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Abstract 

In this paper, an adaptive fuzzy autopilot is developed for bank-to-turn (BTT) missiles. We propose a self-organizing 
rotated fuzzy basis function control system that is more flexible than fuzzy basis function expansion in that not only the output 
weights but also the shapes of fuzzy basis functions can be tuned. Another characteristic of this autopilot is to incorporate 
the terminal attractor controller into the autopilot to speed up the convergence rate. The global stability analysis established 
in the Lyapunov sense shows that the states and tracking errors of the BTT missile are uniformly bounded. Finally, there 
are two simulation examples to demonstrate the effectiveness of the proposed autopilot. The purpose of the first example 
is to indicate the better performance including faster convergence speed and lower steady-state error obtained by autopilots 
with terminal attractors as compared with that autopilot without terminal attractor. Another simulation result proves that 
BTT missile can manipulate under various flight conditions in our scenarios and shows the superior tracking performance. 
@ 1998 Elsevier Science B.V. All rights reserved. 
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1. Introduction 

Fuzzy control is an approach to nonlinear and 
complex control design which has attracted a great 
deal o f  research interest in the past decade. The basic 
idea of  the approach is to incorporate fuzzy IF-THEN 
rules into the control design, that is, fuzzy control 
combines two resources: input-output data and the 
experts' experience expressed by rules. Therefore, 
fuzzy control is always applied to the system which is 
too complex to get the mathematical model precisely 
as chemical process. The autopilot design for the BTT 
missile, which is a highly nonlinear coupled system, 
is a challenging task and it is a novel application to 
BTT missiles for fuzzy control. 

* Corresponding author. E-mail: sdwang@star.ee.ntu.edu.tw. 

The characteristics of  BTT missiles are high maneu- 
verability and high aerodynamic acceleration. High 
maneuverability will require large roll rates which will 
in turn introduce cross-coupled nonlinear dynamics to 
affect the motion of  pitch and yaw. Furthermore, the 
asymmetric cross section of  BTT missile results in 
the high acceleration capability in pitch plane restrict 
the acceleration in the yaw plane. On the other hand, 
the performance of  the autopilot design should com- 
ply with the limits of  positive attack angle and small 
sideslip angle. 

A wide variety of  approaches have been used 
successfully to address the autopilot design for mis- 
siles. Lin and Yueh [21 ] neglected the nonlinear terms 
to apply classical SISO methods to the pitch and yaw 
channels which are simplified to be independent. The 
conventional approach for designing BTT autopilot 
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based on linear approximation of the cross-coupling 
at each design point has been widely investigated [7]. 
Many research works apply the optimal control theory 
to the autopilot design; for example, Williams have 
proposed an LQG/LQR-based control methodology 
to cope with the nonlinear and coupled equations of 
motion in [33,34]. Bossi and Langehough [1] also 
proposed an LQG/LQR scheduling approach based 
on the linearized dynamic models which are derived 
from different flight conditions. By satisfying perfor- 
mance and stability robustness requirements, Wise 
[35] used loop transfer recovery to design autopilots. 
Under the constraints of the small attack angle and 
fixed flight condition, Chang and Yuan [4] developed 
a nonlinear polynomial feedback control law for BTT 
asymmetric missiles. Recently, some studies, con- 
cerning adaptive robust control based on nonlinear 
geometric theory to achieve the satisfactory tracking 
performance, have been presented in [17, 18]. 

In the past, the fuzzy control approach has not been 
viewed as a rigorous science due to a lack of formal 
synthesis techniques that guarantee the very basic re- 
quirements of global stability and acceptable perfor- 
mance [30]. Adaptive fuzzy controllers, which are 
proved to be globally stable, are developed in se- 
quence [29, 30]. This kind of controller expresses the 
fuzzy model as a series expansion of basis functions 
named fuzzy basis functions (FBF). The fuzzy con- 
troller, used to approximate an optimal controller or 
unknown part of the plant, is adjusted by an adaptive 
law based upon a Lyapunov synthesis approach. 

Motivated by the work in [5], we are inspired 
to apply the fuzzy control theory to perform the 
attitude control for BTT aircrafts. In this paper, a 
self-organizing rotated fuzzy basis function expan- 
sion is used to approximate partial unknown parts of 
the plant. As in [12, 15], the weighting matrix scales 
and rotating input vectors produce elliptic isocontours 
for each fuzzy basis function to add more flexibility 
in approximating a function. However, the scales and 
rotating angles of the isocontours are tuned by learn- 
ing in this paper rather than fixed in [15, 12]. The 
self-organizing rotated fuzzy basis function (RFBF) 
expansion can construct all free parameters: centers 
and radii of FBFs. The approximation errors, un- 
modeled dynamics and disturbances are inevitable. 
Therefore, a robust learning algorithm as the one 
proposed [6] is used to tune the parameters of the 

network. In addition, a tactical missile should track 
target as soon as possible. Hence, the concept of ter- 
minal attractors, which is introduced by Zak [36], is 
added to the controller to improve the convergence 
rate. 

The remainder of this paper is organized as follows. 
In Section 2, the control objective is of BTT missiles. 
Section 3 is dedicated to introducing the rotated 
fuzzy basis function. The rotated fuzzy basis function 
network is compared with the fuzzy basis function 
network and adaptive-network-based fuzzy inference 
system (ANFIS) [9]. Section 4 describes the self- 
organizing rotated fuzzy basis function network based 
control approach in detail. A global stable adaptive 
fitzzy autopilot in a constructive manner based on 
the Lyapunov synthesis technique is developed. In 
Section 5, the faster convergence rate of autopilot 
with terminal attractor is demonstrated in the first 
simulation example. Another simulation example is 
to demonstrate that only one autopilot can operate at 
various flight conditions. At last, Section 6 concludes 
the paper. 

2. Problem statement 

The detailed dynamic equations and state nota- 
tions of BTT missiles is available in the Appendix. 
The overall BTT missile dynamic system including 
actuators has been shown to be not an affine system 
[18]. The output signals ~, Ay and Az are chosen 
to track the desired trajectories ~c, Aye and Azc re- 
spectively. However, a vast number of numerical 
simulations and numerical calculation of the system 
eigenvalues of the locally linearized version of the 
dynamic system verify that BTT missiles have signi- 
ficant nonminimum phase phenomenon. In [18], the 
undesirable nonminimum phase property is avoided 
by an output-redefinition method such that the nomi- 
nal model ofa BTT missile can be viewed as a weakly 
nonminimum phase system. The new output signals 
• , V and W are chosen according to the profile of the 
desired trajectories. 

