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Abstract

In this paper, we address the issues related to the design of fuzzy robust principal component analysis (FRPCA)

algorithms. The design of robust principal component analysis has been studied in the literature of statistics for over

two decades. More recently Xu and Yuille proposed a family of online robust principal component analysis based on

statistical physics approach. We extend Xu and Yuille's objective function by using fuzzy membership and derive

improved algorithms that can extract the appropriate principal components from the spoiled data set. The di�culty of

selecting an appropriate hard threshold in Xu and Yuille's approach is alleviated by replacing the threshold by an

automatically selected soft threshold in FRPCA. Arti®cially generated data sets are used to evaluate the performance of

various PCA algorithms. Ó 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

Principal component analysis is an important
and essential technique for data reduction, image
compression, and feature extraction. It has been
widely used in many ®elds including data com-
munication, pattern recognition, and image pro-
cessing. Since PCA algorithms have to process
information from the real world, it should have the
ability to cope with the noise or outliers.

Robustness theory is concerned about solving
problems subject to model perturbation or added
noise. According to Huber (1981), a robust algo-
rithm not only performs well under the assumed
model, but also produces a satisfactory result
under the deviation of the assumed model.

Moreover, it will not deteriorate drastically due to
the noise or outliers. Much e�ort has been done in
the investigation of the robust principal compo-
nent analysis algorithm especially in the literature
of statistics. Several strategies have been used to
deal with the problem of outliers in PCA. One is
to robustify the existing algorithms by applying
some kind of robust estimate of the covariance
matrix. Several such estimates are reviewed in
(Huber, 1981). Ruymgaart (1981) proposed an-
other robust PCA based on robust estimates for
dispersion in the univariate case along with a
certain linearization of the bivariate structure.
Critchley (1985) designed another robust PCA
which produces the diagnostic statistics based on
the in¯uence function. Most of the above algo-
rithms from statistics ®eld are operated in a batch
way.

In the neural network literature, Oja (1982)
found that a simple linear neuron model with a
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constrained Hebbian learning rule could extract
the principal components of a stationary data set.
Thus, the self-organizing learning rule for com-
puting weights of the hidden nodes in a neural
network can be associated with PCA techniques.
Since then, many other neural network based
PCA techniques are proposed. Sanger (1989) ex-
tended Oja's method and designed an algorithm
for extracting the ®rst k principal components.
Foldiak (1989) and Kung and Diamantaras
(1990) developed other similar algorithms based
on anti-Hebbian learning rules. Unlike the tra-
ditional eigenvector analysis algorithms, these
approaches do not require the computation of
the input data covariance which may increase
signi®cantly with the dimensionality of the train-
ing data. Furthermore, it is not necessary to
evaluate all the eigenvalues and eigenvectors if
only the eigenvector corresponding to the most
signi®cant eigenvalue is required. To robustify
the existing methods, Xu and Yuille (1995) ®rst
related the PCA learning rules to energy func-
tions and proposed an objective function with the
consideration of outliers. Based on statistical
physics approach, robust PCA algorithms are
derived.

This paper attempts to develop a family of
robust PCA algorithms without the di�culty of
choosing a hard threshold in Xu and Yuille's
approach. First we de®ne a fuzzy objective
function which includes Xu and Yuille's as a crisp
special case. Using gradient descent optimization,
we propose the robust algorithms called FRPCA.
Only one parameter, the fuzziness variable,
needs presetting and a�ects the in¯uences of
outliers.

The remaining parts of this paper are or-
ganized as follows. In Section 2, we review Xu
and Yuille's PCA and introduce our algorithm
called fuzzy robust principal component analy-
sis (FRPCA). In Section 3, arti®cially generated
data sets are used to illustrate the performance
of various PCA algorithms. We demonstrate
the di�culty of parameters setting in Xu and
Yuille's PCA. The e�ects of various fuzziness
values on FRPCA are also indicated. Finally,
Section 4 contains the summary and conclu-
sion.

