
is a very important optimization issue. Some well-known
techniques are described as follows. Wolfe discusses the
techniques of strip mining and iteration space tiling [25],
which organize the computations in the original loops into
chunks of equal size to take advantage of vector registers,
caches, or local memory. Nicolau [13] proposes a method
called loop quantization to partition nested loops. King and
Li [9] discuss the grouping of loop iterations for parallel
execution on multicomputers. The cycle shrinking method
proposed by Polychronopoulos [16] uses the data depen-
dence graphs of loops to determine which loops can be
executed in parallel. Irigoin and Triolet [8] present a
method called supernode partitioning, which formulates
a general condition for determining the admissible tiles
formed by multiple hyperplanes. Schreiber and Dongarra
[20] discuss a heuristic method of choosing a subset of
dependence vectors for tiling loops. Ramanujam and Sa-
dayappan [18] formulate an approach to determine the
hyperplanes and the tile sizes for reducing the communica-
tion cost in distributed memory systems. As for the code
generation issue for loop tiling, Ancourt and Irigoin [1]
discuss how to generate codes for the tiles defined by a
set of linear equations, and the code generation techniques
for nonunimodular loop transformations [12, 17] can also
provide a solution to this problem.

In this paper, we propose a new approach to tiling nested
loops for exploiting parallelism. The proposed approach
aims at aggregating as many independent computations as
possible into a tile in order to maximize parallelism. At
first, we describe a systematic procedure to find all the
computations that are independent when the loops are
to be executed. All these independent computations are
collected together as a union of sets, which are called
initially independent computation sets. Then, we show that
all the initially independent computations can be aggre-
gated into rectangular blocks. So, based on these, the origi-
nal loops can be partitioned into rectangular blocks to
maximize parallelism. Since each partitioned region is
block-shaped, the code generation is very easy. Also, we
show that if the wavefront transformation is combined with
the proposed method, the original loops can always be
tiled so that the tile size is greater than one.
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In this paper, an approach to tiling nested loops for maximiz-
ing parallelism is proposed. The proposed method aims at ag-
gregating independent computations of a loop nest into rectan-
gular blocks and maximizing the block sizes for maximizing
parallelism. At first, all the independent computations that
can be executed in the first time unit are identified. These
computations are called the initially independent computa-
tions. Then it is shown that all of them can be collected as a
union of rectangular blocks. So, based on these, the entire
iteration space of the loops is partitioned into rectangular blocks
for maximizing parallelism. The proposed method is formu-
lated as systematic procedures which can easily be implemented
in a parallelizing compiler. It is shown that when the wavefront
transformation is combined with the proposed method, the
loops can always be tiled so that the tile size is greater than
one. In comparison with previous work on tiling, the proposed
method is shown to have several advantages as summarized in
the conclusions of this paper.  1996 Academic Press, Inc.

I. INTRODUCTION

It is widely recognized that loops provide the largest
source of parallelism in common numerical programs. A
great deal of research has gone into the development of
various techniques for exploiting parallelism within nested
loops [3–11, 13–18, 20–27]. Some well-known techniques
are wavefront execution [11], hyperplane partitioning [5],
time transformation [21], affine scheduling [3], partitioning
vector approach [22], minimum distance [14], and loop
labeling [4]. Although these methods are useful in max-
imizing parallelism, they do not aggregate independent
computations into regions with fixed sizes and regular
shapes. So the compiler cannot easily generate the parallel
codes or the parallel codes cannot be efficiently executed
due to data reference locality and processor load bal-
ance problems.

Much research has shown that the above problems can
be relieved by partitioning loops into blocks (tiles) [6, 8,
23, 25]. Tiles provide data reference locality for memory
hierarchy utilization; and the compiler can easily generate
parallel codes for tiles so that processors are load balanced
when executing the codes. So partitioning loops into blocks



DEFINITION 1. Independent computations, independent
computation sets : A computation is independent iff all its
dependence sources either have completed their execution
or are outside the iteration space. Note that when we talk
about an independent computation, we imply it is execut-
able at a certain time unit. A computation set R is called
an independent computation set (ICS) iff, ;v [ R, v is an
independent computation.

DEFINITION 2. Initially independent computations, ini-
tially independent computation sets : A computation is ini-
tially independent iff all its dependences have been satisfied
when the loops are to be executed. An initially independent
computation set (IICS) is an independent computation set
in which every computation is initially independent.

