
A fault-tolerant routing algorithm for wormhole
routed meshes

Pao-Hwa Sui, Sheng-De Wang*

Department of Electrical Engineering, National Taiwan University, Room 441, EE Building, 1 Roosevelt Rd.,

Sec. 4, Taipei 106, Taiwan, ROC

Received 1 November 1996; received in revised form 22 October 1999

Abstract

We investigate fault-tolerant routing schemes which aim at using low number of virtual

channels in wormhole-routed mesh networks. The faults under consideration are rectangular

block faults, which are suitable for modeling faults on board level in networks with grid

structures. There is no restriction on the number of faults. The concepts of f-ring and f-chain

are used in our scheme. Messages are routed minimally when not blocked by faults and are

routed along the boundaries of the faults encountered. Only three virtual channels and local

knowledge of faults are required for our routing scheme to be correct, deadlock- and livelock-

free. By allocating virtual channels to messages carefully, all virtual channels have the po-

tential to be used by messages; hence, none of the virtual channels and its associated hardware

is wasted. Ó 2000 Published by Elsevier Science B.V. All rights reserved.

Keywords: Wormhole routing; Virtual channel; Fault-tolerant; Deadlock-free; Mesh networks

1. Introduction

Direct networks have become a popular means for interconnecting components of
massively parallel computer systems. In direct networks, nodes (computers) are
connected to only a few nodes, its neighbors, according to the topology of the
network and communicate with each other by passing messages. The n-dimensional
mesh network is currently the most popular topology for massively parallel com-

www.elsevier.com/locate/parco

Parallel Computing 26 (2000) 455±465

* Corresponding author. Tel.: +886-2-23635251; fax: +886-2-23671909.

E-mail address: sdwang@cc.ee.ntu.edu.tw (S.-D. Wang).

0167-8191/00/$ - see front matter Ó 2000 Published by Elsevier Science B.V. All rights reserved.

PII: S 0 1 6 7 - 8 1 9 1 (9 9) 0 0 1 1 3 - 1

puter systems. Low dimensional mesh networks, due to its low node degree, are more
popular than the high dimensional mesh networks. The two-dimensional mesh to-
pology has been adopted by Symult 2010 [1], Intel Touchstone DELTA [2] and Intel
paragon; the MIT J-machine adopts three-dimensional mesh topology.

The wormhole switching technique by Dally and Seitz [5] has been widely used in
the latest generation of direct networks for switching messages. In the wormhole
technique, a message is divided into packets and a packet is composed of ¯ow
control digits or ¯its. The header ¯it governs the route. As the header advances along
a speci®c route, the remaining ¯its follow in a pipeline fashion. If the header en-
counters a busy channel, it is blocked until the channel becomes available and all the
¯its in same packet remain in the ¯it bu�er along the speci®ed route. A survey of
wormhole routing for direct networks can be found in [6]. The characteristics of
pipelining and bu�ering ¯its in ¯it bu�ers when header blocked by busy channel
make the wormhole switching more deadlock-prone than virtual-cut-through [3] and
store-and-forward [4] switching techniques.

A massively parallel computer system cannot avoid having failure components in
real world. A realistic data communication scheme should have the capability of
fault tolerance. Several fault-tolerant communication schemes for direct networks
have been proposed in recent years [7±17] Simulating multiple virtual channels on
each physical channel and enforcing an order on allocation of virtual channels to
messages have been used by many schemes for avoiding deadlock. Large number of
virtual channels cause more hardware complexity, cost and delay in routing logic. In
this paper, we address the issue of designing fault-tolerant routing schemes for
wormhole routed mesh networks with small number of virtual channels. The faults
under consideration are rectangular block faults, which are suitable for modeling
faults on board level in networks with grid structure, since nowadays it is often to
place multiple nodes on a printed circuit board. Only local knowledge of faults are
required in our schemes.