2. Robust principal component analysis algorithms

For deriving robust PCA algorithms, Xu and
Yuille (1995) proposed an optimization function,
Eq. (1), subject to ui 2 0; 1f g:

E�U ;w� �
Xn

i�1

uie�xi� � g
Xn

i�1

�1ÿ ui�; �1�

where X � x1; x2; . . . ; xnf g is the data set and
U � ui j i � 1; . . . ; nf g is the membership set. g
is the threshold. Now we brie¯y review their
method. The goal is to minimize Eq. (1) with re-
spect to ui and w simultaneously. Since ui is a bi-
nary variable and w is a continuous variable, it is a
mixture of discrete and continuous optimization
and is hard to solve with the gradient descent
approach. To overcome the problem, they trans-
formed the goal from the minimization of Eq. (1)
to the maximization of the following Gibbs dis-
tribution:

P�U ;w� � exp�ÿcE�U ;w��
Z

; �2�

where Z is the partition function that ensures
RU

R
w P �U ;w� � 1. Using the same procedure for

computing the mean ®eld approximation to the
statistical physics system by the saddle point
method in (Parisi, 1988), they computed the mar-
ginal distribution Pmarginal�w� for approximating
the maximization of P �U ;w�. Pmarginal�w� is calcu-
lated by averaging the variables in uif g. The
measure e�xi� could be one of the following func-
tions:

e1�xi� � xi

 ÿ wTxiw
2
; �3�

e2�xi� � xik k2 ÿ wTxik k2

wk k2
� xT

i xi ÿ wTxixT
i w

wtw
: �4�

The gradient descent rules for minimizing E1 �Pn
i�1 e1�xi� and E2 �

Pn
i�1 e2�xi� are

wnew � wold � at�y�xi ÿ u� � �y ÿ v�xi�; �5�

wnew � wold � at xiy
�

ÿ w
wTw

y2
�
: �6�

at is the learning rate. Under the following con-
ditions:
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limt!1 at � 0;
P

t at � 1;P
t a

k
t <1; for some k > 1;

�7�

the weight w in the updating rules, converges to the
principal component vector almost surely (Oja,
1982; Oja and Karhunen, 1985).

Setting e � e1 or e � e2 , Xu and Yuille derived
the following on-line algorithms.

Xu and Yuille's PCA1 algorithm.

Step 1. Initially set the iteration count t � 1, iter-
ation bound T , learning coe�cient a0 2 �0; 1�, the
initial weight w and the threshold g.
Step 2. While t is less than T , do steps 3±8.
Step 3. Compute at � a0�1ÿ t=T � and set i � 1.
Step 4. While i is less than n, do steps 5±7.
Step 5. Compute y � wTxi , u � yw and v � wTu.
Step 6. Update the weight:

wnew � wold � at
1

1� exp�ce1�xi� ÿ g�
� �y�xi ÿ u� � �y ÿ v�xi�: �8�

Step 7. Add 1 to i.
Step 8. Add 1 to t.

Xu and Yuille's PCA2 algorithm. The same as Xu
and Yuille's PCA1 except step 6.
Step 6. Update the weight:

wnew � wold � at
1

1� exp�ce2�xi� ÿ g�
� xiy
�

ÿ w
wTw

y2
�
: �9�

There is another weight updating rule called one-
unit Oja's algorithm:

wnew � wold � at xiy
ÿ ÿ wy2

�
: �10�

Although one-unit Oja's algorithm is not a gradi-
ent rule of any kind of objective function as
pointed by Xu and Yuille (1991), Xu (1993)
proved the following results:
1. Only one local (also global) minimum exists for

E1 and E2, and all the other critical points are
saddle points.

2. E�xiy ÿ wy2�TE�y�xi ÿ u� � �y ÿ v�xi�P 0, E rep-
resents the expectation operation.

3. �xiy ÿ wy2�T�xiy ÿ �w=�wTw��y2�P 0 and

E�xiy ÿ wy2�TE�xiy ÿ �w=�wTw��y2�P 0.

So Eq. (10) minimizes E1 in the average sense and
minimizes E2 in both the on-line sense and the
average sense. Since there is only one minimum for
E1 and E2, the three rules will ®nally produce the
same solution, the principal component. Based on
the above relationship, it is reasonable to propose
the following algorithm. e�xi� could be set as e1�xi�
or e2�xi�.

Xu and Yuille's PCA3 algorithm. The same as Xu
and Yuille's PCA1 except step 6.
Step 6. Update the weight:

wnew � wold � at
1

1� exp�ce�xi� ÿ g�
� xiy
ÿ ÿ wy2

�
: �11�

After the training, the membership is decided by
the following rule:

ui � 1 if e�xi� < ���
g
p

;
0 otherwise:

�
c and g are two parameters in this algorithm. Xu
and Yuille suggest setting a small c at ®rst then
track the minimum of the objective function as c
increases to in®nity. The hard threshold g would
be determined before the training process. We
expect to ®nd another algorithm that could set the
threshold automatically.

We propose an objective function:

RE �
Xn

i�1

�ui�me�xi� � g
Xn

i�1

�1ÿ ui�m; �12�

subject to ui 2 �0; 1� and m 2 �1;1�. ui is the
membership of xi belonging to the data cluster and
�1ÿ ui� is the membership of xi belonging to the
noise cluster. m is the weighting exponent. e�xi�
measures the error between xi and the class center.