An initially independent computation set is maximal iff
it aggregates all the initially independent computations.

DEFINITION 3. Boundary block computation sets : A
boundary block computation set R 5 [r1 , r2 , ..., rn] of a
loop nest Ln is a set of initially independent computations
(p1 , p2 , ..., pn)T where

(a) ;i, 1 # i # n, 2ui 2 1 # ri # ui 1 1 and ri [ Z
(ui denotes the upper bound of the ith loop);

(b) ;i, 1 # i # n, if ri , 0 then ui 1 ri 1 1 # pi # ui ;
(c) ;i, 1 # i # n, if ri . 0 then 0 # pi # ri 2 1; and
(d) if 'i, 1 # i # n, such that ri 5 0, then R is an empty set.

In the following context, in order to facilitate further
formulation, we will let ri be ‘‘y’’ for denoting 0 # pi # ui .

EXAMPLE 3.1. The iteration space of a loop nest L2 is
shown in Fig. 1. Assume that R1 and R2 are boundary block
computation sets. They are denoted as [y, 3] and [2, 23],
respectively. And, the computation sets that correspond
to the regions S1 and S2 must not be boundary block compu-
tation sets.

DEFINITION 4. Maximal boundary block computation
sets : Let expand(bi) 5 bi 1 1 if bi . 0, and expand(bi) 5
bi 2 1 if bi , 0. A boundary block computation set B 5
[b1 , b2 , ..., bn] is maximal iff ;i, 1 # i # n, [b1 , ..., expand(bi),
..., bn], which is a proper superset of B, is not an IICS (i.e.,
it will include a computation that is not initially inde-
pendent).

II. TERMINOLOGY AND MOTIVATION

A. Terminology

The program model considered in this paper is the uni-
form dependence loop nests [1, 22, 24] whose dependence
pattern is the same for each iteration of loops. A loop
iteration is considered as the basic scheduling unit and is
called a computation. A uniform dependence loop nest of
depth n is denoted as Ln(V, D), where V is the set of
indexed points each of which represents one loop iteration,
and D is the dependence matrix in which each column is
a dependence vector [26] that describes the interiteration
dependence of the loops. Without loss of generality, the
loop nest is assumed to have been normalized so that for
each loop level i, 1 # i # n, the lower bound of loop index
is 0 and the loop index increment is 1. The interiteration
dependences of a loop nest Ln(V, D) can be represented
by an Iteration Space Dependence Graph (ISDG) [26], in
which a directed edge represents a data dependence rela-
tion of two computations.

B. Motivation

The dependence relations will be changed due to the
shape and size of the index set. Shang and Fortes [22]
introduce the concept of pseudo-dependences to character-
ize dependence relations that do not consider both the
boundary conditions of the iteration space and the direc-
tion of the dependence vectors. Two computations v1 and
v2 are pseudo-dependent on each other if there is a vector
l [ Zm such that v1 5 v2 1 Dl (m is the number of
dependence vectors).

Most existing techniques for exploiting parallelism
within loops are based on pseudo-dependences. However,
in reality, pseudo-dependences are not equivalent to ‘‘real’’
dependences. A computation v1 may not depend on a com-
putation v2 even if v1 5 v2 1 Dl, because the dependence
path may exit the index space [2].

We observe that when loops are to be executed, the
computations whose all real dependences are satisfied can
be easily identified. These computations are called initially
independent computations. Intuitively, to exploit the opti-
mal (maximal) parallelism within a loop nest is to identify
all the computations that can be executed in the first time
unit, and then all those can be executed in the second
time unit, ..., and so on. So identifying all the initially
independent computations is a good starting point for ex-
ploiting maximal parallelism. Motivated by this observa-
tion, we propose a method of finding all the initially inde-
pendent computations, and then, based on these, of tiling
the loops for maximizing parallelism.

III. BASIC STEPS OF THE PROPOSED APPROACH

A. Some Definitions

For a loop nest Ln(V, D), R is called a computation set
if R , V.
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In other words, Definition 4 says that B is the block-
shaped IICS that has been ‘‘expanded’’ as much as possible.

