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Abstract

An adaptive tuning algorithm of the fuzzy controller is developed for a class of serial-link robot arms. The algorithm can
on-line tune parameters of premise and consequence parts of fuzzy rules of the fuzzy basis function (FBF) controller. The
main part of the fuzzy controller is a fuzzy basis function network to approximate unknown rigid serial-link robot dynamics.
Under some mild assumptions, a stability analysis guarantees that both tracking errors and parameter estimate errors are
bounded. Moreover, a robust technique is adopted to deal with uncertainties including approximation errors and external
disturbances. Simulations of the proposed controller on the PUMA-560 robot arm demonstrate the e�ectiveness. c© 2000
Elsevier Science B.V. All rights reserved.

1. Introduction

Robot manipulators have highly nonlinear dynam-
ics. A strategy, feedback linearization of nonlinear
systems, cancels the nonlinearities of robot manipula-
tors and imposes a desired linear model so that linear
control techniques can be applied [12, 2]. However,
the method is based on the exact knowledge of robot
dynamics. Without knowing the exact knowledge of
robot dynamics, a nonlinear component is required
to approximate and cancel the dynamics. Neural net-
works and fuzzy systems provide good solutions to
this challenging task. In this paper, we design a fuzzy
controller for rigid robot manipulators with completely
unknown dynamics.
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It has been proved that fuzzy basis function (FBF)
expansions can be universal approximators with arbi-
trarily small errors [16]. Therefore, a fuzzy basis func-
tion network is used to approximate and cancel the
unknown dynamics of robot manipulators. As in [15],
the control structure and learning rules are derived
from a Lyapunov theory extension that guarantee both
tracking errors and parameter estimate errors in the
closed-loop system are bounded. By taking the uncer-
tainties including approximation errors and external
disturbances into consideration, such a technique can
reject the e�ects.
Tuning parameters of fuzzy systems has been an

active research area in the past two decades. Most of
the approaches can only tune parameters of conse-
quence part of fuzzy rules [16–14]. Some approaches
can tune parameters of premise and consequence
parts of fuzzy rules, however, they do not guarantee
global stability and tracking performance [4, 7, 10].
The main topic of this paper is to present an algorithm
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to tune all parameters of the fuzzy controller under a
perturbation environment. The use of an FBF-based
controller in direct closed-loop controllers with the
algorithm can guarantee global stability and tracking
performance.
The arrangement of the rest of this paper is as

follows. In Section 2, the dynamics of the rigid
serial-link robot manipulators and an FBF network
are introduced. Section 3 presents an algorithm for
tuning the FBF-based controller. Based on the Lya-
punov synthesis technique, a global stable fuzzy con-
troller in a constructive manner too is developed. In
Section 4, the FBF controller is used to track desired
trajectories for a popular PUMA-560 robot arm suc-
cessfully. Finally, Section 5 provides the conclusions.

2. Robot arm dynamics and fuzzy basis function
networks

2.1. Robot arm dynamics

Consider a rigid robot manipulator with n serial
links described by the equations

M(�) �� + Vm(�; �̇)�̇ + G(�) + F�̇ + �d = � (1)

with vector � ∈ Rn being the joint position vector;
M(�) ∈ Rn×n being a symmetric positive de�nite
inertia matrix; Vm(�; �̇)�̇ being a vector of Coriolis
and centripetal torques; G(�) ∈ Rn representing the
gravitational torques; F = K! + Vf ∈ Rn×n being a
diagonal matrix consisting of the back emf coe�cient
matrix K! and the viscous friction coe�cients matrix
Vf ; �d ∈ Rn×l being the unmodeled disturbances
vector; and � ∈ Rn×l being the vector of control input
torques. The structural properties of the robot manip-
ulator such as boundedness of M(�);Vm(�; �̇) and �d
and skew-symmetry of matrix Ṁ − 2Vm hold for (1).