The concept is to add a noise cluster in which
the data has a constant in¯uence g. The idea comes
from Noise clustering design by (Dave, 1991) and
fuzzy C-means algorithm by Bezdek (1981). Let us
discuss this function from a clustering viewpoint.
ui is the membership of xi in the data cluster, while
�1ÿ ui� is the membership of xi in the noise cluster.
The fuzziness variable, m, determines the in¯uence
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of small ui compared to large ui. Following the
fuzzy clustering approach, this is an appropriate
formulation when only one data cluster exists.
This function measures the weighted sum of dis-
tances between the data and the cluster center
which is zero in the data set.

Since ui is a continuous variable in our objective
function (12), we do not encounter the di�culty
caused by the mixture of discrete and continuous
optimization. Let us derive our algorithm with the
gradient descent approach. First, we compute the
gradient of RE with respect to ui. By setting
�oRE�=�oui� � 0, we get

ui � 1

1� e�xi�=g� �1=�mÿ1� : �13�

Substituting this membership back and after sim-
pli®cation, we get

RE �
Xn

i�1

1

1� �e�xi�=g�1=�mÿ1�

 !�mÿ1�

e�xi�: �14�

Following the multidimensional chain rule, the
gradient of RE with respect to w is

oRE
ow
� oRE

oe�xi�
� �

oe�xi�
ow

� �
� 1

1� e�xi�=g� �1=�mÿ1�

 !m
oe�xi�
ow

� �
: �15�

Let b�xi� denote

1

1� e�xi�=g� �1=�mÿ1�

 !m

:

m is called a fuzziness variable in the literature of
fuzzy clustering. If m � 1, the fuzzy membership,
Eq. (13), reduces to the hard membership and
could be determined by the following rule:

ui � 1 if e�xi� < g;
0 otherwise:

�
g plays the role of hard thresholding in this situ-
ation.

If m!1, then the maximum fuzziness is
achieved:

ui � 1

2
for all xi: �16�

We show the membership relative to some other
values of m in Fig. 1. An interesting observation
shows g is not a hard threshold any more but a soft
threshold that determines where the membership
becomes 0:5. Since 0:5 is the average value in the
membership domain �0; 1�, a reasonable choice for
g is the average distance, �Pn

i�1 e�xi��=n. There is
no general rule for the setting of m, most papers set
m � 2 since it leads to a simpler modi®cation rule.
Replacing e�xi� with e1�xi� or e2�xi�, FRPCA1 and
FRPCA2 algorithms are derived.

FRPCA1 algorithm.
Step 1. Initially set the iteration count t � 1, iter-
ation bound T , learning coe�cient a0 2 �0; 1�, soft
threshold g to a small positive value and randomly
initialize the weight w.
Step 2. While t is less than T , do steps 3±9.
Step 3. Compute at � a0�1ÿ t=T �, set i � 1 and
r � 0.
Step 4. While i is less than n; do steps 5±8.
Step 5. Compute y � wTxi, u � yw and v � wTu.
Step 6. Update the weight:

wnew � wold � aT b�xi��y�xi ÿ u� � �y ÿ v�xi�: �17�
Step 7. Update the temporary count: r � r�
e1�xi�:
Step 8. Add 1 to i.
Step 9. Compute g � �r=n� and add 1 to t.

FRPCA2 algorithm. The same as FRPCA1 except
steps 6±7.

Fig. 1. Plot of the membership generated with di�erent m.
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Step 6. Update the weight:

wnew � wold � aT b�xi� xiy
�

ÿ w
wTw

y2
�
: �18�

Step 7. Update the temporary count: r � r�
e2�xi�.

Based on the same reason of Xu and Yuille's
PCA3, we propose FRPCA3 as follows.

FRPCA3 algorithm. The same as FRPCA1 except
steps 6±7.
Step 6. Update the weight:

wnew � wold � atb�xi� xiy
ÿ ÿ wy2

�
: �19�

Step 7. Update the temporary count: r � r� e�xi�.

Both Xu and Yuille's PCA and FRPCA belong
to the group of algorithms called M-estimator.
The theoretical maximum breakdown point for
M-estimator could be found in (Huber, 1981;
Hampel et al., 1986). The limit that is a function of
the input dimension is higher than the limit of the
traditional approach.

In some applications, it is necessary to compute
the ®rst k principal components. We can also
modify those algorithms for the ®rst k principal
components in (Xu and Yuille, 1995) in a similar
way.