B. Formulation of the Basic Steps

EXAMPLE 3.2. Consider the loop nest L2(V, D) with
D 5 [3

2
2
23] and V 5 h(i, j)Tu0 # i # ui , 0 # j # uj j. From

Fig. 2(a), it is easy to see that the set Rd1
5 [3, y] < [y,

2] is an initially independent computation set induced by
the dependence vector d1 5 (3, 2)T, because any two com-
putations in Rd1

are independent of each other with respect
to d1 . Similarly, Rd2

5 [2, y] < [y, 23] are the initially
independent computation sets induced by the dependence
vector d2 5 (2, 23)T. Since the initially independent com-
putation set R0 , must comply with both the dependence
vectors d1 and d2 , R0 is equal to the intersection of Rd1

and Rd2
. That is (as shown in Fig. 2(b)),

R0 5 Rd1
> Rd2

5 ([3, y] < [y, 2]) > ([2, y] < [y, -3])

5 [2, y] < [3, 23] < [2, 2] 5 [2, y] < [3, 23].

Note that there are two maximal boundary block computa-
tion sets, [2, y] and [3, 23]. (This will be proved later in
Theorem 3.2.)

LEMMA 3.1. For the loop nest Ln(V, D) which has a
dependence vector di 5 (d1i , d2i , ..., dni)T,

Rdi
5 [d1i , y, y, ...] < [y, d2i , y, ...]< ??? <[y, y, ..., dni]

is an initially independent computation set with respect to
di . ([d1i , y, y, ...], ..., [y, y, ..., dni] are boundary block
computation sets defined in Definition 3.)

Note that if dji $ uj , 1 # j # n (ui is the upper bound
of the ith loop), then we can let dji 5 uj .

LEMMA 3.2. A computation v of a loop nest Ln is an
initially independent computation with respect to the depen-
dence vector di iff v is in Rdi

.

For brevity’s sake, we omit the proofs of the above
two lemmas.
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THEOREM 3.1. For a loop nest Ln with m dependence
vectors di , 1 # i # m,

R0 5 >
m

i51

Rdi

is the maximal initially independent computation set of Ln .

Proof. Complying with every dependence vector di ,
1 # i # m, R0 , by Lemma 3.1, is an initially independent
computation set of Ln with respect to D (i.e., all di’s). Let
v be an initially independent computation with respect
to D. Assume v Ó R0 . Then, ' di , 1 # i # m, such that
v Ó Rdi

. This is a contradiction to Lemma 3.2. Hence, any
initially independent computation with respect to D must
belong to R0 . That is, R0 aggregates all the initially inde-
pendent computations of Ln and is maximal. j

The following procedure can derive the maximal initially
independent computation set.

PROCEDURE IICS.
Input: Ln with dependence matrix D 5 [d1 , d2 , ..., dm]

(di 5 (d1i , d2i , ..., dni)T, 1 # i # m)
Output: R0

Begin
Rd1

5 [d11 , y, y, ...] < [y, d21 , y, ...]< ??? <[y, y,
..., dn1];
Rd2

5 [d12 , y, y, ...] < [y, d22 , y, ...]< ??? <[y, y,
..., dn2];

???
Rdm

5 [d1m , y, y, ...] < [y, d2m , y, ...]< ??? <[y, y,
..., dnm];
R0 5 Rd1

> Rd2
> ??? > Rdm

;
Return(R0);

End.

According to Definition 3, the intersection and combina-
tion of two boundary block computation sets (X 5 [x1 ,
x2 , ..., xn] and Y 5 [y1 , y2 , ..., yn]) are formulated as follows.
(Note that y . 0, since it stands for the loop upper bound.)

FIG. 2. Initially independent computation sets of Example 3.2.



[19]. ;j , 1 # j # n,

if bj 5 y, then eji 5 0; otherwise (bj ? y), eji
(4.1)5 dji/abs(bj) or eji 5 dji/abs(bj ),

where dji/abs(bj) denotes dividing dji by the absolute value
of bj . (Note that for dji there are two values for the corre-
sponding eji .)

Theorem 3.2 shows that R0 is the union of all the maximal
boundary block computation sets. So, among them, the
maximal boundary block computation set that is valid and
has the largest size can be chosen to tile the original loops
for maximizing parallelism. This is illustrated in the follow-
ing example.

A. An Illustrative Example

EXAMPLE 4.1. Consider the nested loops L3(V, D) with
V 5 h(i, j, k)Tu0 # i, j, k # yj and

D 5 3
1 2 0

22 4 4

4 21 3
4.