2.2. Fuzzy basis function networks

Assume that there are r rules in a fuzzy rule base
and each of which has the following form:

If x1 is Ã1j and x2 is Ã2j and : : : and xn is Ãnj

then y1 is B̃j1 and y2 is B̃j2 and : : : ym is B̃jm;

where j = 1; 2; : : : ; r; the input vector x = (x1; : : : ; xn)T

contains the input variables to the fuzzy system,
yk (k = 1; 2; : : : ; m) are the output variables of the
fuzzy system, and Ãij and B̃jk are linguistic terms char-
acterized by their corresponding fuzzy membership
functions �Ãij (xi)’s and �B̃jk (yk); respectively. For an
FBF network, the membership functions �Ãij (xi)’s are
Gaussian functions. As in [14], we consider the FBF
network with singleton fuzzi�cation, product infer-
ence, and de�ning the defuzzi�er as a weighted sum
of each rule’s output. The scheme of the FBF net-
work with n inputs, r rules (hidden units) and m
outputs is shown in Fig. 1. Such an FBF network im-
plementing the procedures of fuzzi�cation, fuzzy in-
ference and defuzzi�cation performs the m mappings
fk : Rn → R according to

fk =
r∑
j=1

wjk�(‖x− cj‖; �j); (2)

where x ∈ Rn is the input vector, cj ∈ Rn is the center
vector of the jth rule, �j ∈ Rn is the width vector
of the fuzzy basis function �(·) and hidden-to-output
layer interconnections weights are denoted bywjk . The
fuzzy basis function can be represented by

�j = e−[((x1−c1j)=�1j)
2+···+((xn−cnj)=�nj)2]

or

�j = e−[!
2
1j(x1−c1j)2+···+!2nj(xn−cnj)2]: (3)

For ease of notation, we de�ne vector c and ! collect-
ing all centers and inverse radii of fuzzy basis func-
tions as

c = [c11 · · · cn1 c12 · · · cn2 · · ·
c1r · · · cnr]

T ;

! = [!11 · · · !n1 !12 · · · !n2 · · ·
!1r · · · !nr]

T :

(4)

The output f of FBF network can be represented in a
vector form

f (x(t); c;!;W) =WT�(x(t); c;!); (5)

where WT = [wjk ] is an r × m matrix and � =
[�1 · · · �r]T: It has been proven in [16] that for
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Fig. 1. Network representation of an FBF expansion system.

any given real function f over the input space X ,
there exists a fuzzy system in the fuzzy basis func-
tion expansion form of (5) such that it can uniformly
approximate f on the compact set X to arbitrary ac-
curacy. Accordingly, let r be the rule number of the
FBF network, there exist an ideal matrix W∗; and
ideal vectors !∗ and c∗ such that

f (x(t)) =W∗T�(x(t); c∗;!∗) + ”r(x(t)): (6)

We employ an FBF network f̂ to approximate f

f̂=Ŵ
T
�(x(t); ĉ; !̂) (7)

with ĉ; !̂, and Ŵ of the FBF network estimating
!∗; c∗ andW∗: For notational convenience, we denote
�∗ = �(x(t); c∗;!∗) and �̂ = �(x(t); ĉ; !̂) as

�∗
j =exp{−[!∗2

1j (x1 − c∗1j)2+ · · · +!∗2
nj (xn−c∗nj)2]}

and

�̂j =exp{−[!̂21j(x1− ĉ1j)2+ · · ·+ !̂2nj(xn− ĉnj)2]}:
In this paper, the rule’s format of an FBF network

is represented as [10]

If (c1j; �1j) and (c2j; �2j) and : : : and (cnj; �nj)

then (wj1; : : : ; wjm): (8)

By de�ning cj = [c1j; : : : ; cnj]T and �j = [�1j; : : : ; �nj]T

as the center and radius vector of IF part of the jth

rule, (8) can be rewritten in the following simpler
form:

If (cj; �j) then (wj1; : : : ; wjm):

An alternative representation of the rule’s format is to
use the inverse radius vector !j instead of the radius
vector �j.
In this paper, the parameters of �Ãij (xi)’s (cij and

�ij) and wjk are all adjustable and learning rules will
be stated in a later section.

