
i = 1

vi=O or 1, (i= 1, 2 n). (3)

Bruce [8] and this paper use the above definition. Some other papers use another definition as follows.

Find V=(v 1, U 2 V.) (4)

subject to ~ a~v~ <~ S, (5)
i = 1

vi=O or 1, (i= 1, 2 n). (6)

Assume M is the solution of equation (4). In the case of 22>>S, finding M is not the dominant
factor in our algorithm. Thus, we use equations (1), (2), (3) instead of equations (4), (5), (6).

An efficient pruning algorithm 323

2.2. Literature for knapsack problem

Kolesar [1] proposed a branch-and-bound algorithm, called Knapsack(la) in this paper, as
described in the following

Algorithm Knapsack(la)
step 1 :
step 2:

Initialize W = {(0,0)}; IC=1;
do i= 1 ,n

{ if (a i + P < M) then W = W u { W + (a i , I C) }
if (a~+P=M) then output (IC+V);
IC= IC+ IC ;

f

In Algorithm Knapsack(la), W is a set of 2-tuples (P, V), where P is a partial sum and V is a binary
encoding vector of n bits, (Vl, v2 v.), such that y'~= x ajvj=P.

Example 1: Given ({1, 3, 4, 5}, 8>, we have the following steps.

Initialize W = {(0, 0000)}
IC=0001 ;

=1 W = {(0, 0000), (1,0001)}
IC=0010 ;

=2 W = { (0 , 0000), (1,001), (3, 0010), (4, 0011)}
IC=0100 ;

= 3 W = {(0, 0000), (1,0001), (3, 0010), (4, 0011), (4, 0100), (5, 0101),
(7, 0110), (8,0111)}

IC= 1000 ;
= 4 W = { (0, 0000), (1,0001), (3, 0010), (4, 0011), (4, 0100), (5, 0101),

(7,0110), (8,0111), (5, 1000), (6, 1001), (8, 1010)}
I C = 1 0 0 0 0 ;

After the step i=4, the solution sets {4, 3, 1} and {5, 3} whose V are 0111 and 1010 respectively
are found. In the example, there are 11 elements in W after the step i = 4.

If we use exhaustive search, there will be 16 elements in set W finally. Knapsack(la) is superior
to the exhaustive search because of the heuristic in step 2. In step 2 of Knapsack(la), it reduces the
size of W by pruning the useless subsets whose sums, P, are greater than M.

Horowitz and Sahni [2] and Ahrens and Finke [7-1 independently proposed a two-list algorithm
by modifying Knapsack(la). In this paper, we call the two-list algorithm as Knapsack(lb).
Knapsack(lb) splits (A., M) into (U./2, M) and (Vn]2, M) where Un/2 = An~ 2 and V,/2 = U./2 under
A,. It first applies Knapsack(la) to get sets W U and Wv for the subproblems (U./2, M> and (V./2, M>,
respectively. Then, W v and W v are merged to get all the solution sets.

In Refs [3] and [7], a four-table algorithm is proposed. The major difference between Refs [3]
and [-7] is that a heap is used in Ref. [3]; while arrays are used to implement the tournament sort
in Ref. [7]. We only describe the algorithm of Ref. [7] in this paper. The four-table algorithm,
called Knapsack(lc), has a similar splitting approach to Knapsack(lb). Knapsack(lc) firstly splits
A, into four distinct sets, R, S, T, U. Secondly, (R, M>, (S, M>, (T, M>, and (U, M) are solved,
like Knapsack(la), in four tables. Finally, the solutions are got by merging the four tables using
tournament sorting technique.

2.3. Bit-shifting technique

To efficiently store the subset sums, we present a bit-shifting technique that makes use of two
bit vectors. The steps of the technique are as follows.

The bit-shifting procedure
Initialize: T[0] = Backup[O] = 1, T[i] = Backup[i] = O, i= 1, 2 M;
DO i = 1 ,n
{

Backup=Backup<<a i bits ; /* << : shift-left operator . /
T= TIBackup ; / * 'L': logical OR operator . /

324 CHA-HoN SUN and SHENG-DE WANG

if T I M] = 1
then ai is an element of some solution sets;

T[M] = 0 ;
Backup = T ;

In the above procedure, T and Backup are two bit vectors of size M + 1. To illustrate the bit-shifting
technique, we use the same example as mentioned above.

Example 2: Given ({1, 3, 4, 5}, 8), we have the following steps:

Initialize T

8 7 6 5 4 3 2 1 0

o oFo FoTo o-l

i=, 10 01

i = 2 T 0 0]

i = 3 T 1 1 I

0 0 t 0 1 0

0 0 1 , 1 ,

0 1 1 1

0

0

In the steps i=3 , a "1" in T[8] implies that a3 =4 is an element of some solution sets.

i:4 t, I , I 1-I r l , I , 10 I , I ,
Again, this step shows a4 = 5 is also an element of some solution sets. Note, in the step i = 4, that
T[2] ="0" means no solution if M = 2 in this example. It implies that we can find M in equations
(4-6) if T[S] ="0". The time complexity of the bit-shifting procedure is O(n. M/L).