With Procedure IICS, R0 5 ([1, y, y] < [y, 22, y] <
[y, y, 4]) > ([2, y, y] < [y, 4, y] < [y, y, 21]) > ([y,
4, y] < [y, y, 3]) 5 [1, 4, y] < [y, 4, 4] < [2, y, 3]. We
intend to tile the loops with a valid independent computa-
tion set with maximal size (say, Bt). Since all [1, 4, y],
[y, 4, 4], and [2, y, 3] are the maximal boundary block
computation sets, Bt can be [1, 4, y], [y, 4, 4], or [2, y,
3]. Each case is discussed as follows:

(1) Bt 5 [1, 4, y]: Let the loop nest be tiled with [1, 4,
y]. As shown in Fig. 3(a), this is to strip-mine dimensions
1 and 2 with strip lengths 1 and 4, respectively. (Dimension
3 is not strip-mined.) After the loops are tiled, by using
Eq. (4.1), in the lattice of tile origins the block dependence
vectors are e1

1 5 (1, 0, 0)T, e2
1 5 (1, 21, 0)T, e2 5 (2, 1, 0)T,

and e3 5 (0, 1, 0)T (see Fig. 3(b)). In the sense that tiling
is a transformation of the original loops, we consider
e1

1 , e2
1 , e2 , and e3 the transformed dependence vectors.

Since all the transformed dependence vectors are lexico-
graphically positive [24], such a tiling is valid.

(2) Bt 5 [y, 4, 4]: As shown in Fig. 3(c), after the loop
are tiled, the block dependence vectors are e1

1 5 (0, 21,
1)T, e2

1 5 (0, 0, 1)T, e1
2 5 (0, 1, 21)T, e2

2 5 (0, 1, 0)T, and
e3 5 (0, 1, 1)T (see Fig. 3(d)). Since e1

1 5 2e1
2 , two blocks

are cyclically dependent on each other. This is the so-called
dead-locked condition [8]. So, the loops cannot be tiled
with [y, 4, 4]. In fact, such a tiling is invalid because not
all e’s are lexicographically positive. (Lexicographically
positive dependence vectors will never cause dead-lock.)

We should check if any subset of [y, 4, 4] is valid. In the
original dependence vectors, there are negative elements in
the second dimension. So, properly strip-mining the first

(a) S 5 X > Y 5 [s1 , s2 , ..., sn]: ;i, 1 # i # n,
(1) if xi ? yi # 0 then si 5 0; (Thus, S is an empty set.)
(2) if xi . 0 and yi . 0 then si 5 min(xi , yi); and
(3) if xi , 0 and yi , 0 then si 5 max(xi , yi).

(b) S 5 X < Y 5 [s1 , s2 , ..., sn]: (xi ‘‘subsumes’’ yi if
xi 5 y or if xi ? yi . 0 and abs(xi) . abs(yi).)

(1) if ;i, 1 # i # n, xi subsumes yi then S 5 X;
(2) if ;i, 1 # i # n, yi subsumes xi then S 5 Y; and
(3) in the other conditions, X and Y cannot be

merged.

COROLLARY 3.1. The output of Procedure IICS, R0 ,
must not be empty. Let R0 5 <

k
h51 Bh , k [ Z 1 (k is a

constant), then ;i and j , 1 # i, j # k, i ? j, Bi ,y Bj .

COROLLARY 3.2. In Corollary 3.1, let Bh 5 [b1h , b2h ,
..., bnh], then ;h and j , 1 # h # k, 1 # j # n, bjh 5 y or
0 , abs(bjh) # maxm

i51 (abs(dji)). (abs() is the absolute
value function.)

Again, for brevity’s sake, we omit the proofs of the above
two corollaries.

THEOREM 3.2. The output of Procedure IICS, R0 , is the
union of all the maximal boundary block computation sets.