3. Robot FBF controller design

3.1. FBF-based controller

In practical robotic systems, the load may vary
while performing di�erent tasks, the friction coef-
�cients may change in di�erent con�gurations and
some neglected nolinearities as backlash may appear
as disturbances at control inputs, that is, the robot
manipulator may receive unpredictable interference
from the environment where it resides [2]. Therefore,
the control objective is to design a robust FBF-based
controller so that the movement of robot arms follow
the desired trajectory and all signals in the closed-
loop system are bounded even when exogenous and
endogenous perturbations are present. Denote the
tracking error vector e(t) and error metric s(t) as
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e(t) = �d (t)− �(t); s(t) = ė(t) + �e(t); (9)

where �d (t); is the desired robot manipulator trajectory
vector and� = �T¿ 0: Therefore, di�erentiating s(t)
and using (9), the dynamics of robot arms can be
rewritten as

Mṡ = −Vms + f + �d − � (10)

where the unknown nonlinear function f as

f =M(�)( ��d + �ė) + Vm(�; �̇)(�d + �e)

+G(�) + F�̇: (11)

De�ne the control law as

� = Ks + f̂ + d̂ (12)

where K = KT¿ 0; the output vector of fuzzy basis
function networks f̂ estimates f and d̂ is the robus-
tifying term to attenuate exogenous and endogenous
disturbances. The architecture of the closed-loop sys-
tem is shown in Fig. 2. Using the control in (12), we
get closed-loop dynamics as

Mṡ = −(K + Vm)s + f̃ + �d − d̂ (13)

where the approximation error f̃ is denoted as

f̃ = f − f̂ =W∗T�(x(t); c∗;!∗)

−ŴT
�(x(t); ĉ; !̂) + ”r : (14)

For simplicity of discussion, we de�ne �∗=
�(x(t); c∗;!∗), �̂ = �(x(t); ĉ; !̂) and �̃ = �∗− �̂ to
obtain a rewritten form of (14)

f̃ =W∗T�̃+ W̃T�̂+ ”r ; (15)

where W̃ =W∗ − Ŵ : In this paper, a method is pro-
posed to guarantee the closed-loop stability and the
tracking performance, and on-line tune centers and
radii of fuzzy basis functions. For achieving the goal,
linearization technique is employed to transform the
nonlinear fuzzy basis functions into partially linear
form so that Lyapunov theorem extension can be ap-
plied. Therefore, take the expansion of �̃ in a Taylor
series to obtain

�̃ =



�̃1
...

�̃r




=




@�1
@!
...
@�r
@!




∣∣∣∣∣∣∣∣∣∣
!=!̂

!̃+




@�1
@c
...

@�r
@c




∣∣∣∣∣∣∣∣∣∣
c=ĉ

c̃ + h

or

�̃ = AT!̃+ BTc̃ + h; (16)

where

!̃ = !∗ − !̂; c̃ = c∗ − ĉ;
A =

[
@�1
@!

· · · @�r
@!

]∣∣∣∣
!=!̂

;

B =
[
@�1
@c

· · · @�r
@c

]∣∣∣∣
c=ĉ
;

h is a vector of higher-order terms and

@�j
@!

and
@�j
@c

are de�ned as[
@�j
@!