This paper is devoted to the design of a fuzzy adap- 
tive control algorithm for a class of BTT missiles. The 
nominal plant of BTT missiles can be rewritten by the 
input--output feedback linearization technique [28] in 
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the following form: 

y(n: ) I 

F.l X> .2 x> .13 x>l[Ul ] 
= If2(x) ÷ |O'2,(x)  22(x) g23(x) u2 

L f3(x) L931(x) g32( X ) g33( X ) u3 

= f ( x )  + G(x)u  (2.1) 

where 

Yl =~,  Y2 = V, y3 = W, [Ul u2 u3] T= [rp ~q 0r] T 

and 

x = [ P  Q R • O 7 j U V W X Y Z] T. 

The relative degree (nl,n2,n3) for the three input- 
output channels is found to be (3, 2, 2). In the above 
equation, f ( x )  is an unknown function vector, G(x)  
is a known gain matrix as given in the Appendix and u 
is the input vector. 

Now, the problem is how to develop an adaptive 
fuzzy controller to achieve the control objective. 
The control objective is to force the plant states, 
~, ~, ~, V, I2, W and W, to follow the specified trajec- 
tories, 4~c, ~c, ~ ,  V~, I?c, Wc and Wc, and output signals, 
yl, y2, y3, to follow the desired output trajectories, 
Yld,Y2d, Y3d. For the simplicity of discussion, three 
tracking error vectors are defined as follows: 

[,1] [il E° I e ,  = y ,  - / Y ' a |  = - , 

¢l uPld" 'be 

e2= [YY':I-YzdY'ed] = I V ] -  [ ~ l ' J  (2.2) 

Y3 Wcc 
e2 = [))3 ] - [Y3d l = [ wW" ] - [ l~c ] " ) ) 3 d  J 

The control problem is thus to develop a control law 
that guarantees the tracking error vectors will approach 
zero. 

For the purpose of alleviating the nonminimum 
phase phenomenon, an output-redefinition method is 
applied such that the new command signals should be 

C°mmand ~ C°nla'°ller ~-I~ BTT Missile ~ "  
Azc l Wc l G e n e r a t ° r  (Autopilot) I _u [(with Actuator]l x- 

Fig. 1. The block diagram of the closed loop system. 

transformed from the original commands, or trajec- 
tories [4, 18, 20]. The command generator performs 
the task. The inputs of the command generator are 
original desired trajectories, ~bc, Aye and Azc, velocity 
of the missile and the height of the missile; the out- 
puts are 4~c, V~ and We. In practice, 4~c and Vc are not 
changed; as to We, it is proportional to Az - Azc. In 
other words, Wc = Kwo(Az - Azc). 

Since the outputs are redefined, it is necessary to 
generate the corresponding redefined tracking signals 
by a command generator as shown in Fig. 1. If f ( x )  
is known and the gain matrix G(x) is also known and 
invertible, then the control law can be of the form: 

- (3) 7 / /Y,d/ 
uCt) = G -1 " C2)/ - - fCx)  (2.3) [ Y2d / Vlf(t) 

I (2) I LY3d J 

where 

Vlf(t) = [Vlfl(t) Vlf2(t) Vlf3(t)] T 

= [kTel k~e2 k~e3] T 

is a linear feedback control law. The control law (2.3) 
will lead to the following error dynamics: 

el n~) + kile} n'-l) + ' "  + kin, = 0. (2.4) 

If we choose ki=[ki,, . . .  kil] T such that all roots of 
the polynominal pi(s)  =s  n' +kilS "'-I + . . .  +ki,, are in 
the open left half of the complex plane, the closed loop 
system will be asymptotically stable. Unfortunately, 
f ( x )  is unknown and the control law (2.3) should be 
modified. For theoretical and practical reasons stated 
in [30], we can use a fuzzy basis function network 
to approximate f ( x ) .  And it has been shown that, 
with linguistic fuzzy description, functions f,. can be 
approximated using a fuzzy model called fuzzy ba- 
sis function expansion [32]. Suppose that the control 
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law is modified as 
. ( 3 ) .  ) U(t)  = G - I  J~2d / -- Vlf(t) -- VRFBF(/) , (2.5) 
Y3d _1 

where V~BF(t)= [VRFBFI(t) V ~ B v z ( t )  Vm~BF3(t)] T is 
the fuzzy basis function expansion used to cancel out 
the unknown nonlinear function f ( x ) .  With the con- 
trol law (2.5), the closed-loop system becomes 

0 i = A i e i + b i ( f i ( x ) - - V R F B F i ( t ) )  , i =  1,2,3 (2.6) 

wherebl = [ 0  0 1] T, b 2 = b 3  = [ 0  1] T,and 

[0 ° 1 01 
A~= 0 1 , 

-k l l  -k12 -k13 

A2 = -k21 -k22 and A3 = -k31 -k32 

are matrices in the canonical form, with eigenvalues at 
the roots of the Hurwitz polynomials which are deter- 
mined by the linear feedback control law Vlf(t) [27]. 

However, the approximation errors and distur- 
bances are unavoidable. One approach to solve the 
control problem is to define an error metric s as 
follows: 

[ (d/dt + ~1 ):(Y, - Yld) 1 12Tel 1 

L (d /d t  + J,3)(Y3 -- Y3d) .] Lz~e3 
where ~.l = [212 221 1] T, J.2 = [22 1] T, ~3 = [23 1] T, 
and 21,22,23 are constants. The equation s ( t )  = 0 
defines three time-varying hyperplanes on which the 
tracking error vectors decay exponentially to zero, so 
that perfect tracking can be asymptotically obtained 
by maintaining this condition [27]. From Eqs. (2.6) 
and (2.7), the time derivative of the metric can then 
be written as 

gi( t )  = --kD~Si(t) + f i ( t )  -- VRFBFi(t), i = 1, 2, 3, 

(2.8) 

where kD, satisfies the relationship k"D, -- k i n k ~  1 - 

k i , - ]k~72  . . . . .  kil = 0 [20]. If the magnitude of 
si can be shown to be bounded by a constant Ai,  then 
the actual tracking errors can be shown to be asymp- 

totically bounded by 

d~t j ( y i -- Yid) <~ 2J2n~-Z+lAi, 

j = 0 . . . . .  ni - 1, i = 0, 1,2. (2.9) 

Deadzones can be incorporated into error metrics by 
defining continuous functions SiA as: 

s i~( t )  = s i ( t )  -- Ai sa t ( s i ( t ) /A i ) ,  i = 0, 1,2, (2.10) 

where sat is the saturation function: 

1, z > l ,  

sat(z) = z, Izl~<l, (2.11) 

-1 ,  z < - l .  

Deadzone functions, which are specified around the 
zero of their corresponding error metrics, will be used 
in the adaptation law to tolerate the parameter errors, 
unknown dynamics approximation errors and distur- 
bances. 