The parallel implementation of the bit-shifting technique on an SIMD multiprocessor system
can easily be obtained. If one memory cell has the length of L bits, it needs [M/L] memory cells
to implement for a bit vector. We need a tightly coupled synchronous multiprocessor with [M/L]
processors to share [M/L] memory cells. Assume each processor can access arbitrary memory cells
without conflict at the same time. It is the well known EREW (Exclusive Read Exclusive Write)
shared memory model. For instance, processors Px and Pr can access memory locations M x and
My, respectively, at the same time if Mx ~ M r. Consider that we wish to shift array T in left direction
for D bits. Let Q = [D/LJ, R = D modulo L. Clearly, D bits = Q cells + R bits. We analyze arbitrary
memory cells, say T[X], which shifts L bits in left direction. We find that the most significant (L-R)
bits o fT[X] will be moved to the least significant (L-R) bits ofT[X + Q + 1], and the least significant
R bits of T[X] will be moved to the most significant R bits of T[X + Q]. For example, if D = 38,
L = 16 then Q = 2, R = 6. Assume X = 2 and T[2] = 1111111111000000. When it finishes the shift-left
operation, T[X + Q + 1] = T[5] will become xxxxxxl 111111111 and T[4] become 000000xxxxxxxxxx,
where "x" represents "unknown."

The parallel bit-shifting technique will be run in synchronous mode. Each processor is assumed
to know its own processor identification number in advance and execute a procedure shown as
follows.

Parallel bit-shifting procedure/* For processor X */

do i= 1 ,n
step 1: read A[i] to determine shifting amount.
step 2: R=A[i] mod L; Q=[A [i] /LJ ;

An efficient pruning algorithm 325

step 3: tmpL = T[X] >> R; tmpR =T[X] << (L - R);
step 4: T [X + Q + I] = T [X + Q + I] I tmpL;

/* if X + Q + I >H then do noting just to
delay one operation cycle for synchronization,

M + I
where H - */

L

step 5: T [X+Q] = T [X + Q] I tmpR;
step 6: if (X=H)

r= M modulo L;
Pattern = 1 ;
Pattern = Pattern << r;
f ind_out=T[H] & Pattern;

/* detect whether solution is found */
/* & denotes logic AND operation */

if(find_out)
{

generate (Ai, M - A [i]) ;
T[H] = T [H] &'pattern ;

}

else
{

delay one operation cycle for synchronization;
}

enddo

In the above procedure, tmpL and tmpR are local variables for each processor.

3. OUR ALGORITHM

3.1. Symmetric property

For an aribitrary multiset A with cardinality n, there are exact 2" subsets of set A. The maximal
sum of subset is SUM(A) and the minimal sum of subset is 0. Figure 1 shows that all the partial
sums lie in the range of [0. . SUM(A.)], where x-axis represents the sum, m, of subset and y-axis
represents the number of solution sets for a specific m.

Lemma 1. ~'suM~a.~ f(A., m) = 2". .~m=O

Proof." The result is trivial because a multiset with cardinality n has 2" subsets and these subset
sums are in the range of [0.. .SUM(A.)]. []

Given (A., M), Knapsack(la) saves those subsets whose summations are less than or equal to
M. Therefore, we can write the space complexity in exact bound ® (~ = o f(A,, m)) instead of
asymptotic upper bound 0(2"). The space complexity is O(~Mm=o(f(U./2, m)+f(V./2, m))) for
Knapsack(2b).

f(An,m)

, ill I I ! ,
0 SUM(An) i n

Fig. 1. All subset sums of A. drop in I0 ... SUM(A.)].

326 CHA-HON SUN and SHENG-DE WANG

f(An,m)

, Ill i I[I,

Fig. 2. Symmetry with m = SUM(A.)/2.

ffAn,m)

J l , , ,I

Fig. 3. Shadow area is the improvement
of space and time for m = M.

Lemma 2. f(A., M)=f(A. , S U M (A ,) - M) (shown in Fig. 2).

Proof." Assume B = {B~, B 2 BQ} is the set of solution sets for the problem (A., M). We know
SUM(B1) = M. It implies SUM(/~I) = S U M (A .) - SUM(B0 = SUM(A,) - M. Based on this concept,
/3= {B1, B2 BQ} is the set of solution sets for the problem (A,, S U M (A ,) - M).

It is apparent that from Lemma 2 we have the following theorem.

Theorem 1. To find all solutions of a knapsack problem (A,, M) is equivalent to find the complement
of all solutions of (A,, SUM(A,) -M) .