]T

=


0 · · · 0︸ ︷︷ ︸

(j−1)×n

@�j
@!1j

· · · @�j
@!nj

0 · · · 0︸ ︷︷ ︸
(r−j)×n




[
@�j
@c

]T

=


0 · · · 0︸ ︷︷ ︸

(j−1)×n

@�j
@c1j

· · · @�j
@cnj

0 · · · 0︸ ︷︷ ︸
(r−j)×n


 :
(17)

Substituting (16) into (15) yields

f̃ + �d = W̃
T�̂+ Ŵ

T
�̃+ W̃T�̃+ ”r + �d

= W̃T�̂+ Ŵ
T [
AT!̃+ BTc̃

]
+ d ; (18)

where d = W̃T�̃ + Ŵ
T
h + ”r + �d : By substituting

(18) into (13), the closed-loop system dynamics can
be rewritten as

Mṡ = −(K + Vm)s + W̃T�̂

+Ŵ
T[
AT!̃+ BTc̃

]
+ d̃ ; (19)
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Fig. 2. The diagram of a closed-loop system.

where d̃ = d−d̂ : Before de�ning the robustifying term
d̂ , there are some assumptions required to hold in the
following discussion.

Assumption 1. The norms of optimal weights, ‖W∗‖,
‖!∗‖ and ‖c∗‖; are bounded by known positive real
values, i.e., ‖W∗‖6Wm; ‖!∗‖6!m and ‖c∗‖6cm
with some knownWm;!m and cm (the norm of a vector
or matrix in this paper, ‖ • ‖, is the Frobenius norm
[17]).
For simplicity, we de�ne an optimal matrix �∗ in-

cluding all optimal weights and an estimating matrix
�̂ as

�∗ =


W

∗ 0 0
0 !∗ 0
0 0 c∗


 and �̂ =


 Ŵ 0 0
0 !̂ 0
0 0 ĉ


 :

From the above assumption, �∗ is bounded by a
known positive real value �m(‖�∗‖6�m): Obvi-
ously, W∗;!∗, and c∗ are bounded by ‖W∗‖6�m;
‖!∗‖6�m and ‖c∗‖6�m; respectively.

Assumption 2. The approximation errors and distur-
bances are bounded, i.e., speci�ed b� and b� satisfying
‖”r‖6b� and ‖�d‖6b�; respectively.

Assumption 3. The vector of higher order terms in
(16), h; is bounded by ‖h‖6kd:

Assumption 4. Since the values of fuzzy basis func-
tions are positive and not greater than one, �̃ is
bounded by ‖�̃‖61: Therefore, W̃T�̃ is bounded by
‖W̃T�̃‖6‖W̃T‖‖�̃‖ = ‖W̃‖6‖�̃‖:
Based on the above assumptions, we can �nd the

bound of sTd as

‖sTd‖6‖s‖‖W̃T�̃+ Ŵ
T
h+ ”r + �d‖

6‖s‖‖�̃‖+ ‖s‖‖Ŵ‖‖h‖+ ‖s‖(b� + b�):
(20)

The robustifying term d̂ eliminating the partial bound
of d is denoted as

d̂ = kd‖Ŵ‖s (21)

where kd¿‖h‖ is assumed to be satis�ed. The para-
meters are updated by the following learning rules:

˙̂W = KW �̂sT − �KW‖s‖Ŵ ;
˙̂! = K!AŴs − �K!‖s‖!̂;
˙̂c = KcBŴs − �Kc‖s‖ĉ;

(22)

where KW ;K!; and Kc are diagonal positive square
matrices and � is a positive real value. The �rst terms
of (22) are similar to the modi�ed back-propagation
algorithm that can tune weights and gains of nodes
(neurons) [5]. As to the last terms of (22), they are
similar to the e-modi�cation of adaptive control theory
[9]. The stability proof will be stated later.
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3.2. Stability analysis

In adaptive control, the phenomenon of the possible
unboundedness of weight estimates will occur when
the persistency of excitation (PE) condition fails to
hold. There are some techniques as �-modi�cation and
e-modi�cation can overcome this problem [9]. In [6],
a weight tuning rule for neural networks is proposed to
guarantee the boundedness of weight estimates even
though PE does not hold. A proof being similar to the
proof of [6] is to show that the control scheme with
learning rules (22) can guarantee the boundedness of
all signals generated in the closed-loop system without
making any assumptions of PE conditions.