Works by Chien and Kim [12] and Boppona and Chalasani [16] are two most
similar studies to our works. Chien and Kim present a partially adaptive algo-
rithm for mesh networks. Only three virtual channels are required in their
methods. However, their methods need to deactivate extra nodes when faults are
located on the boundaries of meshes. For instance, even only one node or link
fault on a boundary row of a 2D mesh, all nodes on that row must be deacti-
vated. In fact, all faults need to be augmented to form rectangular faults, convex
in [12], to assure the correctness of their methods. Boppana and Chalasani con-
sider arbitrary-located rectangular faults. The concepts of f-rings and f-chains are
introduced and are used for routing messages around rectangular faults. Two
virtual channels are required to provide non-adaptive deadlock-free routing in
networks with non-overlapping f-rings. For more complex faults, such as over-
lapping f-rings and f-chains, four virtual channels are used. Although Boppana
and Chalasani claim that their methods provide deadlock-free message routing in
2D meshes with complex faults, deadlocks among column messages may occur in
some cases [18]. A deadlock example is given in Appendix A. In contrast, our
methods can handle any combination of arbitrary-located rectangular block faults

456 P.-H. Sui, S.-D. Wang / Parallel Computing 26 (2000) 455±465

and assure deadlock-free property with only three virtual channels. Faults on
boundary cause no deactivation in our scheme. When there is no restriction on
the number of arbitrary-located faults, three virtual channels are the minimum
number, to the best of our knowledge, of virtual channels used in fault-tolerant
routing methods for meshes. The rest of this paper is organized as follows.
Section 2 describes the fault patterns under consideration. In Section 3, a fault-
tolerant routing algorithm is presented for 2D meshes with multiple rectangular
block faults. Deadlock-free proof of the proposed algorithm is also presented in
this section. In Section 4, we extend our routing techniques for 2D meshes to nD
meshes. A conclusion is given in Section 5.

2. Preliminary

An n-dimensional mesh has knÿ1knÿ2 � � � k0 nodes, ki nodes along dimension i,
06 i6 nÿ 1, and ki P 2. Each node x is uniquely indexed by an n-tuple
�xnÿ1; xnÿ2; . . . ; x0�, where 06 xi6 ki ÿ 1. Two nodes x � �xnÿ1; xnÿ2; . . . ; x0� and
y � �ynÿ1; ynÿ2; . . . ; y0� are neighbors if and only if xi � yi for all i except one, j, where
xj � yj � 1. Each node has from n to 2n neighbors up to their location on the mesh.
Neighboring nodes are connected by direct link implemented by two unidirectional
physical channels with opposite directions. The link between nodes x and y is de-
noted áx,yñ.

The four sides of a 2D mesh, hereinafter, labeled as North, East, South and West.
A faulty block, which is a set of faulty nodes and/or links and does not contain an
entire row or column failure, is a rectangular block fault if: (a) the boundary of the
faulty block forms a rectangle and contains only fault-free nodes and links and (b) all
components within this rectangle are faulty. An entire row or column failure makes
the meshes disconnected and, therefore, is not allowed. The de®nition of rectangular
block faults and some other de®nitions and terminology used in this paper are the
same to those in [16]. The boundary of a rectangular block fault is of rectangle shape
and is called f-ring of the fault. Block faults that contain boundary faults are rect-
angular block faults if the above de®nition is satis®ed when the mesh is extended
with fault-free nodes on all four sides and the boundary of the faulty components is
called f-chain of the faulty block. By exchanging link status to non-faulty neighbors,
each node can know easily its position on an f-ring. The nodes at which f-chain
touches the boundaries of the mesh are the end nodes of the f-chains. Links incident
to faulty nodes are considered faulty. Fig. 1 shows three rectangular faults:
F1 � f�5; 2�; �6; 2�g; F2 � fh�2; 0��3; 0�i; h�2; 1�; �3; 1�i; h�2; 2�; �3; 2�i; h�2; 3�; �3; 3�i;
h�2; 4�; �3; 4�ig and F3 � fh�1; 5�; �2; 5�i; h�1; 6�; �2; 6�i; h�1; 7�; �2; 7�ig on a 2D mesh.
Faulty components are not shown in Fig. 1. Nodes (2,0), (3,0) and (1,7), (2,7) are end
nodes of F2 and F3, respectively. Just like most of the fault-tolerant routing liter-
ature, messages are assumed to be destined only to fault-free nodes and meshes are
connected under faults in this paper.

P.-H. Sui, S.-D. Wang / Parallel Computing 26 (2000) 455±465 457

3. Fault-tolerant routing in 2D meshes

In this section, a fault-tolerant routing algorithm, MESH2D, for 2D meshes with
multiple arbitrary-located rectangular block faults, is proposed. The f-rings and
f-chains of these rectangular faults could be overlapped or not. The fault-tolerant
methods used in this section will be generalized for nD meshes in Section 5. In the
following, row hops and column hops are corresponded to hops in dimension 0 and
1, respectively.

De®nition 1. The ®rst hop on the path, which is speci®ed by the e-cube algorithm for
a message M from node x to node y, is called the e-cube hop of message M at node x.