Proof. Let R0 5 <
k
h51 Bh , k [ Z 1. ;h, 1 # h # k, if

Bh is not a maximal boundary block computation set, then
there exists an IICS, say Bx , which is a proper superset of
Bh (see Definition 4). Since ;i and j , 1 # i, j # k, i ? j,
Bi ,y Bj (Corollary 3.1), Bx is not in R0 . However, Bx is
an IICS. This contradicts that R0 aggregates all initially
independent computations. So, ;h, 1 # h # k, Bh is a
maximal boundary block computation set. Besides, since
any maximal boundary block computation set includes only
initially independent computations, it must belong to
R0 . j

IV. TILING LOOPS FOR EXPLOITING PARALLELISM

DEFINITION 5. Valid independent computation sets: For
a loop nest L, an independent computation set (ICS) R is
valid iff L can be partitioned into blocks so that each of
them is disjunctive, atomic and identical by translation to
R [8]. (R is said to be invalid if it is not valid.) We call
such a partitioning ‘‘tiling L with R.’’

Being disjunctive, each computation is executed exactly
only once; and, being atomic, no two blocks are cyclically
dependent on each other [8].

DEFINITION 6. Block dependence vectors: After the
loops are tiled, since all blocks are identical by translation,
each of them can be represented by an arbitrary point
within it (the so-called tile origin) [1]. Thus, the tile origins
define a lattice. We call the dependence vectors in this
lattice block dependence vectors. Let the loops be tiled
with B 5 [b1 , b2 , ..., bn]. For an original dependence vector
di 5 (d1i , d2i , ..., dni)T, the corresponding block dependence
vectors ei 5 (e1i , e2i , ..., eni)T can be derived as follows
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dimension will render all e’s lexicographically positive. For
example, the loops can be correctly tiled with Bt 5 [1, 4,
4]. (Later, we will formulate how to find the largest subset
of Bt when Bt is invalid.)

(3) Bt 5 [2, y, 3]: As the same reasoning in (1), the
loop nest can be tiled with [2, y, 3].

So we have Bt 5 [1, 4, y], Bt 5 [1, 4, 4], or Bt 5 [2, y,
3]. Since there are 4 3 uk computations in [1, 4, y], 16
computations in [1, 4, 4], and 6 3 uj computations in [2,
y, 3], we can choose Bt 5 [2, y, 3] to maximize parallelism
by assuming that 6 3 uj is greater than 16 and 4 3 uk (uj

and uk are the loop upper bounds). With Bt 5 [2, y, 3],
the original loops can be partitioned into the following
parallel form:

Do 100 SI 5 0, UI/2
Do 100 SK 5 0, UK/3
DoAll 100 I 5 SI 3 2,min(SI 3 2 1 1, UI)
DoAll 100 J 5 1,UJ

DoAll K 5 SK 3 3, min(SK 3 3 1 2,UK)
loop body

100 Continue

B. General Formulation

Given a loop nest Ln , Procedure IICS can derive the
maximal initially independent computation set R0 . Let
R0 5 <

k
h51 Bh , k [ Z 1, where Bh 5 [b1h , b2h , ..., bnh] is a

maximal boundary block computation set. Whether Bh ,
1 # h # k, is a valid ICS is checked as follows. Assume that
the loops are tiled with Bh . For each original dependence
vector di 5 (d1i , d2i , ..., dni)T, the corresponding block
dependence vector ei is computed as Eq. (4.1). If all the ei’s
are lexicographically positive, Bh is a valid ICS. Otherwise,
(some ei is not lexicographically positive), ;j, 1 # j # n,
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we may ‘‘shrink’’ bjh (and recalculate every ei , 1 # i # m)
so as to make every ei lexicographically positive. There
are two cases. (1) bjh 5 y: The possible values of bjh that
need to be tried are y, maxm

i51 (abs(dji)), maxm
i51 (abs(dji)) 2

1, ..., and 1, since when bjh . maxm
i51 (abs(dji)), ;i, 1 # i #

m, eji 5 0. (See Eq. (4.1).) (2) bjh ? y: The possible values
of bjh are bjh , bjh 2 1, bjh 2 2, ..., and 1 (If bjh , 0, they
are bjh , bjh 1 1, bjh 1 2, ..., and 21.). Among them, the
one with the largest absolute value that makes every ei

lexicographically positive is chosen. Note that ;j, 1 # j #
n, if bjh 5 y, we do not have to try bjh 5 maxm

i51 (abs(dji)) 1
1, bjh 5 maxm

i51 (abs(dji)) 1 2, ..., and so on; and if bjh ?
y, the possible value of bjh is bounded by maxm

i51 (abs(dji))
(see Corollary 3.2).