Appropriately choosing parameter ki in (2.4) 
implies that the tracking errors will asymptotically 
converge to zero, that is, they approach zero at in- 
finite time. As we know, the missile should attack 
the target in a short time. For this control objective, 
the concept of terminal attractors is used to reduce 
the tracking errors to zero in finite time. The detailed 
controller architecture and stability analysis will be 
discussed in Section 4. 

3. Rotated fuzzy basis function network 

Fuzzy basis function network is an approach to 
integrating fuzzy reasoning systems with radial ba- 
sis function networks. The differences and similarities 
between fuzzy basis functions and radial basis func- 
tions has been discussed [9]. In this paper, we propose 
an RFBF network to improve the fuzzy basis func- 
tion network in modeling capability and convergence 
speed. There are three major reasons for presenting 
the RFBF networks. The first, FBFs and radial basis 
functions have the same problem that they may not 
adequately capture the relative "scales" between in- 
puts of different types [12]. Poggio and Girosi [26] 
have proposed using a single weighted norm instead 
of an Euclidean norm to overcome this problem [ 12]. 
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Fig. 3. Surface of function y and contours of RFBFs in Example 3.2. 

2 4 

or  

IF (tlj, trj,~Rj) THEN cj, 

where ~Rj is the rotational matrix. This the basic idea 
of RFBF. For explaining the rule format more clearly, 
we take two examples as illustration. 

Example 3.1. A function 

y = 3.0e-X~-2x~ + 2.0e -4(x'-3)2-(x2+2) 2 

-4 .5e-  16(xl +5) 2-9(x2+I )2 

can be approximated by three FBFs expansion exactly: 

IF ([0 0], [1 l/x/2]) THEN y is ([3.0]), 

IF ([3 -2] ,  [0.5 11) THEN y is ([2.0]), 

IF ( [ -5  -1] ,  [1/4 1/3]) THEN y is ([-4.5]). 

It can also be expanded by RFBFs exactly as 

IF ([0 0],[1 l/x/2],0 °) THEN y is ([3.0]), 

IF ([3 -2] ,  [0.5 1],0 °) THEN y is ([2.0]), 

IF ( [ -5  -1] ,  [1/4 1/3], 0 °) THEN y is ([-4.5]). 

Example 3.2. A function 

y = 3.0e-X~-2x~ + 2.0e-2.5(xl-3)2-a(x1-3)(x2+2)-2.5(x2+2); 

--2.5e 1425(xl+5)2+35"/3(xl+5)(x2+l)-l°'75(x2+l)2 

can be expanded by three RFBFs exactly: 

IF ([0 0],[1 I /v3] ,0  °) THEN y is ([3.01), 

IF ([3 -2],[0.5 1],45 °) THEN y is ([2.0]), 

IF ([-5 -1] ,[1/4 1/3],-30 °) 

THEN y is ([-4.5]). 

Fig. 3, which shows the three-dimensional diagram 
of function y and the contours of RFBFs, gives a 
real feeling of RFBFs. If one uses traditional FBFs 
to approximate the function, it needs more rules 
and gets worse results. Therefore, this function can 
be approximated exactly by RFBFs that are rotated 
FBFs. 

General speaking experts can state IF-THEN rules 
and rough membership functions, however, the exact 
membership functions or FBFs are designed or modi- 
fied by engineering or tuned by algorithms. Based on 
the facts, the initial rotation angles are 0 ° (rotational 
matrices are identity matrices) and the rotational ma- 
trices can be tuned by learning algorithms. For in- 
stance, experts may observe that the centers of rules 
should be at [0 0], [3 -2]  and [ -5  - 1] in the Ex- 
ample 3.2. However, they do not capture the "scale" 
and "orientation" very well. Therefore, experts may 
not specify the rotational angles or rotational matrices. 
Of course, as the above example, the initial rotational 
matrices may not be specified as identity matrices for 
some experts who have the idea about the "scale" 
and "orientation". For a two-inputs fuzzy rules, the 
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(a) (b) 

Fig. 2. (a) Dots represent data and solid elliptic are FBFs' contours. (b) Dots represent data and the RFBF (solid elliptic) is rotated by 
the FBF (dashed elliptic). 

However, the freedom is restricted that each node 
in radial basis function network has the same aspect 
ratio and is rotated by the same amount. Therefore, 
Lee and Kil [15] used a weighted norm for each node 
to improve the flexibility. Based on Lee and Kil 's 
study, we propose a rotated FBF network that is more 
flexible than an FBF network and still posesses the 
advantages of FBF. We find that the RFBF network 
reduces to FBF network if there is no rotation. So, the 
FBF network is a special case of  the RFBF network. 
Secondly, the RFBF network can tune not only the 
parameters of  consequent part of fuzzy rules but also 
the widths, centers, scales and orientations of  FBFs. 
The third reason is that the parameters of  the RFBF 
network is fewer than the self-organizing FBF system 
[24] that can also tune membership functions with the 
same number of  fuzzy rules. Furthermore, for evalu- 
ating the performance of the RFBF network, we also 
compare it with the famous adaptive fuzzy systems, 
ANFIS [8], and FBF network. 

3.1. Rule format  o f  the R F B F  network 

From the viewpoint of  conventional fuzzy systems, 
it is surprising that FBFs can be rotated. Assume that 
the fuzzy rule base consists r linguistic rules in the 
IF-THEN form as follows: 

IF xl is/t j l  AND x2 is -'tj2 AND.. .AND Xn is .4in 

THEN Yl is/~jl AND Y2 i s  Bj2 AND.. .AND 

Ym is Bjm, 

where j = 1 ,2 , . . . , r ,  xi ( i =  1,2,.. .  ,n) are the input 
variables to the fuzzy system, Yk (k = 1,2 . . . .  , m) are 
output variables of  the fuzzy system, and Aji and/~/k 
are linguistic terms characterized by their correspond- 
ing fuzzy membership functions #A'j~ (Xi) and #~k (Yk), 
respectively. From geometrical point of view [24], the 
fuzzy rules can be rewritten as 

IF Q/jl ,aj l)  AND (qjz, aj2) AND.. .AND (rljn,ajn) 

THEN (ej~ . . . . .  C/m), 

where tlji and aji are the center and width of 12,~j~(xi), 
and cjk is the center of  the membership function 
#~,k(Yk) of  the fuzzy singleton set /~jk. Further, the 
rule format can be simplified as 

IF (tlj, aj)  THEN cj, 

where ~/j = [t/j1 . . .  tljn] T, aj = [ O ' j l  . . .  (Tjn] T and 

cj = [cjl ... cjm] T. In other words, the FBF can be 
characterized by the center vector i/j and width vector 
aj. Take Fig. 2, which shows data distribution, into 
consideration, experts who are familiar with FBF ex- 
pansion may use three rules to cover the whole data. 
However, experts may observe that only one FBF 
can cover the whole data by rotating the FBF. Hence, 
experts may state a rule as 