De®nition 2. A message that has one or more row hops remaining is called a row
message. A message that needs to travel only in a column to reach its destination is
called a column message.

De®nition 2 is cited from [16]. Row messages that travel from west to east (east to
west) are WE (EW) messages. Column messages are classi®ed into NS and SN
messages by similar method. The well-known e-cube algorithm is used as a basis in
our scheme. Messages are routed on 2D meshes in the order of dimension 0 and 1.
Therefore, in MESH2D, a row message may change into a column message, but a
column message never becomes a row message.

3.1. The MESH2D algorithm

Each message is injected into the network as a row message and its direction is
set to null. Messages are routed along their e-cube hop if not being blocked by

Fig. 1. Example of three rectangular block faults and the corresponding f-ring and f-chains (indicated by

heavy lines) in a 2D mesh.

458 P.-H. Sui, S.-D. Wang / Parallel Computing 26 (2000) 455±465

faults. When faults are encountered, depending upon the message type and the
relative position of the destination nodes to the source nodes, the direction of
messages are set to clockwise or counter-clockwise (steps 6±9 in procedure set-
direction). Messages are routed on f-rings or f-chains according to the speci®ed
directions. The node at which a column message is blocked by a fault is recorded
at (x1, x0) and this information will be used for deciding when the direction of a
column message can be reset to null (steps 8, 9 and 3 in procedure set-direction).
The purpose of step 0 (in procedure set-direction) is to make sure that the value
of (x1, x0) is always de®ned when it is used. When an end point of f-chain is
reached, messages take a u-turn and their directions are reversed (step 1 in
procedure set-direction).

Algorithm MESH2D

/* message M is currently resided at node (c1, c0), the source and the destination node
is (s1, s0) and (d1, d0), respectively*/

0. If �c1; c0� � �s1; s0�, then begin
(1) set message type to WE, if c05d0, or EW, if c0 > d0, and
(2) set direction of M to null, end.

1. If �c1; c0� � �d1; d0�, consume M and return.
2. If M is a row message and c0� d0 then change its type to

NS if c1 > d1; or

SN if c1 < d1:

3. Set-direction(M).
4. If the direction of M is null, then route M along its e-cube hop, else route M on

the f-ring or f-chain according to the speci®ed direction.

Procedure set-direction(M)

0. If M is a column message and its direction is null, then set �x1; x0� � �c1; c0�.
1. If the direction of M is not null and the current node is an end node then reverse

the direction of M and return.
2. If M is a column message and c0 6� x0, then return.
3. If M is a column message and c1 6� x1; c0 � x0, then set its direction to null.
4. If the next e-cube hop of M is not faulty, set its direction to null and return.
5. If direction of M is not null, then return.
6. If M is a WE message, set its direction to

6.1. clockwise if c1 < d1, or
6.2. counter-clockwise if c1 > d1, or
6.3. either direction if c1 � d1.

7. If M is an EW message, set its direction to
7.1. clockwise if c1 > d1, or
7.2. counter-clockwise if c1 < d1, or
7.3. either direction if c1 � d1.

P.-H. Sui, S.-D. Wang / Parallel Computing 26 (2000) 455±465 459

8. If M is an NS message, set its direction to counter-clockwise, if the current node is
not located on the WEST boundary of 2D meshes, or clockwise, otherwise, and
set �x1; x0� � �c1; c0�.

9. If M is an SN message, set its direction to clockwise, if the current node is not
located on the WEST boundary of 2D meshes, or counter-clockwise, otherwise,
and set �x1; x0� � �c1; c0�.

3.2. Usage of virtual channels

Virtual channels of class i are denoted as hci and vci, 06 i6 2, if they are on
dimension 0 and 1, respectively: Virtual channels hc0 are further divided into two
disjoint subclasses hc�0 , which are of direction from west to east, and hcÿ0 , which
are of direction from east to west. That is, virtual channels hc�0 �hcÿ0 � are from
nodes with smaller (larger) address to nodes with larger (smaller) address in di-
mension 0. Virtual channels hc1 (hc2) that are on the southern (northern) side of f-
chains, which have end nodes located on the WEST boundary of 2D meshes, and
have direction from west to east are denoted as hcb

1 �hcb
2�. All other hc1 (hc2) are

denoted as hca
1 �hca

2�. Virtual channels vci, 06 i6 2, are also further classi®ed into
two disjoint subclasses vc�i and vcÿi . Virtual channels vc�i �vcÿi � are from nodes
with smaller (larger) addresses to nodes with larger (smaller) addresses in di-
mension 1.