Finally, among all the valid ICS’s, the one with the
largest size (for maximizing parallelism) is chosen to tile
the original loops. So we have Procedure MaxValidICS as
shown in Fig. 4.

In sum, to tile a loop nest Ln , the first step is to use
Procedure IICS to compute R0 , and then the second step
is to use Procedure MaxValidICS to find a valid ICS, Bl ,
whose size is maximal. Thus, Ln can be tiled with Bl . This
is described in the following procedure.

PROCEDURE TILE (Ln).
Begin

Call Procedure IICS; /* derive R0*/
Call Procedure MaxValidICS; /* derive Bl */
Tile the loops Ln with Bl;

End.

C. Applying Transformations to Loops

The loop transformation theory proposed by Wolf and
Lam [24] provides a foundation for solving the open prob-

FIG. 3. Illustration of Example 4.1. (The unbounded dimension is not shown.)



Z 1. If 'g, 1 # g # k, uBgu . uBtu, then Bg 5 [y, y, y, ...]
where y [ Z, y . minm

i51 (d1i 1 d2i 1 ??? 1 dni). (uBg u and
uBt u denote the number of computations in Bg and Bt ,
respectively.) Obviously, (y, y, y, ...) is not an initially
independent computation and hence (y, y, y, ...) Ó R0 .
This implies that Bg ,y R0 , which is a contradiction to
R0 5 <

k
h51 Bh . So, ;h, 1 # h # k, uBtu $ uBhu. In Proce-

dure MaxValidICS, since ;i, j , 1 # i # m, 1 # j # n,
dji $ 0 (L is fully permutable), all ei’s are lexicographi-
cally positive. So, every Bh , 1 # h # k, is a valid ICS.
Since ;h, 1 # h # k, uBtu $ uBhu and Bt , R0 5 <

k
h51 Bh ,

the output of Procedure MaxValidICS is Bt . j

Note that, in Theorem 4.1, the size of Bt is always greater
than one. And we can apply any other wavefront transfor-
mation that is a permutation of TW to the original loop
nest to derive a valid ICS, because, in Procedure Max-
ValidICS, dji $ 0 (1 # i # m, 1 # j # n) implies that ei

is lexicographically positive whether ei is permuted or not.

D. Partitioning Loops with Combined ICS’s

A loop nest whose all dependence vector elements are
positive can be regularly partitioned with some combined
valid ICS’s as described as follows.

Consider a loop nest Ln with m dependence vectors
di 5 (d1i , d2i , ..., dni)T where ;i, j , 1 # i # m, 1 # j # n,
dji . 0. In Procedure IICS, clearly, [minm

i51 (d1i), y, ..., y]
is a subset of [d1i , y, y, ...], 1 # i # m. That is, it is a

lem of how to combine reversal, permutation, skewing
transformations and tiling techniques for the goal of max-
imizing parallelism. They show that any uniform depen-
dence loop nest can be transformed (by skewing) into
a canonical form—fully permutable loop nest (i.e., the
dependence vectors have no negative elements).

THEOREM 4.1. Consider a fully permutable loop nest
Ln with m dependence vectors di 5 (d1i , d2i , ..., dni)T, 1 #
i # m. If the wavefront transformation

TW 53
1 1 ??? 1 1

1 0 ??? 0 0

0 1 ??? 0 0
.
.
.

.
.
.

.

.

.
0 0 ??? 1 0

4
is applied to Ln, then Bt 5 [minn

i51 (d1i 1 d2i 1 ??? 1 dni),
y, y, ...] , R0 is the output of Procedure MaxValidICS,
where R0 is the maximal IICS derived from Procedure IICS.

Proof. After the wavefront transformation TW is ap-
plied to Ln, the dependence vectors are transformed into
TW ? di 5 (d1i 1 d2i 1 ??? 1 dni , d1i , d2i , ..., d(n21))T, 1 #
i # m. In Procedure IICS, clearly, Bt 5 [minm

i51 (d1i 1
d2i 1 ??? 1 dni), y, y, ...] , R0 . Let R0 5 <

k
h51 Bh , k [
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subset of Rdi
, 1 # i # m. Since R0 5 >m

i51 Rdi
, [minm

i51 (d1i),
y, ..., y] is a subset of R0 and therefore is an IICS. By the
same reasoning, all [y, minm

i51 (d2i), y, ..., y], ..., and [y,
..., minm

i51 (dni)] are IICS’s. And it is easy to see that all
[minm

i51 (d1i), y, ..., y], ..., [y, ..., minm
i51 (dni)] are valid.