IF (~lj, aj)  AND rotation angle is Oj THEN cj, 
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rotational matrix 9tj is 

c o s 0  - s i n 0 ]  
sin 0 cos 0 J ' 

where 0 is the rotation angle. As for a three-inputs 
fuzzy rule, the rotational matrix 9tj is defined by 
~j=Rlj(OIj)R2j(O2j)R3j(O3j) where rotation an- 
gle Oj=[O U Ozj 03j] T and Ru(Ou) ,  R2j(O2j), and 
R3j(O3j) are defined as follows: [ 0 0j 
R u ( O l j ) =  cos0 U - s i n 0  U , 

sin Olj COS Olj 

R2j( O2j ) = 
i cos: 0 ] 

1 

L-s in0z j  o cos0zjJ 

rcoso3j sin03j i] R3j 03j  lsin003j cos03J0 
We have provided an intuitive method to find 
rotational matrix 9tj for two-dimensional and three- 
dimensional input space. For conventional fuzzy con- 
trol, experts only design a two-dimensional lookup 
table and most higher-dimensional control rules are 
generated by self-organizing or adaptive fuzzy sys- 
tems. So, it is enough for experts to use the above 
methods to describe their experience and knowledge 
with the RFBF rule's form. As for higher dimension 
control rules, they can be resorted to the learning 
algorithms. From the above discussion, it is believed 
that experts' knowledge can be incorporated into the 
RFBF network. Although the RFBFs take advantage 
over FBFs, the cost is the additional computational 
efforts of rotational matrices. 

Fig. 4. Network representation of an RFBF expansion system. 

the fuzzy rule. Assume a fuzzy system has n inputs, 
m outputs, and r fuzzy rules, that is, there are only 
(n + 1) z r + r x m parameters to be tuned for an 
RFBF network and 2n x r ÷ r  x m parameters for three- 
layer self-organizing FBF system [24]. In general, n 
is always greater than one such that the number of 
parameters to be tuned of the RFBF network is fewer. 
As for performing fuzzy inference by the three-layer 
multilayer neural network with Gaussian activation 
functions, it would be the topic of this subsection. 

The output of the fuzzy logic system with center- 
average defuzzifieation, product inference, and single- 
ton fuzzification is of the following form: 

~-'~J=l Cjk(Uinl ]~Ai, (x i ) )  (3.1) 
Yk = ~ j = l  (Hin=l ]2~,i(Xi)) 

As in [29], the defuzzification of RFBF network is a 
weighted sum of firing strengths of rules. 

For fuzzy basis function expansion, the basis func- 
tion is Gaussian function defined as follows [32]: 

]2~,, (Xi ) = e -(  (x'-n '' )/~ /~ )2, (3.2) 

where rlji is the center of the Gaussian function and 
aji determines the width of the function. The firing 
strength of each rule is denoted as the fuzzy basis 
function. For ease of representation, we define the FBF 
and RFBF as follows. 

3.2. Architecture o f  the R F B F  network 

The RFBF network is a three-layer neural network 
architecture as shown in Fig. 4. Each node in hidden 
layer of the RFBF network represents a fuzzy rule 
and the output of the node is the firing strength of 

Definition 1 (Fuzzy basis function).  Define fuzzy 
basis functions (FBFs) by 

n 
~ j ( l lx  - ,1ill, ~j)  = H~lA, i(xi)= e-(X-q')rS'{x-~J), 

i--I 
j =  1,2 . . . . .  r, (3.3) 
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where #Aj~(xi) are Gaussian membership functions 
(3.2), x = [xl .. .  xn] x C U, t / /=  [ / / /1  . . .  11/n] T E e 

and Sj = diag[1/cr21,..., 1/cr~n). 

Definition 2 (Rotated fuzzy  basis function). Define 
rotated fuzzy basis functions (RFBFs) by 

Cs (llx - 'b  II, -- e-(~-gJgt~'sJ~txx-qJ) = e-ZTs, z~, 

j = 1,2 . . . . .  r, (3.4) 

where 9tj is the rotational matrix and zj = Ot j ( x -  ~lj). 

The RFBF expansion can be defined in the follow- 
ing definition. 

Definition 3 (Rotated fuzzy  basis function expan- 
sion). The output o f  a fuzzy system with rotated fuzzy 
basis functions can be expressed in the form 

Yk = Cjk~) j = cflce- z~'S'zJ, k = 1 . . . . .  m, (3.5) 
j - i  j = l  

where cjk's are weights for defuzzification, ~bj's are 
rotated fuzzy basis functions. 

In adaptive FBF systems [29, 30], the parameters of  
#~j,(xi)'s are fixed and the weights cjk's are adjustable. 
However,  in this paper, the parameters of/%~(xi) 's ,  t/ji 
and aji are also adjustable and the parameter updating 
law will be stated in later section. 

To facilitate easy computation of  rotated fuzzy basis 
function, we adopt the following form for the basis 
function: 

T (t/Tx ~bj = e -(~°j°+m/Ixl+' ' '+°)i ' 'x '~)2 ~- e -x\',v~°j / ~"~, 

j = 1, 2 . . . . .  r, (3.6) 

where coj0,..., ~oj, are adjustable parameters, oJj = 
[~j0 --- ~oj,] T and XNN = [1 Xl . . .  x,] v. In the fol- 
lowing, we will prove (3.6) can be equivalent to (3.4), 
i.e., the three-layer RFBF network can perform fuzzy 
inference. 

It is easy to show, using Definition 2, Eq. (3.6) is 
an RFBF, since there exists some matrix Fj such that 

o)je~} = FTAjFj, j = 1,2 . . . . .  r, (3.7) 

where Aj = diag(0,2jl  . . . . .  2j~). Because the sym- 
metric matrix o j e ~  is semi-positive definite, all 

diagonal elements of  Aj are nonnegative. The matrix 
can be divided into four blocks: 

[F l l  F,21 (3.8) 
5 =  IF21 r22 ' 

where F~I is 1 x 1, F12 is 1 x n,/"21 is n x 1 and/"22 
is n x n matrix. Thus Eq. (3.6) can be rewritten as 

(~j = e-(r2'+r2'-x)T~; (r2'+r22x), j = 1,2 . . . .  ,r, (3.9) 

where Sj = A} = d iag (# l  . . . . .  2in), ~/j = - F~zlF21 
and 01) = F22. Therefore, Eq. (3.6) defines a class of  
rotated fuzzy basis functions. 