For those algorithms based on the branch and bound approach, like Refs [1 3,6,7], the
computation time and space increase when the value M increases. For example, given (A,, m), the
Knapsack(la) needs ®(n) in time and (9(1) in space when m = MIN(A.). Nonetheless, it spends 0(2")
in both time and space when m = SUM(A,) -MIN(A,) . In this situation, Theorem 1 can be applied
to reduce the computation time and space. Cite Knapsack(la) as an example by applying Theorem
1. When M > SUM(A.)/2, we can remove those elements (P, V) satisfying P > S U M (A .) - M from

M set W, and thus ~,.=SUMtA,,~-M÷I f(A,, m) elements will be removed in total. Figure 3 depicts this
idea. In Fig. 3, the shadow area is the improvement in execution time and space when we apply
the symmetric property.

Let's solve Example 1 using Theorem 1. According to Theorem 1, we can solve the equivalent
problem, ({1, 3, 4, 5}, 5), because of SUM({1, 3, 4, 5})= 13 and M = 8 . There are only 7 elements
in set W finally. Four elements, (7, 0110), (8, 0111), (6, 1001) and 8, 1010), are removed from the set
W in Example 1. The solution sets of the equivalent problem are (5, 1000) and (5, 0101). Therefore,
the solution sets of the original problem are (8, 0111) and (8, 1010), respectively, which are the same
as the solution sets in Example 1.

In fact, the maximal computation time and space are 0 (2" - 1) which happen on m = SUM(A,)/2.
And, the farther the distance between M and SUM(A.)/2 is, the less the computation time and
space are needed. The complexities of time and space were analyzed and represented with asymptotic
upper bounds in Refs [1-7,9]. In this paper, we will use exact bounds to depict the complexities
instead of asymptotic upper bounds.

3.2. Partition approach

A partition approach is introduced to divide set B into n distince sets $1, S 2 S, as follows.

The partition approach
Assume B={B~, B 2 BQ} is the set of solution sets of (A., M>
Do i = n down to 1

Si= B~I BjE B, aiE Bj}
xg=cardinality of S~ / . xi=ISil . /
B = B - S i

For the first time, pick out all the elements B'is that contain element a, from set B. Gather these
B'is and form a new set of sets S,. Let x,=lS,I. After this step, IBI=Q-x, . Repeating the steps n
times, we can get sets S,, S,-1 $1, and their cardinalities are x., x,_ 1 x 1, respectively.

Theorem 2. After applying the above partition approach, it can be shown that the following properties
hold.

An efficient pruning algorithm 327

1. f (A , , ,M)=x l + x 2 + . . . + x , = Q.
2. S'i = { y - {ai} I Y e S~} is the set of solution sets of (Ai_ 1, M - a~)
3. f (A , _ v, M)= ~'"-v x / , i = 1 i

Proof"
(1) According to the partition approach, we have B = UT= x S~ and Si c~ S j= ¢P, i v~j. Thus, complete

the proof.
(2)(3) Because property 2 and 3 are very intuitive, we ignore the proof. []

Using property 1 and property 2 of Theorem 2, we can divide (A,, M) into n subproblems.
Each subproblem is also a value independent knapsack problem. This constructs a recursive form.
There are three boundary conditions which can return from the recursion.

(1) BC 1: f(A,, 0)= 1.
(2) BC 2: f({}, m)=0, m=~0.
(3) BC 3: f (A i, z)=0, z<0 .

Any subproblem will eventually be reduced into one of these three conditions. Bruce [8] derived
a recursive formula, which is similar to Theorem 2 of this paper, to calculate the number of the
solutions. However, it is not further discussed how to find the solutions in Ref. [8]. Our algorithm
extends the recursive formula to find all the solutions.

3.3. An efficient prun&g algorithm [Knapsaek(2a)]

A directed tree structure is built based on the partition approach and the property 2 of Theorem
2. In Fig. 4, each node is labeled as a 2-tuples (Ai, m) and each edge incident to node (Ai, m) is
labeled as al + 1.

Applying the partition approach, we classify S~, i= 1, 2 n into two calsses. The first class is
IS~I = 0 and the second class is IS~I ~0. If (A~, m) is in the first class, it implies it will be reduced to
BC2 or BC3 eventually. Our algorithm, Knapsack(2a), will not generate those nodes in the first
class by applying the bit-shifting technique. The Knapsack(2a) is as follows.

Algorithm Knapsack(2a)
input: (An,M)
output: solution tree.
begin

i f (M=0) then return
create all the child nodes of the second class by bit-shifting technique.
for every child node

call Knapsack(2a) and transfer the child node as input.
end

Fig. 4. A directed tree based on the partition technique.

328 CHA-HON SUN and SHENG-DE WANG

Fig. 5. ~Jl,~t 3, 4}, {3, 5}} is the solution set of ({1, 3, 4, 5}, 8).