The following example illustrates how to combine them
to tile the loops.

EXAMPLE 4.2. Consider the loop nest L2(V, D) with
D 5 [2

3
3
2]. Let Bt 5 [min(2,3), y] < [y, min(3,2)] 5

[2, y] < [y, 2]. Then the loops can be partitioned as
shown in Fig. 5.

Clearly, this can be easily generalized to multidimen-
sional loops. For brevity’s sake we omit the general formu-
lation.

V. COMPARISONS WITH RELATED WORK

A. Comparisons with Multiple Hyperplane Partitioning

Irigoin and Triolet [8] propose a general formulation
called supernode partitioning which formulates a condition
for finding n families of parallel hyperplanes for tiling n-
fold nested loops. The vectors normal to the n families of
hyperplanes, say h1 , h2 , ..., hn , should be linearly indepen-
dent. Let H be the matrix whose rows are the vectors h1 ,
h2 , ..., hn . Thus, the tiling condition is HD $ 0 (D is the
dependence matrix). With this condition, admissible tiling
can be determined [8]. However, it does not provide quan-
titative procedures for choosing the size and shape of tiles.
Based on the condition HD $ 0, some automatic blocking
methods for determining suitable sizes and shapes of tiles
are further studied by other research, including the works
done by Schreiber and Dongarra [20], and Ramanujam
and Sadayappan [18]. Since all these methods use multiple
hyperplanes to partition loops, we refer to them as the
multiple hyperplane partitioning methods.

Some points about the comparison between the multiple
hyperplane partitioning methods and the proposed method
are discussed as follows. First, some valid tiling does not
meet the condition HD $ 0. Consider Example 4.1 again.
From Fig. 3(a), we can see that the vectors normal to the
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partitioning hyperplanes are h1 5 (x, 0, 0), h2 5 (0, y, 0),
h3 5 (0, 0, 0) (x, y [ Z 1) and hence

H 5 3
x 0 0

0 y 0

0 0 0
4.

So, the condition HD $ 0 does not hold. However, as has
been shown in Example 4.1, [1, 4, y] can correctly tile the
loops. This is because H is rank-deficient and leads to an
infinite tile [7]. (If H is a full rank matrix, then it can be
used as an exact condition.) Therefore, to correctly tile a
loop nest, the condition HD $ 0 is too strong. In contrast,
in the proposed method, the tiling condition is that a tiling
is valid if and only if all the resulting block dependence
vectors are lexicographically positive. Clearly, this condi-
tion is exact since it conforms to the basic concept of valid
dependence vectors [24].

Second, the multiple hyperplane partitioning methods
focus on building admissible tiles but do not address on
how to maximize parallelism within tiles. Partitioning loops
with them, the computations in a tile are not necessarily
independent. In contrast, in this paper, the proposed
method aims at aggregating independent computations
into a tile; and it provides a systematic procedure to max-
imize the tile size (and hence maximize parallelism).

Third, unlike the multiple hyperplane partitioning meth-
ods that partition loops into polyhedra, the proposed
method partitions loops into rectangular blocks. Such a
partitioning make the parallel code generation very easy.
And, most important, all the available parallelism (initially
independent computations) can be aggregated into rectan-
gular blocks (Theorem 3.2). From this point of view, parti-
tioning loops into rectangular blocks is useful enough for
maximizing parallelism. In contrast, in the multiple hyper-
plane partitioning methods, code generation is not straight-
forward and needs some efforts [1]. Also, as shown in
[17], this is related to the issue of code generation for
nonunimodular transformations [12].

B. Comparisons with Cycle Shrinking

The cycle shrinking method [16] can be seen as a special
case of affine scheduling [3]. Like the proposed method
of this paper, the cycle shrinking method also partitions
nested loops into blocks (except for true dependence
shrinking) that contain only independent computations.

EXAMPLE 5.1. Consider the following loop nest [16]:

Do 100 I 5 3,N1

Do 100 J 5 5,N2

A(I,J) 5 B(I-3,J-3)
B(I,J) 5 A(I-2,J-5)

100 Continue

Its dependence matrix is [2
5

3
3]. If simple or selective

shrinking is applied, the corresponding ISDG’s are shownFIG. 5. Illustration of Example 4.2.