In Fig. 4, the architecture of  RFBF network as an 
approximator with (n + 1 ) inputs, r rules and m outputs 
can be denoted as follows: 

T(XNN , ~ ,  C)  ~- C(9( I~XNN ), (3.10) 

where ~ E ~  rx("+l) and (~EI~ mxr are the RFBF 
weight matrix and defuzzification weight matrix re- 
spectively, and the RFBF vector is given by 

)- [ 
~b((2XNN)= " and ~ =  " 

4)(6TXNN) L67 
(3.11) 

For simplicity, we define ~ = (~(~XNN). In this 
paper, the RFBF network is used to be the basic com- 
ponent o f  an adaptive fuzzy controller to approximate 
the unknown functions. It has been proved in [32] that 
for any given real function h over U, there exists a 
fuzzy system in the fuzzy basis function expansion 
form of  (3.3) such that it can uniformly approximate 
any function on the compact set U to arbitrary accu- 
racy. Accordingly, we have the following assumption. 

Assumption 1. There exist matrices/2* and C* such 
that f approximates f with arbitrary accuracy ~, over 
a compact set U, i.e. 

3/~* and C* s.t. ] f (x( t ) )  - f (O* ,  C*,x(t))] <~. 

Hence (2.8) can be rewritten as 

~(t) = - K s ( t )  + f ( f 2 * ,  C*, x( t))  - VVBF(t) + a(t), 

(3.12) 
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where K =diag(kDl,kD2,kD3) and the disturbance 
d(t)  = f ( x ( t ) )  - f ( f2*,  C*, x ( t ) )  satisfies fli(t)] <<. el. 

3.3. Comparisons with the FBFne twork  and A N F I S  

This subsection presents two examples, which 
can be found in [9], to compare the proposed 
RFBF network with an adaptive fuzzy system, 
ANFIS, and the FBF network. The data for training 
and checking are all retrieved via anonymous ftp 
user/'ai/areas/fuzzy/systems/anfis at ftp.cs.cmu.edu. 

Example 3.3. A three-input nonlinear function 

output = ( 1 ÷ x °5 ÷ y -  t + z -  1.5 ) 

is used to be modeled by three fuzzy approaches. 
The 216 training data is used for training the ANFIS, 
FBF and RFBF approaches, and 125 checking data 
are used for verifying the generalization capability. A 
performance index, average percentage error (APE), 
for comparison is defined as 

APE = ~ i=1 ]-T(-i~ x 100%, 

where P is the number of data pairs; T(i)  and O(i) 
are ith desired output and calculated output, respec- 
tively. 

The RFBF network uses 9 rules (45 parameters) 
and 16 rules (80 parameters) for simulation, the FBF 
network uses 64 (125) rules with 4 (5) membership 
functions being assigned to each input variable. The 
ANFIS contains 8 rules with 50 parameters. We 
initialize the parameters of the RFBF network 
randomly. For FBF network, the membership func- 
tions are equally spaced along [1.0,6.0] of each 
input variable and ffji = 1.08 for 64 rules case and 
o)i = 0.81 for 125 rules case. The learning rule 
adopted by the RFBF network is backpropagation 
algorithm and the learning rule of the FBF network 
is 

Ci = kiei~i, i = 1 ,  [ [ [ ,  ~ l  , 

where Ni is the rule number, q~i is the firing strength of 
the ith rule, ki is a constant and ~b i is the output error 
(T( i )  - O ( i ) =  T(i)  - ~iN'_l die'i). After 200 epochs, 
the results are listed in Table 1. It is worth noting 

Table I 
Comparisons with ANFIS and FBF network 

Model APEtrn (%) APEchk (%) Parameter number 

RFBF 0.448 1.064 45 
RFBF 0.441 1.057 80 
FBF 4.170 5.162 64 
FBF 0.630 4.956 125 
ANFIS 0.043 1.066 50 

that one rule of the RFBF network is in the following 
form: 

If ( [ -0 .1466 0.4407 -0 .5053] , [oc  oc 5.47], 

I 
-0.3299 0.3548 -0.1307- 

0.4854 0.8561 0.0907 
-0.8092 0.3660 0.1419 

THEN ([19.127621]), 

that is, the rule is reduced to one dimension and the 
RFBF is 

e-((w+0.5053 )/5.47) 2 , 

where w = -0.8092x + 0.336y ÷ 0.14198z. In this 
example, the RFBF network has the best generaliza- 
tion capability. 

Example 3.4. The chaotic Mackey-Glass differential 
delay equation defined as 

0.2x(t - r) 
i ( t )  - O . l x ( t )  

1 + x l ° ( t -  r) 

is used to generate time series of simulation (z = 17). 
The 500 input--output data pair for training and 500 
input-output data pairs for checking, which have the 
format 

[ x ( t -  1 8 ) x ( t -  1 2 ) x ( t -  6 )x ( t ) l x ( t  + 6)], 

are the same as the data pairs in [9]. The learning 
algorithms of the FBF and RFBF are the same ones 
in Example 3.3. The FBF and RFBF network use 81 
rules (81 adjustable parameters) for simulation, and 
each rule with 3 membership functions being assigned 
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Table 2 
Generalization result comparison 

Method Training cases NDEI 

RFBF 500 0.022 
FBF 500 0.026 
ANFIS 500 0.007 
AR Model 500 0.19 
Cascaded-correlation NN 500 0.06 
Back-prop NN 500 0.02 
Sixth-order polynomial 500 0.04 
Linear prediction method 2000 0.55 

Note: The last six rows are from [9]. 

to each input variable. While ANFIS comprises 16 
rules with 104 adjustable parameters. For FBF net- 
work, the membership functions are equally spaced 
along [0.4, 1.4] of each input variable and aji -- 0.27. 
All rotational matrices of the RFBF network are 

0 0 

0.9924 -0.0792 0.0940 

0.0868 0.9931 -0.07923 

-0.0871 0.0868 0.9924 

This is a special type of RFBF network. A perfor- 
mance index, nondimensional error index (NDEI), for 
comparison is defined as the root mean square error 
divided by the standard deviation of the target series. 
Table 2 provides simulation results of many methods. 
In this example, ANFIS has the best generalization 
capability, however, the RFBF network has good per- 
formance, too. 

From Examples 3.3 and 3.4, the performance of the 
RFBF network is better than that of the FBF network. 
The ANFIS is not suitable for controlling BTT mis- 
siles because the learning algorithm of ANFIS cannot 
guarantee the stability and learning epoch by epoch 
will not occur in controlling BTT missiles. 

4. Adaptive fuzzy autopilot design 

4.1. Architecture o f  f u z zy  autopilot 

The block diagram of the controller architecture is 
shown in Fig. 5. Through the command generator, a 

7 . . . . . . . . . . . . . . . .  i 
Linear Feedback ~ 

Controller 

Terminal At~aetor 
Controller 

Self-Organizing 
RFBF Controller 

Fig. 5. The block diagram of autopilot. 

set of command signals, ~c, V~ and W~ are generated 
for tracking. Thus, the control objective is to design 
an autopilot (controller) such that the tracking errors 
are as small as possible, the tracking errors converge 
faster and the closed system must be globally stable. 
For achieving the goals, the architecture of the con- 
troller consists of three components: a linear feedback 
controller, a terminal attractor controller and a fuzzy 
controller. 