I
I
I

Fig. 6. Transform a directed tree into a DAG by removing redundant nodes.

Figure 5 demonstrates the solution tree of Example 2, ({ 1, 3, 4, 5}, 8). At first, node ({ 1, 3, 4, 5}, 8)
generates two children ({1 ,3} ,4) and ({1 ,3 ,4} ,3) after the step i = 3 and i = 4 in Example 2,
respectively. It implies that ({1}, 5) and ({ }, 7) have no solution. When we complete the solution
tree, we can find each leaf of the tree satisfying BC 1.

We claim two facts:

(1) That the solution tree of (A n, M) has Q leaf nodes means there are Q solution sets;
(2) Every path from root to any leaf constructs a solution set by gathering the arc

labels traversed. The time and space complexities of Knapsack(2a) are O(ft2a" Q)
and O (f s 2 a " Q), respectively, where f t 2 a = O (n 2 M / L) and f s2a = O(n).

3.4. Modified pruning algorithm (Knapsack (2b))
As mentioned above, the computation time and space are linearly proportional to Q. However,

Q varies from problem to problem. The mean value of Q is Q = 2n/SUM(An). For large n, Q is still
of exponential bound. We observe the solution tree of (A n, M). Each leaf node is one of the n
labels (Ai, 0), i=0, l, 2 n - 1. By pigeonhole principle, there exist some leaf nodes which have
the same label when Q >n. So do the internal nodes when Q > M*n. The pigeonhole principle
describes a fact that there must exist one pigeonhole containing more than one egg if we lay n + 1
eggs in n pigeonholes. The major improvement of Knapsack(2b) is to remove the redundant nodes.
Applying Knapsack(2b), the directed tree will turn into a DAG. Figure 6 demonstrates how to
transform a directed tree into a DAG. In Fig. 6, dashed rectangulars are of the same. Note that
an internal node is redundant, its descendant nodes are, too.

An efficient pruning algorithm 329

Algorithm Knapsack(2b) follows Knapsack(2a) except that it checks whether the certified node
is required to be created or not before actually creating this node. If the node has existed, we cite
the node directly. Otherwise, we generate this node. The time and space complexities of Knapsack(2b)
are O(ft2b.min(M, Q)) and O(fs2b'min(M, Q)), respectively, where f t 2 b =" O(Mn2) and f s 2 b = O(n). The
space requirement in Knapsack(2b) is only proportional to min(M.n, Q.n), which is a significant
improvement over those known algorithms.

We can further improve the performance by reordering the set A. in increasing order. The
partition approach divides (A., M) into n subproblems of the form (A~, M-a~+~) using the
bit-shifting technique. If a.=MAX(A,), M - a . is smaller than M - a i for any a ~ A . and the
subproblem, (A._a, M-a .) , will be computed faster by using the bit-shifting technique, because
it is linearly proportional to M. It prunes offnot only the node itself but also its descendant nodes.

3.5. The final algorithm (Knapsack(2c))
We find that there still exists redundant operations in Knapsack(2b). The Knapsack(2b) recursively

divides the problems into subproblems until BC 1. The bit-shifting procedure is invoked repeatedly
by every subproblem. Each subproblem can be viewed as a partial replay of the original problem
because every subproblem set is a subset of the original problem set. Therefore, it is redundant if
every subproblem repeatedly invokes bit-shifting procedure. To avoid the redundancy, we use
additional n bit vectors, T 1, T 2 T,, with the length of M + 1. In the beginning, the bit-shifting
procedure scans the original problem set and uses T~ to stored the information with respect to
(A~, M), i= 1, 2 n. In Example 2, the value contained in T in the step i = 1 is stored in T1 and
that in the step i= 2 is stored in T2, and so forth. Then, for each subproblem, we use table-look-up
method to get information from the n vectors instead of invoking the bit-shifting procedure. If we
wish to solve the subproblem (A~,m). According to the partition approach, (Aj, m-aj+l),
j=0 , 1 i - 1, are the subproblems of (A~, m). We must determine which nodes need to be
generated. We perform the table-look-up method as follows. Check whether T~[m] is equal to "1"
or not, for j = 1, 2 i. If Tj[rn] is equal to "1," the node (Aj_ 1, rn-aj) must be generated. In
this way, no more redundant operation occurs.

4. E X P E R I M E N T A L R E S U L T S A N D D I S C U S S I O N

To fairly compare our algorithm with other algorithms, we adopt three types of data set given
in Ref. [1] as our experimental data. Algorithms, Knapsack(la), (lb), (lc), (2a), (2b), (2c), are run
respectively using SUN-workstation. The experimental results are listed according to the
computation time and space used, respectively. We list the complexities of these algorithms on
both time and space in Table 1.