In our method, WE messages use hc�0 ; vcÿ1 and vc�2 as they travel in the corre-
sponding directions, EW messages use hcÿ0 ; vc�1 and vcÿ2 as they travel in the cor-

Fig. 2. Usage of virtual channels.

460 P.-H. Sui, S.-D. Wang / Parallel Computing 26 (2000) 455±465

responding directions, NS messages use vcÿ0 ; hca
1 and hcb

2 and SN messages use
vc�0 ; hca

2 and hcb
1. The usage of virtual channels are depicted in Fig. 2. No SN (NS)

messages can use virtual channels hcb
2 �hcb

1�, for it is impossible for any SN (NS)
message to get to the northern (southern) side of an f-chain, that has end nodes
located on the WEST boundary of 2D meshes, in direction of clockwise (counter-
clockwise). In fact, these four types of messages use disjoint sets of virtual channels.
From Fig. 2, it is clear that all virtual channels in each direction of each class are
allocated to one or two message type. None of the virtual channels and its associated
hardware are wasted.

3.3. Example

Let us consider the example of routing message M from (5, 0) to (1, 2) in Fig. 1.
The path taken by M and the step number of the path are shown in Fig. 3. M is
routed as a WE message from (5, 0) to (5, 1). At (5, 1), its next e-cube hop is faulty
and its direction is set to counter-clockwise, since the destination node is in a row
below (5, 1). At (4, 1), its direction is reset to null and M is routed along its e-cube
hop to (4, 2). At (4, 2), M becomes an NS message and travels from (4, 2) to (3, 2). At
(3, 2), due to its next e-cube hop is faulty, M travels in the counter-clockwise di-
rection to (3, 0). At (3, 0), M takes a u-turn and its direction is reversed to clockwise,
since an end node is encountered. M travels along the f-chain of F2 in the clockwise
direction from (3, 0) to (2, 2). Direction of M is reset to null again at (2, 2) and M is
routed along its e-cube hop to destination node (1, 2). Steps 1 and 3 of the path use
virtual channels hc�0 , step 2 uses vcÿ1 , steps 4, 12 and 16 use vcÿ0 , steps 5, 6, and 13±15
use hca

1 and steps 7±11 use hcb
2.

Fig. 3. Example of routing message from (5,0) to (1,2).

P.-H. Sui, S.-D. Wang / Parallel Computing 26 (2000) 455±465 461

3.4. Deadlock-freeness of algorithm MESH2D

Since (a) EW, WE, SN and NS messages use disjoint sets of virtual channels and
(b) row messages (EW and WE) can become column messages (NS and SN), but
column messages cannot change into row messages and (c) EW and WE messages
cannot change into each other and NS and SN cannot change into each other, al-
gorithm MESH2D is a deadlock-free routing method if no deadlock can occur in
each of the four types of messages.

Theorem 1. The MESH2D algorithm is a deadlock-free routing method for 2D meshes
with multiple rectangular block faults.

Proof. WE messages can travel from west to east but not from east to west, there
cannot be a deadlock among WE messages waiting in di�erent columns. A WE
message can travel from north to south or south to north, if its next e-cube hop is
faulty. A north-to-south (south-to-north) WE message can take south-to-north
(north-to-south) hops only if it encounters an end node and takes a u-turn at the end
node. For a deadlock to occur among WE messages waiting in same column, all west
to east channels that might be the next e-cube hop for these waiting WE messages
must be faulty, that is, the entire column to the east of these waiting WE messages is
faulty. An entire column fault disconnects meshes, which is contrary to our as-
sumption. No deadlock occur among EW messages can be assured by similar
statements. NS messages can travel from north to south but not from south to north,
there cannot be a deadlock among NS messages waiting in di�erent rows. NS
messages are designed to get around the faulty components in counter-clockwise
direction. An NS message can take a u-turn at an end node located on the WEST
boundary of 2D meshes and change its direction to clockwise, but cannot take a u-
turn at the EAST boundary of 2D meshes, since no entire row of faulty components
is allowed. Thus, no deadlock can occur among NS messages waiting on the same
row. We assure that no deadlock can occur among SN messages by similar state-
ments. �

Row messages are routed on dimension 0 towards their destinations as long as
their next e-cube hop are not faulty. Since there is no whole-column failure, each row
message can always get to the column on which its destination resides. A column
message can always route around faults encountered, for there is no whole-row
failure. Therefore, by MESH2D, every message can get to its destination. Since the
number of faults is ®nite and message never visits a fault more than once, our routing
scheme is also livelock-free.