The dynamic equations of BTT missiles are de- 
scribed in (2.1), where the gain matrix G can be de- 
rived by input-output feedback linearization method. 
Further, it is necessary to assume that G is invertible 
for our control law. Then, the overall control law is 
given as follows: 

U = G - l ( - I , ' l f  - VTA --  I,'FBF) , (4.1) 

where 

Ylfl ] 

I~lf = [1) l f21 

L vlf3 j 

VTA ~ 

(3) + kll(Yl - Yld) + kl2(.Vl - 3)ld) + kl3(fil fild) 1 --Yld 

--Y~]) + kEl(Y2 -- Y20) + k22())2 - -V2d) ] 

--y~]) + k31(Y3 -- Y3d) q- k32())3 -- )?3d) 

I-I~ l/al 
] n,tal,~ IA 

VTA1 [ kta2S~/Aa2 
•TA2 = 

~)TA3 / .  l/a3 Kta3S3A 

(4.2) 

(4.3) 
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[ I + <4 
YRFBF : /YRFBF2 =IEN21c2jOj-4-N2, (4.4) 

where ~l, ~2, and cq are positive odd integers, ktal, kta2, 
and kta3 are positive constants. In the numerical sim- 
ulation in next section, we choose cq = ~2 = ~3 = 3. 
The RFBF can be expressed by Taylor series expan- 
sion as 

where I1~11 ~/~1 and I1~'11 ~<~. And, the upper bound 
of  the norm of  the ith element of  dNN is as follows: 

laNN/I = IlaNNH 

<~ IIc@'~2XNN + C*O((~XNN ) 2) ~- d(t)ll 

<~ IIC~'(TXNNII + IIC*ll(~, + K211~IIIIxNNII) 

<- IIclI~211(ZlIIIxNNII + ~C(~l + ~2II(~IIIIxNNII) 

~* = ~ ~- @'~XNN ~- O((~XNN) 2) (4.5) 

= @'~XNN ~-O((~XNN)2), (4.6) 

where ~ = ~b* - q~, ~ = f2* - ~ and 
^ o] 

Therefore, the approximation error can be written in 
the vector form: 

f = f ( x )  -- f (XUU,~,d)  

= C~ + C~ + d ~  + d(t). (4.7) 

Substitute (4.6) into (4.7), we can get 

i :  e+ + e 'C, XN. 

-}-( C@t~XNN -Jr- ~'~*O((~XNN ) 2) ~- a(t) ) 

= Cdp + Cdp'(2XNN + dNN, (4.8) 

where 

: C *  --C, duu 

=C@I ~XNN ~- C*O((6XNN ) 2) + d(t ). 

In the following, norm on vector or matrix, []. l], is the 
Frobenius norm [16]. The upper bound of  the norms 
of  O ((~XNN)2) is given by 

II0((~XNN)2)II = I15 - $'-QXNNII 

~< I151/ + II'J'IIII~IIIIxNNII 

K1 -I- ~:211(ZlI IIXNN II, (4.9) 

(~c + IICII)~2(K~ + II~II)IIxNNI[ 

+Kc(~, + ~2(K~ + II~II)IIxNNI[) 

= ~ ,  (4.10) 

where Hi is the ith row of  H ,  I1£)11 ~< 11~2"11 + [l~ll, 
IIC~ II ~< IIC*ll + IlCll, IIO*11 ~ a ,  IIC*N ~<~c, II~lt-<~,, 
H~'ll ~ 2  and ~v = [1 ]IXNNI] []£2[iI[XNN[[ 11(2llllxNNH 
Ilall II ill liXNN [1] (~:1, K2, K[2, KC are constants). The 
robustifying term estimating [[aNN II in (4.4) is as 

d : z / ~ ,  (4.11 ) 

where Z = diag (sgn (Sl~), sgn(szA ), sgn (s3a)) and sgn 
is a sign function: 

sgn(x) = 
1, X/>0 

t - 1 ,  x < 0. 

The parameters C, ~ a n d / ~  are updated by the fol- 
lowing adaptation law: 

~T = Kc~s~ (4.12) 

f i t  = KOXNNSJ C~' (4.13) 

~I v = Kn~s~Z, (4.14) 

where Kc, Ka and K~ are positive symmetric constant 
matrices determining the adaptation rate. Hence, the 
time derivative of  error metric (3.12) can be rewritten 
as 

si(t) = --gsi(t) -f- Cflp + C@t~XNN -- YTA -~- d(t), 

where d(t) = aNN(t) - -  d(t). 

(4.15) 
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4.2. Stability analysis with 

A stability theorem is presented for the control law 
(4.2)-(4.4). 

Theorem 1. Consider the dynamic equations of  a 
B T T  missile (2.1) with the control law (4.2)-(4.4). 
All states in the (2.1) will remain bounded and the 
tracking errors will approach zero. 

Proof. Consider the Lyapunov function candidate 

V ( t )  = 1 T ~(sjs~ + Tr(~TK~I~)  

+Tr (CTKclC ') + Tr(/4TK/~I/4)). (4.16) 

Evaluating the time derivative of V(t) along the 
trajectories of the adaptive learning laws of Eqs. 
(4.12)-(4.14), /)" = 0, when Isil~Ai, i = 1,2,3. 
When Isil > Ai for each i, since 

d 2 
~SiA = 2SiASi and siA sat(si/Ai) = Is  l, 

the time derivative of V(t) is given by 

(4.19) 

Thus, one has that every term in (3.34) is bounded, 
hence siA is bounded, si is as well. This implies that 
/?1 (t) is a uniformly continuous function of time. Since 
V1 is bounded by 0, and/?1 ~< 0 for all time t, Barbalat's 
lemma is applied to prove that 1)'1 --+ 0 and hence 
SiA ~ 0 as t---, oc. [] 

4.3. Terminal attractor 

So far, we have discussed the autopilot (controller) 
architecture and the stability issue. However, the ter- 
minal attractors have not been mentioned yet. The con- 
cept of terminal attractors can be easily explained by 
the equation 2 = ax b. An equilibrium point at x = 0 
will be approached by transients in finite time under 
the conditions: a < 0 and 0 < b < 1, and repellers 
appear when a > 0. In this section, we will use a theo- 
rem to state the existence of terminal attractors in our 
autopilot. Based upon Theorem 1, we can make the 
following assumption: 

= 4 ( - - K s  -'[- C ~  -.[- d~tff~XNN -- VTA -~- d )  

- T r  (e~s~)  - Tr (Y)XNNsTCq~ ') -- Tr (/4TcszTz) 

<. -s~gs~ - IqKa l  - dVTA + s~zFI¢ 

- T r  (fiTCsTZ) 

= -sJKs  - IsJK  I - g, a o, 

(4.17) 

whe reA=[A1  A2 A3] T. 
Therefore, ifsiA, all 5ij's and all ~ij's are bounded 

at initial time t = 0, they will remain bounded for 
all time t > 0. Iffii(0) is bounded, then fii(t) is also 
bounded for all time t, and since Yid(t) is bounded 
specified, yi(t) is as well. Next, we will show that 
siz ~ 0 as t ~ oc. It is easy to show by Barbalat's 
lemma: 

Assumption 2. Assume that there are N rules in fuzzy 
rule base, lSij[ <~Mcl, tcij[ <~Mc2, and [ ~-~Y=l Cij~; -'}- 

~;=1 Cij@j ~- ~'l ~ N(Mc, + Mc2) + ei. 