The first type of data set consists of sequential numbers, i.e. ai = i. Four different M's are used
for fair comparison. They are: (1) M1 = MAX(A,); (2) M 2 = SUM(A,)/3; (3) M 3 = SUM(A.)/2; and
(4) M 4-- 2SUM(A,)/3. Tables 2 and 3 are the results of the computation time and the amount of
memory used, respectively. The objective of comparing M 2 and M 4 is to verify the improvement
due to the symmetric property. Note that Knapsack(la), (lb) and (lc) need to store all combinations
of subsets. For example, the VIKP with n = 25, M = SUM(A,)/2 in Table 3, has totally 353,743
solutions. According to Tables 2 and 3, Knapsack(2b) is far superior to Knapsack(2a) both in time
and space for any Mi. It implies that there are many redundancies in Knapsack(2a). All algorithms

Table 1. Complexity comparison of various algorithms

Time Space

(la) O(Z~= o f(A., i)) 0(~,~= o f(A., i))

M • .,~ • • , O (~ y = o f (U . , ~ , i) + ~ = o f t V . , E , j) + Q) (Ib) O(~i=of(U.,2,0+ ~j=oJ(V.,2,j}~-Q)

(lc) O(~',M=o,tlR, i) + ~ j M = o f (S , j) + ~ k ~ o f (T , k) + Z , ~ o f l U , I)+Q) O (~ . ~ : o f (R , i) + ~ ' ~ : o f (S , j) + ~ = o f (T , k) + ~ ' ~ = o f (U , I) + Q)

(2a) O(Q. nZ / M) O(max(nQ, M))

(2b) O(min(M2n 2, Mn2Q)) O(min(Mn, Qn))

(2v) O(min(Mn 2, Q. n) + M . n) O(min(Mn, Q. n) + M . n)

where Q - f (A . . M) and R L~ S LJ T w U = A..

CAOR 22:3-F

330 CHA-HON SUN a n d SHENG-DE WANG

Table 2. Sequential number (time in milliseconds)

M n la lb lc 2a 2b 2c

A 20 16.7 16.7 < 16.7 < 16.7 < 16.7 16.7
25 50.0 33.3 16.7 < 16.7 < 16.7 16.7
30 116.7 50.0 16.7 33.3 < 16.7 16.7
35 350.0 116.7 33.3 66.7 33.3 33.3
40 783.3 266.7 66,7 133.3 50.0 50.0
50 3633.2 1233.3 200.0 483.3 66.7 83.3
60 l 3,949.4 4633.1 766.6 1416.6 166.7 166.7
99 ~ 916.6 933.3

B 20 2983.2 150.0 333.0 1150.0 83.3 66.7
25 2416.6 4049.8 19,899.2 233.3 216.7
30 650.0 483.3
35 1483.3 1083.3
40 3099.9 1899.9
50 10,932.9 5516.4
80 174,493.0 55,931.1

C 20 14,066.1 300.0 633.3 2583.2 100.0 83.3
25 - - 6733.1 10,416.2 - - 316.7 216.7
30 - - - - 883.3 516.7
35 2066.6 1016.6
50 16.132.7 5233,1
80 271,072.5 50,881.3

D 20 25,249.0 166.7 450.0 1150.0 83.3 66.7
25 -- 2516.6 4616.5 19,899.2 233.3 216.7
30 - - - - 650.0 483.3
35 1483.3 1083.3
40 3099.9 1899.9
50 t 0.932.9 5516.4
80 174,493.0 55,931. l

- - , Stop due to > 2 0 MBytes.
A. M = max(A,).
B, M=SUM(A,)/3.
C. m = SUM(A,)/2.
D. M= 2SUM(A,)/3.

Table 3. Sequential number (space in KBytes)

M n la lb lc 2a 2b 2c

A 20 5.8 4.9 2.2 2.9 2.0 2.1
25 14.1 11.5 4.4 6.5 3.5 3.5
30 31.8 27.9 8.7 13.8 5.4 5.6
35 67.3 58.9 16.7 27.8 8.1 8.3
40 135.9 124.9 37.6 53.3 11.6 11.8
50 493.5 469.4 125.8 178.1 21.3 21.6
60 1593.5 1553.2 477.4 536.3 35.5 35.9
99 - - 152.2 153.4

B 20 1658.5 102.7 136.1 367.6 17.2 17,3
25 1593.9 2483.3 6903.3 43.8 44.1
30 - 95.2 95.7
35 182.9 183.9
40 321.6 322.9
50 843.0 844.6
80 5913.5 5924.1

C 20 8311.1 208.7 300.3 887.4 20.5 20.7
25 4320.2 6914.3 49.5 50.0
30 - 103.7 104.6
35 193.3 194.6
50 825.8 829.7
90 5530.1 5607.5

D 20 14,832.9 112.4 136.2 367.6 17.2 17.3
25 - 1736.8 2580.1 6903.3 43.8 44.1
30 -- 95.2 95.7
35 182.9 183.9
40 321.6 322.9
50 843.0 844.6
80 5913.5 5924. I

- - , Stop due to > 2 0 MBytes.
A. M = MAXIA.).
B, M = SUM(A,)/3.
C. M=SUMIA.)/2.
D. M = 2SUM(A.)/3.