Theorem 1. Suppose that the vector �d (t) is bounded
and Assumptions 1 and 2 hold. Consider the dynamic
equations (1) with the control law (12) and learning
rules (22). Make no assumptions of any sort of PE
conditions on �̂; AŴ and BŴ . Then
(1) the error metric s(t) and weights ĉ; !̂ and Ŵ

(or �̂) will remain uniformly ultimately bounded
(UUB) and

(2) the tracking errors will be kept as small as de-
sired by increasing K :

Proof. Let the Lyapunov-like function candidate be

V (t) = 1
2 (s

TMs + tr(W̃TK−1
W W̃)

+tr(!̃TK−1
! !̃) + tr(c̃TK−1

c c̃)): (23)

By the property of skew-symmetry of Ṁ − 2Vm and
(18), the time derivative of V (t) along the trajectories
of learning rules (19) and (22) is evaluated by

V̇ = −sTKs + 1
2 s
T(Ṁ − 2Vm)s + sT(f̃ + �d)

−sTd̂ + tr(W̃TK−1
W

˙̃W)

+tr(!̃TK−1
!
˙̃!) + tr(c̃TK−1

c
˙̃c)

= −sTKs + sTW̃T�̂+ sTŴ
T [
AT!̃+ BTc̃

]
+sTd − sTd̂ − tr (W̃T(�̂sT − �‖s‖Ŵ))
−tr(!̃T(AŴs − �‖s‖!̂))
−tr(c̃T(BŴs − �‖s‖ĉ)): (24)

Using the facts tr(ATB)6‖A‖‖B‖ and tr(�̃T(�∗ −
�̃))6‖�̃‖‖�∗‖ − ‖�̃‖2 [2], and applying (20) and

(21) results in

V̇ 6− sTKs + �‖s‖tr(�̃T(�∗−�̃))
+‖s‖‖�̃‖+ ‖s‖‖Ŵ‖‖h‖+ ‖s‖(b� + b�)− sTd̂

6− sTKs + �‖s‖(‖�̃‖‖�∗‖ − ‖�̃‖2)
+‖s‖‖�̃‖+ ‖s‖‖Ŵ‖‖h‖
+‖s‖(b� + b�)− kd‖Ŵ‖‖s‖

6− ‖s‖{Kmin‖s‖+ �(‖�̃‖ − c�)2 − D}; (25)

where Kmin is the minimum singular value of K , c� =
�m=2 + 1=2� and D = b� + b� + �c2�: Therefore, if
‖s‖¿�s or ‖�̃‖¿��, where

�s =
D
Kmin

and �� = c� +
D
�
; (26)

then V̇60. This implies that the Lyapunov derivative
V̇ is negative outside the compact set (‖s‖¡�s or
‖�̃‖¡��). In other words, outside the compact set
given by (26) the tracking errors and parameter errors
will decrease. As for inside the compact region around
the origin, the tracking errors and parameter errors are
bounded. Therefore, according to a standard Lyapunov
theorem extension [6], we can prove that s(t) and �̃
are UUB. Since �∗ is bounded (Assumption 1), �̂
is also UUB. The explicit bound of s(t) is derived in
(26) and the bound can be kept as small as desired by
increasing Kmin.

Remark 1. Without the last terms of (22), the �̂,
AŴ and BŴ should be persistently exciting signals.
In other words, positive numbers Ti; �i; �i (i=1; 2; 3)
exist such that given t¿t0; there exists ti ∈ [t; t + Ti]
such that [ti; ti + �i]⊂[t; t + Ti] and

1
Ti

∫ ti+�i

ti
+i(�)+i(�)T d�¿”iI ∀t¿t0;

where +1 = �̂; +2 = AŴ and +3 = BŴ :

Remark 2. It can be found that an implicit parameter
� in (26) determines the magnitudes of ‖s‖ and ‖�̃‖:
A smaller � will result in a smaller ‖s‖ and a larger
‖�̃‖, and vice versa.
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Fig. 3. A two-link robot manipulator with links 4, 5 and 6 �xed.