3. Simulations

In the ®rst of this section, we introduce some
results obtained from comparative experiments on
the unrobust PCA and FRPCA. The unrobust
PCA algorithms using weight updating rules (5),
(6) and (10) are called PCA1, PCA2 and PCA3,
respectively. Fig. 2 is a set of two-dimensional
training data with 100 elements and zero mean.
There are 5 outliers. We set T � 40 and a0 � 1.
That is, the ®nal learning rate is 0:025 and each
input data is processed 40 times. Fig. 2 shows the
results in PCA1, PCA2 and PCA3 are a�ected by
these outliers signi®cantly. The arti®cially gener-
ated data set is also used to train FRPCA1,
FRPCA2 and FRPCA3. With the same setting as
the former simulation and m � 2, the result shown

in Fig. 3 indicates FRPCA-type algorithms are
robust to these outliers. The weight is initialized
with random value and is almost unchanged in the
®rst iteration, since a very small value, 10ÿ6, is
assigned to the initial value of the soft threshold, g.
In FRPCA3, e�xi� is replaced by e1�xi� or e2�xi�
separately, so there are four overlapped lines in
Fig. 3. Since the learning rate is changed from at to
atb�xi�, we ®nd the iterations required by FRPCA
is less than PCA. Fig. 4 shows the results of
FRPCA when T reduces to 5 and the number of
outliers increases to 10.

To show the experimental di�erences between
Xu and Yuille's PCA and FRPCA, we use the

Fig. 2. Testing results of PCA1, PCA2 and PCA3 on the

spoiled data set.

Fig. 3. Testing results of FRPCA1, FRPCA2 and FRPCA3 on

the spoiled data set.
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same data set and a transformed data set in which
x and y coordinates of the data point are scaled
down by half as shown in Fig. 6. In the following
experiments, we set T � 40 and a0 � 1. Note that
there are four overlapped extracted principal axes
in each illustrated line. Sorted by the distance be-
tween the origin and the y-intercept of the princi-
pal axis, the parameters setting are c � 30;f
g � 0:6g and c � 0:5; g � 4f g in Figs. 5 and 6.
Since the parameters used are c � 0:5 and g � 4 in
(Xu and Yuille, 1995), we start from this setting
and get the unrobust result. After experiments of

various parameter setting, Xu and Yuille's PCA
produces a robust result when c � 30 and g � 0:6
as shown in Fig. 5. Unfortunately, these two pa-
rameters need to be reset even when the data set is
scaled down. As shown in Fig. 6, Xu and Yuille's
PCA produces an unrobust result when c � 30 and
g � 0:6 on a scale-down data set. Setting c and g
properly could be even more di�cult in the case of
computing not only the ®rst but also the ®rst k
principal components.

Although when m � 1 and ui belongs to 0; 1f g,
FRPCA's objective function, Eq. (12), reduces to
Xu and Yuille's objective function, Eq. (1), Xu and
Yuille's PCA is not a special case of FRPCA be-
cause di�erent optimization approaches are used.
Any very small value could be used to initialize the
soft threshold, g. In the following, we want to ®nd
the in¯uences of various m values in FRPCA on
the performance. Before doing the experiments, we
may predict FRPCA will be more like an unrobust
PCA as m increases because m raises the member-
ship of the outlier as indicated in Fig. 1. Sorted by
the distance between the origin and the y-intercept
of the principal axis, the fuzzy variable m are set as
1.5, 2.5, 3.5, 4.5 and 5.5 in Fig. 7. The results that
may be regarded as some kind of interpolations
between results of noise-®ltering PCA and unro-
bust PCA correspond to our prediction. Using the
same m, FRPCA produces the similar results on
the scale-down data set as shown in Fig. 8.

Fig. 4. Testing results of FRPCA1, FRPCA2 and FRPCA3 on

another spoiled data set.

Fig. 6. Testing results of Xu and Yuille's PCA on the scale-

down data set.

Fig. 5. Testing results of Xu and Yuille's PCA on the spoiled

data set.
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4. Conclusions

Stemming from the work of Xu and Yuille and
the concept of noise clusters, we derive a family of
robust principal component extraction algorithms
by a fuzzy objective function. The main charac-
teristics of the proposed algorithm are as follows:
· In comparison with the traditional robust PCA,

the proposed FRPCA is more robust when out-
liers exist.

· FRPCA uses a soft threshold that is automati-
cally determined in the algorithm.

· As demonstrated by the simulations, the initial
value to the the soft threshold can easily be
set to any very small value.

There exist other forms of FRPCA-like algo-
rithms. One simple modi®cation is to change the
learning law to batch mode or using a momentum
updating law. These alterations may be better than
the original algorithm if the input presentation
order is biased.
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