An efficient pruning algorithm 331

but Knapsack(2b) and (2c) are terminated due to lack of memory (20 Mtytes) when n > 30.
Consequently, Knapsack(2b) is the most superior in space and Knapsack(2c) is the most superior
in time among the five algorithms in this type of data set.

The second type of data set comprises random numbers in the range I-1 .. 100]. We run the
algorithms using the following M's: (1) M 1 = 100; (2) M2=SUM(A.)/3; (3) M 3 =SUM(A,) /2 ; (4)
M4=2SUM(A,)/3; and (5) M 5 = S U M (A .) + 1. Tables 4 and 5 list the results of time and space
requirements, respectively. In this test, we sort the data set in increasing order before running
Knapsack(2c). In fact, data order is also influential to Knapsack(lb). If there are t partial sums in
T,/: and u partial sums in Un/2, it implies there are t.u=Q solution sets, where Q is a constant.

Because t and u represent the space used by T./2 and U./2, respectively, the best case is u = t = x//Q.

It uses space 2 x / ~ in total. The worst case is u = 1 and t = Q as it uses total space Q. This implies
we can reduce memory usage by feasibly splitting these two subsets U./2 and T./2, but we have no
idea about how to split it. M5 = S U M (A .) + 1 is run for the case when the problem has no solution.
Our algorithms Knapsack(2a) and Knapsack(2b) can find the value M such that (A. , M> has no
solution in time complexity only O(M.n) if such an M exists. For convenience, we set
M = S U M (A .) + 1 to represent that the problem has no solution. Although Knapsack(la) and
Knapsack(lb) can check whether M > S U M (A .) or not, they can't check whether such cases as
M < SUM(A.) have solutions in advance. For this reason, we assume Knapsack(la) and Knapsack(lb)
do not check whether M > SUM(A,). In this situation, Knapsack(2a), Knapsack(2b) and Knapsack(2c)
are far superior to Knapsack(la) and Knapsack(lb).

The third type of data set contains also random numbers except that they lie in the range
[1 . . 1000]. Let's observe Table 6 for the item, M - - m a x and n = 20. Knapsack(2)'s need surprisingly
less memory because of Q = 1 in this item. By the way, Knapsack(2)'s are more sensitive than
Knapsack(1)'s to the value M in computat ion time because the execution time of the bit-shifting

Table 4. Random number (1 - 100) (times in milliseconds)

M n la lb lc 2a 2b 2c

A 20 83.3 < 16.7 16.7 16.7 16.7 16.7
35 383.3 50.0 100.0 100.0 66.7 33.3
40 800.0 66.7 150.0 250.0 116.7 50.0
60 6633. I 500.0 550.0 2083.2 500.0 233.3
99 - - 6299.7 5816.4 39,048.4 2299.9 800.0

B 20 3116.5 83.3 500.0 766.6 400.0 100.0
25 950.0 2816.6 18,815.9 1250.0 366.7
30 20,015.9 - - 3616.5 1050.0
35 - - 15,099.7 2449.9
40 15,099.4 4366.5
70 t 42,248.3

C 20 13,182.8 116.7 916.6 2283.2 566.6 133.3
25 2083.2 6566.4 67,514.0 2233.2 450.0
30 - - - - - - 5916.4 1183.3
35 12,999.5 2649.9
40 24,565.7 4449.8
70 t 37,848.5

D 20 24,182.4 83.3 1316.6 766.6 300.0 100.0
25 1016.6 6549.7 18,815.9 1250.0 366.7
30 20,632.5 - - 3616.5 1050.0
35 7899.7 2449.9
40 15,099.4 4366.5
70 t 42,248.3

E 20 28,082.2 50.0 1899.9 < 16.7 < 16.7 < 16.7
25 - - 266.7 8216.3 < 16.7 < 16.7 < 16.7
30 1466.6 68.413.9 < 16.7 < 16.7 < 16.7
35 8949.6 260,306.3 16.7 16.7 < 16.7
40 - t 16.7 16.7 16.7
99 116.7 100.0 83.3

tStop due to exceeding 20 min.
, Stop due to >20 MByte.

A, M = MAX(A~).
B, M=SUM~A~)/3.
C, M=SUM(An)/2.
D, M= 2SUM(An)/3.
E, M = S U M I A n) + 1.