4. Simulation results

Computer simulations were conducted on the
PUMA-560 robot manipulator to verify the availabil-
ity and performance of the proposed controller. Fig. 3
depicts a 6-link planar robot arm with the fourth, �fth
and sixth links �xed to be a two-link robot manipula-
tor. Therefore, the angles of the second and third links
were considered to be �1 and �2, respectively. The
numerical values of parameters of the robot model
were speci�ed as that in [3]. For demonstrating the
tracking performance of our proposed controller, the
desired trajectories for �1 and �2 were set as

�d1 = 0:5 + 0:2(sin t + sin 2t) (rad) for �1

and

�d2 = 1:3− 0:1(sin t + sin 2t) (rad) for �2;

respectively.

The proposed FBF controller was compared with
the well-known Slotine-Li’s adaptive controller. In
the well-known Slotine-Li’s approach, there are nine
parameters to be estimated. As for the proposed
method, the task of approximating two nonlinear
functions (11) were carried out. The derivative gains
of Slotine-Li’s method were KD = diag(250; 250).
For our FBF network, there were 20 rules in the rule
base and the parameters of the FBF network were
tuning by (22). Each rule has four inputs (�1; �̇1; �2
and �̇2) and two outputs (f̂1 and f̂2), i.e., there are
200 weights to be tuned. The adaptation rates were
speci�ed as KW = 100:0Ir×r , Kc = 50:0Ir×r and
K! = 50:0In×n (Ip×p is a p × p identity matrix)
and � = 0:01; and the coe�cient of robustifying term
kd = 100:0: The initial values of centers ĉ(0) and
Ŵ (0) were set to be small random numbers and the
inverse radii !̂(0) was speci�ed to be 1. Fig. 4 shows
the desired trajectories and trajectories obtained from
FBF and Slotine-Li’s controller. The maximum track-
ing errors of �1 and �2 after the �rst two seconds of
movement of the robot arm using the Slotine-Li’s
method were 0.72◦ and 0.60◦. Using the proposed
FBF controller, the maximum errors were found to be
0.42◦ and 0.06◦, respectively. This comparison shows
that the proposed controller can obtain more accurate
tracking performance due to the good approximation
capability of the FBF network as shown in Fig. 5.
Fig. 6 shows control inputs with smooth curves. Fig. 7
shows the process of tuning centers and inverse radii
of some FBFs. After the tuning process, we found that
all 20 rules are located in a reasonable input range
with suitable radii. Take one rule as an example:

If (c1 = (0:2570120; 0:1702516; 0:2400224;

−0:1067455); !1 = (0:7214551; 0:7807048;
0:9510864; 0:9238370))

then (w11; w12) = (0:02314668; 0:0031): (27)

Finally, Fig. 8 shows the simulation results with
bounded disturbances �d that are 2Hz square waves
with 10Nm magnitudes. The errors are only slightly
larger than that without disturbances. These results
imply the robustness of the proposed FBF controller.
All these simulations were carried out using C pro-
grams on pentium-120 PC and the running time is
about 3min.
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Fig. 4. Simulations for (a) �1(t) and (b) �2(t) using Slotine-Li’s and FBF controller.
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Fig. 5. Function approximation of (a) f1(t) and (b) f2(t).
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Fig. 6. Control inputs: (a) �1(t) and (b) �2(t).
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Fig. 7. Tuning process of centers and inverse radii of rule 5.
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Fig. 8. Simulations for (a) �1(t) and (b) �2(t) with 2Hz square wave noises.
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5. Conclusions

The controller design is based on the FBF network,
which is employed to approximate nonlinear func-
tions, and a robust technique. The proposed adaptive
tuning FBF-based control system can achieve desired
performance as shown in simulation results. The
controller is exible because all parameters of the
FBF network can be tuned by weight updating rules
once the rule number is determined. By the weight
updating rules, we can show all signals in the closed-
loop system are bounded without any assumptions of
PE conditions to make the controller robust even in
the presence of approximation errors and external
disturbances.
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