4. Fault-tolerant routing in nD meshes

An nD mesh can be decomposed into many 2D submeshes by removing links on
all dimensions but the two dimensions on which these 2D submeshes are formed. In

462 P.-H. Sui, S.-D. Wang / Parallel Computing 26 (2000) 455±465

this paper, an nD mesh with multiple rectangular block faults is in the sense that to
any 2D submesh of the nD mesh, every fault is con®ned to a rectangular block fault.
By combining the planar-adaptive routing (PAR) [12] techniques with our routing
method for 2D meshes, algorithms, which can route messages in nD meshes with
multiple rectangular block faults using three virtual channels, can be designed easily.
In the following, we focus on the issue, which is also the main problem of using PAR
techniques, of how to divide virtual channels into disjoint subclasses for messages
usage in successive 2D submeshes.

Virtual channels of class j, 06 j6 2, on dimension i, 06 i6 nÿ 1, are denoted as
cij. Virtual channels cij, except the virtual channels of class 1 and 2 on dimension 0,
that are from nodes with smaller (larger) addresses to nodes with larger (smaller)
addresses in dimension i are denoted as c�ij �cÿij). Virtual channels of class 1 (2) on
dimension 0 are partitioned, in the same way of partitioning virtual channels hc1

(hc2) in algorithm MESH2D, into two disjoint subclasses, denoted as Ca
01 and

Cb
01 �ca

02 and cb
02). We de®ne n routing planes, A0 to Anÿ1, as the combination of the

virtual channels:

Ai � ci0 � c�i�1�1 � c�i�1�2 �for 06 i6 nÿ 2�;
Anÿ1 � c�nÿ1�0 � c01 � c02:

Each routing plane Ai is divided into two disjoint subplanes A�i and Aÿi .

A�i � c�i0 � cÿ�i�1�1 � c��i�1�2; Aÿi � cÿi0 � c��i�1�1cÿ�i�1�2 �for 06 i6 nÿ 2�;

A�nÿ1 � c��nÿ1�0 � ca
02 � cb

01; Aÿnÿ1 � cÿ�nÿ1�0 � ca
01 � cb

02:

Routing techniques for row and column messages in MESH2D are adopted for
routing messages in A0 to Anÿ2 and Anÿ1, respectively. Messages that have destination
address greater (smaller) than that of the source node in dimension i are routed in
A�i �Aÿi �. Routing in Ai reduces the distance between source and destination in di-
mension i to 0. After routing through A0 to Anÿ1 seriously, messages have reached
their destinations.

Since (a) messages are routed seriously through A0 to Anÿ1 and (b) routing planes
Ai and Aj; i 6� j, contain distinct set of virtual channels, and (c) messages routed in
A�i and Aÿi do not change into each other and (d) no deadlock occur among messages
routing in A�i or Aÿi (due to result of MESH2D), the proposed routing method for
nD meshes are deadlock-free.

For virtual channel has its own control logic and ¯it bu�er, the virtual channel
utilization, l, which is de®ned as the ratio of the total number of virtual channels
allocated potentially to messages to the total number of virtual channels in networks,
is used to compare the routing hardware utilization between [16] and this paper. In
[16], virtual channels of each class with direction heading to three of the four
boundaries in each 2D submesh are allocated to messages. Therefore, one-fourth
of the virtual channels are not allocated to any messages, that is l � 0:75.

P.-H. Sui, S.-D. Wang / Parallel Computing 26 (2000) 455±465 463

In our scheme, virtual channels of each class with direction heading to all four
boundaries in each 2D submesh are allocated to massages, that is l � 1:0 in this
paper. None of the virtual channels and its associated hardware is wasted in our
scheme.

5. Conclusion

A fault-tolerant wormhole routing algorithm for 2D meshes with multiple faults is
presented. The faults under consideration are rectangular block faults, which are
suitable for modeling faults in networks with grid structures. Messages are routed
minimally if not blocked by faults. By combining the PAR techniques with our
routing methods for 2D meshes, fault-tolerant routing methods for nD meshes can
be designed easily. Only three virtual channels and local knowledge of faults are
required for our routing scheme to be correct, deadlock- and livelock-free. By al-
locating virtual channels to messages carefully, all virtual channels are fully utilized
and, therefore, none of the virtual channels and its associated hardware are wasted.
The number of virtual channels used in this paper is the minimal number known in
fault-tolerant routing methods for mesh networks, when there is no restriction on the
number of arbitrary-located faults.