332 CHA-HON SUN and SHENG-DE WANG

Table 5. Random number (I - 100) (space in KBytes)

M n la lb lc 2a 2b 2c

A 20 28.2 4.2 2.4 3.9 3.4 3.3
35 130.3 25.6 12.2 25.0 11.9 10.1
40 313.0 47.4 28.0 63.2 21.5 18.1
60 2305.8 253.0 223.9 541.7 75.5 46.0
99 - - 3238.4 3922.6 9633.3 266.3 138.0

B 20 1937.5 53.6 45.7 140.4 33.4 24.7
25 642.2 834.4 3191.3 122.0 77.4
30 -- 307.9 193.7
35 585.0 409.4
40 974.4 678.7
70 5" 4788.4

C 20 8220.3 74.2 72.6 420.8 47.5 33.7
25 - 1400.7 2022.9 9195.7 154.8 96.4
30 - 332.2 224.4
35 603.9 450.9
40 981.4 714.0
70 t 4592.9

D 20 14.475.7 45.5 24.4 140.4 33.4 24.7
25 694.9 8432 3191.3 122.0 77.3
30 307.9 193.6
35 585.0 409.4
40 974.4 678.7
70 t 4788.4

E 20 16,384.0 32.0 2.0 0.1 0.1 2.0
25 192.0 5.0 0.1 0.1 3.2
30 1024.0 12.0 0.2 0.2 4.8
35 6144.0 32.0 0.2 0.2 6.7
40 - t 0.2 0,2 8.6
99 0.6 0.6 57.1

~'Stop due to exceeding 20 min.
• Stop due to >20 MBytes.

A, M = MAX(A,).
B, M=SUM(A,)/3.
C, M = SUM(A,)/2.
D, M = 28SUMtA,)/3.
E, M = S U M (A ,) + 1.

procedure is linearly proportional to M. In fact, the goal of the four-table algorithm, Knapsack(lc),
is proposed to find "any one" solution. However, our problem is to find "all" the solutions. It is
the reason why the four-table algorithm performs inefficiently•

As a whole, Knapsack(2c) is the most superior in both time and space• Knapsack(2c) uses many
important properties including symmetric property, data reordering and table-look-up method.

5. F U R T H E R D I S C U S S I O N S O N O U R A L G O R I T H M

In Knapsack(la), the set W contains the information of not only (A., M> but also <A., m> for
m=0, 1 M. Obviously, it stores too many informations for a specific <A., M>. In the case of
M=SUM(A.)/2, Knapsack(la) needs 0(2"-1) space no matter how many solution sets (A., M>
has. It is an interesting problem that how many space is needed, using a DAG, to store the solution
the solution sets of <A,, rn>, rn = 0, 1 M. We will claim that we can save the information as
much as Knapsack(la) with the space bounded by O(M. n), based on the pigeonhole principle. Thus,
the upper bound, O(SUM(A,).n/2), is needed to save all the 2" subsets. This bound is a satisfactory
result for the case of M << 2", From the results in Tables 2, 4 and 7, we believe that our algorithm
Knapsack(2b) is superior to Knapsack(la) and (lb) under the space consideration in many
applications of the VIKP.

6. C O N C L U S I O N S

In this paper, we propose an efficient pruning algorithm for the VIKP. Firstly, we build a directed
tree based on the partition approach to describe the fundamental conception of our algorithm.
Secondly, we explain there exist many redundancies in space for Knapsack(2a) by applying
pigeonhole principle and propose a method to remove these redundancies completely. The method

An efficient p r u n i n g a l g o r i t h m

Table 6. Random number (1-1000) (space in KBytes)

333

M n la lb lc 2a 2b 2c

A 20 8.7 1.8 0.8 0.1 0.1 2.8
35 90.2 9.3 2.9 2.7 2.7 7.3
40 131.8 14.2 4.4 3.8 3.7 8.9
60 663.5 78.8 14.4 19.3 14.4 21.3
99 6160.1 358.6 102.1 223.5 89.0 91.6

B 20 1686.2 27.7 4.9 15.4 12.0 19.4
25 - - 191.5 72.5 343.5 132.5 129.6
30 1858.0 1648.6 8677.5 792.2 582.6
40 - - ~" - - 5392.9 2496.0
50 t t

C 20 8194.5 35.7 8.3 40.3 24.0 37.1
25 - - 299.8 185.9 1163.0 275.1 238.6
30 4149.3 5221.4 t 1227.3 868.9
40 - - t t 4552.7
50 t

D 20 14,702.3 33.7 4.8 15.4 12.0 19.4
25 - - 232.4 72.3 343.5 132.5 129.6
30 2006.2 1649.0 8677.5 792.2 582.6
40 - - t - - 5396.9 2496.0
50 ¢ t

E 20 16,384.0 32.0 2.0 1.1 1.1 24.0
25 - - 192.0 5.0 1.4 1.4 37.3
30 1024.0 12.0 1.8 1.8 53.9
35 6144.0 t 2.1 2.1 75.4
40 - - 2.4 2.4 97.0
70 4.3 4.3 306.8

tStop due to > 20 min.
--, Stop due to >20 MBytes.
A, M = MAX(A,).
B, M=SUM(A,) /3 .
C, M=SUM(A,) /2 .
D, M = 2SUM(A,)/3.
E, M = S U M (A ,) + 1.