Eq. (3.12) can be of the form 

~(t) = - Ks ( t )  + Cdp* + Cdp - VTA + d. (4.20) 

Because 0~<qSj~<l and all 6ij's are bounded as 
stated in Theorem 1, Assumption 2 is reasonable. 
Define the squared error E = ½s~a(t ) as the error 
measure for the control task. Now, a theorem is pre- 
sented for explaining the existence of the terminal 
attractor in dE/dt. 

Theorem 2. Applying the control law (4.1)-(4.4) to 
the dynamic equations (2.1), SiA = 0 is a terminal 
attractor orE. 

V~(t) = V(t) 

- f0t[IJ'(z) + (sTKsa + sgKA + sTyTA)] dz (4.18) 

Proof. If [si[<~ Ai or siA = 0, then 

d 
s 2 = 2 ~ i s i ~  = o .  
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Next, we will show that when SiA ¢ O, 

d 
dt sT~ = - ~i(S?d )1./2 __ ktai(S2A )(l+e,)/2xi. 

When [si] >Ai or siz 50 ,  Assumption 2 is satisfied 
and there exist some kD~ and Ai such that 

IkD, sil > AD, Ai > N(Mcl + Me2) + ei 

N N . 

e * E( i jdpj  +~. (4.21) 
j=l j=l 

The equation 

N N 

/=1 j= l  

implies that 

sgn(si) = sgn(sia ) 

( = sgn kD, Si ~- Cij(O] --  Cij~); "Jr- , 
j= l  j= l  

where sgn is a sign function. If  the sign is different, 
then the terminal attractor becomes repeller. 

d 2 
SiA = 2SiASi 

) 
j= l  j= l  

_ ktaiS~ l+':C)/ct' 

= _Oi ( s  2 )1/2 _ ktai(S 2 )(1+~,)/2~,, (4.22) 

where Oi=kDi Si -~ Ej=IN Cij~ ) ~  * ~- Ej=IN ~ij~)jjr_~i. There- 
fore, s/a = 0 is a terminal attractor. [] 

5. Simulations 

In this section, the adaptive fuzzy autopilot, which 
is developed in last section, is applied to BTT missiles. 

There are two simulation results, which take the prac- 
tical restrictions into consideration, to demonstrate the 
effectiveness of the autopilot. 

Example 5.1. The main purpose of this example is 
to show the power of the terminal attractor controller. 
In this example, we compare three autopilots: one is 
our autopilot, another is our autopilot without terminal 
attractor controller and the other is Su's adaptive FBF 
controller [29]. Su's controller is a similar approach; 
however, Su's controller is only capable of  tuning the 
weights of  defuzzifier. 

In this simulation, during the interval between 0 and 
2 s, the desired output signals are @e = 135 °, Ayc -- 0G, 
and A~c = - 1 5 G ,  that is, the missile rolls 135 ° and 
is given a force to climb. After 2 s for climbing, the 
time interval between 2 and 4 s, the force for climb- 
ing is released and the desired command is ~e = 0% 
Ay e = 0G, and Azc = 0G. The specifications are rise 
time ~<0.5 s and overshoot ~< 10%. The simulation re- 
sults are shown in Fig. 6. The rise time of the autopilot 
with terminal attractor is significantly better than the 
other two controllers. The number of  rules in the RFBF 
network is only 50 and each rule has 12 input vari- 
ables (700 adj ustable parameters). As to the Su's adap- 
tive FBF controller, there are 6795 control rules [20]. 
Therefore, in comparison with the Su's controller, our 
autopilot can use smaller size to achieve better perfor- 
mance from the results of simulation. All simulations 
run on a Pentium 75 MHz PC. The RFBF simulations 
(with and without terminal attractor) take about 1 min, 
while the Su's controller takes about 8 min. Control 
rules of the RFBF network, which have the same for- 
mat as described in Section 3, are not listed since 
each rule has too many variables. For each rule, the 
variance matrix and the center vector can be derived 
by Sj=A'=diag(2i l  . . . . .  2j,) and i/ /= - F 2 2 1 f f 2 1  j 

Example 5.2. In traditional gain scheduling con- 
troller, the controller is highly dependent on the LTI 
controller at each fixed operating point. In our ap- 
proach, complexity is reduced for only one autopilot 
is used. Another autopilot design in [17], the design 
methodology is highly dependent upon the geomet- 
ric parameters and the aerodynamics conditions. Our 
approach is more simpler and easier to design. 
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Fig. 6. Simulation results of Example 5.1. 
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Fig. 7. The flight envelop figure (each circle represents a flight 
condition). 

Consider that aerodynamic pressure QS = 
0.5pllVm]], where p is the air density, is affected by 
air density and velocity of  the missile. However, the 
air density is determined by the height of  missile. 
Therefore, the flight condition can be programmed 
by the two chosen flight conditions chosen in this 
example. The desired operating range is for Mach 
number from 0.5 to 4.5 and the height is from 0 
to 35 km. The angle of attack, a, is from 0 to 40 ° 
and sideslip angle, fl, is as small as possible. In 
this example, numerical simulation results are con- 
ducted to evaluate the performance of the proposed 
autopilot under various operating ranges. The de- 
sired commands of the four flight conditions are 
(Fig. 7): 

(I) q~ c = 0 °, Aye = 0G, and Azc = - 50G, 
(II) ~c = 135 °, Ay~ = 0 G ,  and Az~ = - 20G, 

(III) ~bc = 90 °, Aye = 0G, and Azc = - 10G, 
(IV) ~c = 0 °, Ayc = 0G, and Az~ = - 5G. 
The size of the RFBF network is the same as 

Example 1; that is, the number of  rules is also 50 
and 700 adjustable parameters which are initial- 
ized randomly. The simulation result is shown in 
Fig. 8. This simulation takes about 15 min on Pen- 
tium 75 MHz PC. The expected flight attitude is that 
the missile rolls and climbs until about 6800km, 
and then keeps the height and roll angle is zero; 
finally, the missile climbs again. Fig. 9 shows 
that the trajectories of  states meet the specified 
trajectories. 