Any routing algorithm for meshes can be enhanced for tolerating rectangular
block faults by incorporating our routing schemes. For fully adaptive routing al-
gorithms, routing schemes used by column messages only are enough to achieve the
enhancement, for every message could only be blocked at node having the same
address value in all dimensions but one to its destination in meshes with multiple
rectangular faults.

Appendix A

In [18], NS messages use virtual channels of class 2 to get to their destinations.
When a fault is encountered, the direction of the NS message can be set to either
clockwise or counter-clockwise. Fig. 4 shows a deadlock example between two NS
messages.

Fig. 4. A deadlock example of NS messages routed around f-regions with arbitrary orientation.

464 P.-H. Sui, S.-D. Wang / Parallel Computing 26 (2000) 455±465

References

[1] C.L. Seitz, W.C. Athas, C.M. Flaig, A.J. Martin, J. Seizovic, C.S. Steele, W.K. Su, The architecture

and programming of the Ametek Series 2010 multicomputer, in: Proceedings of the Third Conference

on Hypercube Concurrent Computers and Applications I, 1988, pp. 33±36.

[2] Intel Corp., A Touchstone DELTA System Description, 1991.

[3] P. Kermani, L. Kleinrock, Virtual cut-through: a new computer communication switching technique,

Computer Networks 3 (1979) 267±286.

[4] K.D. Gunther, Prevention of deadlock in packet-switched data transport systems, IEEE Transactions

on Communications 29 (1981) 512±524.

[5] W.J. Dally, C.L. Seitz, The torus routing chip, Journal of Distributed Computing 1 (3) (1986)

187±196.

[6] L.M. Ni, P.K. Mckinley, A survey of wormhole routing techniques in direct networks, IEEE

Computer 26 (1993) 62±76.

[7] C.J. Glass, L.M. Ni, The turn model for adaptive routing, in: Proceedings of the 19th Annual

International Symposium on Computer Architecture, 1992, pp. 278±287.

[8] C.J. Glass, L.M. Ni, Fault-tolerant wormhole routing in meshes, in: Proceedings of the 23rd Annual

International Symposium on Fault-Tolerant Computing, 1993, pp. 240±249.

[9] D.H. Linder, J.C. Harden, An adaptive and fault tolerant wormhole routing strategy for k-ary

n-cubes, IEEE Transactions on Computers 40 (1) (1991) 2±12.

[10] M.S. Chen, K.G. Shin, Adaptive fault-tolerant routing in hypercube multicomputers, IEEE

Transactions on Computers 39 (12) (1990) 1406±1416.

[11] M.S. Chen, K.G. Shin, Depth-®rst search approach for fault-tolerant routing in hypercube

multicomputers, IEEE Transactions on Parallel and Distributed Systems 1 (2) (1990) 152±159.

[12] A.A. Chien, J.H. Kim, Planar-adaptive routing: low-cost adaptive networks for multi-processors, in:

Proceedings of the 19th International Symposium on Computer Architecture, 1992, pp. 268±277.

[13] T.C. Lee, J.P. Hayes, A fault-tolerant communication scheme for hypercube computers, IEEE

Transactions on Computers 41 (10) (1992) 1242±1256.

[14] R.V. Boppana, S. Chalasani, Fault-tolerant routing with non-adaptive wormhole algorithms in mesh

networks, Supercomputing (1994) 693±702.

[15] S. Chalasani, R.V. Boppana, Adaptive fault-tolerant wormhole routing algorithms with low virtual

channel requirements, in: Proceedings of the International Symposium on Parallel Architecture,

Algorithms, and Networks, 1994, pp. 214±221.

[16] R.V. Boppana, S. Chalasani, Fault-tolerant wormhole routing algorithms for mesh networks, IEEE

Transactions on Computers 44 (7) (1995) 848±864.

[17] G.M. Chiu, S.P. Wu, A fault-tolerant routing strategy in hypercube multicomputers, IEEE

Transactions on Computers 45 (2) (1996) 143±155.

[18] P.H. Sui, S.D. Wang, Comments on ``fault-tolerant wormhole routing algorithms for mesh

networks'', Technique Report NTUEE-TR-96-001, Department of Electrical Engineering, National

Taiwan University, July 1996.

P.-H. Sui, S.-D. Wang / Parallel Computing 26 (2000) 455±465 465