Table 7. Random number (1 1000) (times in milliseconds)

M n la lb lc 2a 2b 2c

A 20 16.7 < 16.7 116.7 < 16.7 < 16.7 < 16.7
35 250.0 16.7 266.7 83.3 83.3 16.7
40 400.0 16.7 466.6 100.0 116.7 16.7
60 2333.2 150.0 2099.9 466.6 400.0 66.7
99 39,315.1 1133.3 6816.4 4183.2 2699.9 450.0

B 20 2816.6 33.3 2933.2 1150.0 1000.0 50.0
25 --- 300.0 15.699.4 27,798.9 15,482.7 566.6
30 2866.6 1 1 6 , 6 1 2 . 0 693,272.3 103,462.5 3133.2
40 t - - 764,669.4 16,699.3
50 t t

C 20 13,982.8 66.7 7149.7 4616.5 3316.5 116.7
25 - - 466.6 37,048.5 133,828.0 48,731.4 1083.3
30 6399.7 303,604.5 # 251,073.3 4699.8
40 t t 30,165.5
50 t

D 20 25,982.3 66.7 11,449,0 1150.0 1000.0 50.0
25 - - 350.0 57,664.6 27,798.9 l 5,482.7 566.6
30 3066.5 468,014.6 693,272.3 103.462.5 3133.2
40 - - t - - 764,669.4 16,699.3
50 t t

E 20 28,065.5 66.7 20,165.9 16.7 33.3 33.3
25 - - 300.0 99,712.7 66.7 66.7 50.0
30 1533 .3 807,984.0 83.3 83.3 83.3
35 9099.6 t 116.7 100.0 100.0
50 - - 233.3 233.3 216.7
70 466.6 466.6 450.0

+Stop due to > 20 min.
-- . Stop due to >20 MBytes.
A, M = MAX(A,).
B, M=SUM(A,) /3 .
C, M=SUM(A,) /2 .
D, M = 2SUM(A,)/3.
E, M = S U M (A ,) + 1.

334 CHA-HoN SUN and SHENG-DE WANG

will turn the directed tree into a D A G , which is the ma jo r improvemen t of a lgor i thm Knapsack(2b).

Thirdly, we discuss the influence of different da t a orderings. In Knapsack(2c) , we sort the da ta set
A, in increasing order and use t ab le - look-up me thod to reduce execution time.

By the way, we find a symmetr ic proper ty . This p rope r ty makes many heuristic a lgor i thms have

a chance to reduce the requirements for c o m p u t a t i o n t ime and space. We compare our a lgor i thm
with the a lgor i thms given in Refs [1, 2]. F r o m these exper imenta l results, we verify the excellence
of our a lgori thm. O u r a lgor i thm is far super ior to others in all 3 types of da t a set bo th in c o m p u t a t i o n
t ime and space usage. We also prove that it can store all the in format ion of 2" subsets within the
upper bound, S U M (A ,) . n / 2 , for space, which is far less than 2"-1 using Knapsack (la) for the case

of M<< 2".

REFERENCES

1. E. H•r•witz and S. Sahni• C•mputing partiti•ns with app•icati•ns t• the knapsack pr•b•em. J. AC M 2•• 277- 292 (•974).
2. P. J. Kolesar, A branch and bound algorithm for the knapsack problem. Manage. Sci. May, 723-735 (1967).
3. R. Schroeppel and A. Shamir, A T = O(2"/2), S = 0(2 "/4) algorithm for certain NP-complete problems. SIAM d. Comput.

10, 456-464 (1981).
4. E. D. Karnin, A parallel algorithm for the knapsack problem, IEEE Trans. Compul. C-33, 404-408 (1984).
5. A. G. Ferreira, A parallel time/hardware tradeoff T. H = 0(2 "/2) for knapsack problem. IEEE Trans. Comput. 40, 221-225

(1991).
6. S. Martello and P. Toth, A mixture of dynamic programming and branch-and-bound for the subset-sum problem.

Manage. Sci. 30, 765-771 (1984).
7. J. H. Ahrens and G. Finke• Merging and s•rting app•ied t• zer•-•ne knapsack pr•b•em. •per. Res. 23• ••99- • ••9 (• 975).
8. B. Faaland, Solution of the value independent knapsack problem. Oper. Res. 21, 332-337 (1973).
9. S. Martello and P. Toth, Knapsack Problems, Al#orithms and Computer Implementations. Wiley, Chichester (1990).

10. O. H. lbrarra and C. E. Kim, Fast approximation algorithm for the knapsack and sum of the subset problems. JACM.
22, 463-468 (1975).