D’Hollander’s method are as follows. For D’Hollander’s
method: First, in the transformed codes all the DoAll loops
are made outermost. That is, the method can exploit
coarse-grain parallelism [24] and the transformed codes
are suitable for execution on distributed memory systems
since each group can be executed independently. Second,
it is shown that the degree of parallelism is limited to the
determinant of the dependence matrix [4] and therefore
cannot be large. Third, clearly, the loops are not partitioned
into regions with regular shapes. This will deteriorate per-
formance in practical implementation.

In contrast, for our proposed method: First, the indepen-
dent computations are aggregated into a sequence of
DoAll loops, which can be executed in parallel. That is, it
makes all the DoAll loops innermost and obtains fine-
grain parallelism [24]. Therefore, the transformed codes
are suitable or execution on shared memory systems, in
which the interprocessor communication cost is small. Note
that, for a distributed memory system that provides fast
interprocessor synchronization and communication mech-
anism, our method can also apply to such a system for
efficient execution. (The iterations of a DoALL loop can
be executed on different processors when suitable barrier
synchronization is forced among processors.) Second, as
shown in this paper, the sizes of the partitioned blocks
usually depend on the loop bounds but not limited to a
constant. So the degree of parallelism is usually very large.
(As shown in Theorem 4.1, if the wavefront transformation
is used, then the degree of parallelism must be as large as

in Figs. 6(a) and 6(b), respectively. Clearly, the degrees
of parallelism are 6 and 2N2 2 8, respectively. If true
dependence shrinking is applied, the iteration space is par-
titioned in an ‘‘irregular’’ fashion [16] and the degree of
parallelism is min(2(N2 2 4) 1 5, 3(N2 2 4) 1 3), which
is only a little better than 2N2 2 8 of selective shrinking.
Obviously, by true dependence shrinking, the loops are
not tiled. So we will not further discuss it since, in this
paper, we focus on loop tiling.

In contrast, with our proposed method, R0 5 [3, 5] <
[2, y] < [y, 3]. Thus, the original loops can be partitioned
with [3, 5] (see Fig. 7(a)) or with [2, y] < [y, 3] (see
Fig. 7(b)).

From Figs. 6 and 7, it is clear that more parallelism is
exploited with the proposed method than with cycle
shrinking.

C. Comparisons with D’Hollander’s Method

Some loop partitioning approaches determine the de-
pendences among computations by using the linear combi-
nation of dependence vectors. A typical example is the
method proposed by D’Hollander [4] (which is an improve-
ment of the minimum distance method [14]). It transforms
the dependence matrix D into a triangular matrix Dt, and
then, based on Dt, partitions the loops into totally indepen-
dent groups of computations, which can be executed inde-
pendently.

The comparisons between our proposed method and
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FIG. 6. The ISDG’s of simple and selective shrinking for Example 5.1.

FIG. 7. The ISDG’s of the proposed method for Example 5.1.



loop bounds.) Third, the loops are partitioned into regions
with regular shape. So the compiler can easily generate
the parallel codes and the parallel codes can be effi-
ciently executed.

VI. CONCLUSIONS

In this paper, we study the problem of tiling nested loops
with uniform dependences for maximizing parallelism, and
propose a new approach to it. At first, based on identifying
the initially independent computations, all the available
parallelism is exposed. Then, how to tile the loops based
on the initially independent computation sets is discussed.
We show that all the available parallelism (initially inde-
pendent computations) can be aggregated into rectangular
blocks. So the loops are tiled into rectangular blocks to
maximize parallelism. We also show that if the wavefront
transformation is combined with the proposed method, the
loops can always be tiled so that the tile size is greater
than one.

In comparison with some well-known methods, the pro-
posed method is shown to have several advantages: First,
since loops are partitioned into equal-sized blocks, the data
reference locality and processor load balancing are better
exploited. Second, all the procedures are systematic and
can be easily implemented in a parallelizing compiler.
Third, unlike the multiple hyperplane partitioning meth-
ods, which may not be able to find some valid tiling, the
procedures described in this paper do not ‘‘lose’’ any possi-
ble valid tiling (for rectangular tiles) since they check the
basic property of lexicographic positiveness of depen-
dence vectors.
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