6. Conclusions 

In this paper, an adaptive fuzzy autopilot is devel- 
oped for BTT missile. The autopilot design is based 
on the proposed RFBF network which is capable of  
incorporating experts' experience into the autopilot 
design. The self-organizing rotated fuzzy basis func- 
tion control system used a smaller network size than 
other neural fuzzy systems to achieve the desired per- 
formance. Taking the uncertainties into consideration, 
a robust control technique is employed to reject the in- 
ternal and external disturbances. Further, we also com- 
bine the terminal attractor controller into the adaptive 
fuzzy controller that provides a way to accelerate the 
convergence rate successfully. As a result, the auto- 
pilot does not need large amount of rules to track the 
desired commands using the proposed RFBF network 
controller. 

Appendix A 

A.1. Dynamic equations o f  B T T  missiles 
with actuators 

The complete 6-DOF missile dynamic equations, 
which include attitude dynamics and translational dy- 
namics, are derived in [35]. The attitude dynamics 
dominate the orientation and the angular velocity of 
the body of the missile. As to translational dynam- 
ics, they dominate the position and the translational 
velocity of  the center of mass of the missile. Fig. 10 
shows the relationship between inertial frame and mis- 
sile body frame. The notations used in the mathe- 
matical dynamic model are as follows. The lowercase 
letters are used to denote variables in inertial coordi- 
nates, whereas capital letters are used to denote vari- 
ables in missile body coordinates. 

Notations 

{bx, by, bz} 

{ex, ey, ez) 

a right-handed orthonormal basis of  
body coordinate flame which is at- 
tached to the center of  mass, C, of the 
missile, where bx, by are on the longi- 
tudinal and lateral axis, respectively 
a right-handed orthonormal basis of  
inertial coordinate frame 
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Fig. 8. States of BTT missiles of Example 5.2. 
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Fig. 8. (cont.). 
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Fig. 8. (cont.). 
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Fig. 8. (cont.). 
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Fig. 9. Desired trajectory (dashed line) and trajectory with proposed autopilot (solid line) of Example 5.2. 

roll rate, pitch rate and yaw rate (U,V,W) T 
corresponding to the axes bx, by 
and bz, respectively (clockwise), 
(rad/s) 6p, ~q, 6 r 
body-axis roll angle measured from the 
downward vertical to bz about the axis 
bx (tad) ~, fl 
body-axis pitch angle measured from 
the projection of bx onto the horizontal T 
plane to bx (rad) Vm 
body-axis yaw angle measured be- Mx,My, Mz 
tween a fixed compass bearing and the 
projection of bx onto the horizontal Fx,Fy, F~ 
plane to bx (rad) 
position vector of the center of mass of CF,., CF,., CF: 
the missile transformed with respect to 
the inertial frame (m) 

velocity vector of the missile trans- 
formed with respect to the body frame 
(m/s) 
aileron deflation angle, elevator defla- 
tion angle and rudder deflation angle, 
respectively (rad) 
attack angle and sideslip angle, respec- 
tively (rad) 
thrust (kg) 
magnitude of the missile velocity 
external torques corresponding to the 
directions bx, by, bz, respectively 
external forces corresponding to the di- 
rections bx, by, bz, respectively 
total aerodynamic force coefficients 
corresponding to the directions bx, by 
and bz, respectively 
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ex 

~-. 

y,Q,V/ ',zR, W 

(a) (b) 

Fig. 10. (a) The relationship between the inertial frame and body frame. (b) The BTT missile diagram. 

Ax,Ay,Az 

Cx, Cy, 

I 

M 
m 

S 
d 
QS 

total moment coefficients correspond- 
ing to the directions bx, by and bz, 
respectively 
acceleration along the directions bx, by, 
bz at center of mass, respectively 
gravitational force corresponding to the 
directions bx, by and bz, respectively 
I is the moment of inertial tensor of the 
missile, where I = diag {Ixx, Iyy, [zz} 
Mach number 
missile mass (kg) 
reference wing area (m 2) 
reference length (m) 
dynamic pressure, i.e. QS = 0.5pll Vm II, 
where p is the air density 

The detailed process of derivation, which can be 
obtained from [18], is omitted. The 6-DOF missile 
dynamic equations are written in the following state 
space form: 

[~ - -  Ivy - I =  Q R  + Mx 
Ixx I s '  

0 = lzz bylyy RP -~- My 
Iyy' 

~zIyy pQ Mz R = I x x  +/~-z' 

= P + (Q sin • + R cos 4~) tan O, 

= Q cos ¢ - R sin tb, 

= (Q sin ¢ + R cos ¢)/cos O, 

(7 = RV - QW + 1Fx, 
m 

(I = - R U  + P W  + 1Fy, 
m 

= QU - P V  + 1Fz, 
m 

[i] [;] = RI(cP)R2(O)R3(T) , 

(A.1) 

where R1, R2 and R3, which are rotational matrices, 
are defined as follows: 

[i o o 1 RlUb) = coscb -sin~b , 
sin ¢b cos • I 

I cos 0 0 s inO]  
R2(O) = 1 0 , 

L - s i n O  0 cosO 

L ore°sT - s i n T  i ]  R3(~) = [ s i n T  cos T . 
0 

The external forces and torques caused by the 
actuators, aerodynamic and gravitational forces are 
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specified as follows: 

Fx=CF~QSS+T+Gx, 

Fy = CF, QS S + T + Gy, 

F z = C F : Q S S +  T +Gz, 

Mx = CM, QS Sd, (A.2) 

My = CM, QS Sd, 

Mz = C~ QS Sd. 

Taking the actuator and throttle dynamics into con- 
sideration, the dynamics are written in the first-order 
form:  

~p = --coc~p q- coc6pc, 

~q = --coc(~ q Jr- COc6qc, 
(A.3) 

~r = -coc& + coc~rc, 

7f = - c o t T  + cotTc, 

where the constants coc and cot are the bandwidths 
of the actuator and throttle dynamic equations, 
respectively. 

The nine elements of the gain matrix derived 
by input-output linearization technique are given as 
follows: 

(/:x C1 C2 ~/-~-z 911(x) = QSSd + Osin ~ 7 -  + Ocos 

91z(x) = QS SdO sin ~C4 
Iy~' 

g21 (x) = QS Sd C7 , (A.4) 
m 

g22(x)  = 0, 

~23(X) = QS Sd C8 , 
m 

g31(X) = QSSd C9, 
m 

g32(X) = QS Sd C1o, 
m 

g33(X) = 0, 

where C i ' s  are aerodynamic coefficients which are 
complex functions of M and x and are not given here. 
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