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An AdaptiveH Controller Design for Bank-To-Turn
Missiles Using Ridge Gaussian Neural Networks

Chuan-Kai Lin and Sheng-De Wang, Member, IEEE

Abstract—A new autopilot design for bank-to-turn (BTT)
missiles is presented. In the design of autopilot, a ridge Gaussian
neural network with local learning capability and fewer tuning
parameters than Gaussian neural networks is proposed to model
the controlled nonlinear systems. We prove that the proposed
ridge Gaussian neural network, which can be a universal ap-
proximator, equals the expansions of rotated and scaled Gaussian
functions. Although ridge Gaussian neural networks can ap-
proximate the nonlinear and complex systems accurately, the
small approximation errors may affect the tracking performance
significantly. Therefore, by employing the control theory, it
is easy to attenuate the effects of the approximation errors of the
ridge Gaussian neural networks to a prescribed level. Computer
simulation results confirm the effectiveness of the proposed ridge
Gaussian neural networks-based autopilot with stabilization.

Index Terms—Bank-to-turn (BTT) missiles, Gaussian neural
networks, control theory, ridge functions.

NOMENCLATURE

, , Acceleration along the directions , , and
at center of mass, respectively.

A right-handed orthonormal basis of body
coordinate frame, which is attached to the
center of mass of the missile, where
and are on the longitudinal and lateral axis,
respectively.

, , Aerodynamic force coefficients corre-
sponding to the axes , , and , re-
spectively.

, , Moment coefficients corresponding to the
axes , , and , respectively.

, , Effective deflation angle, elevator deflation
angle, and rudder deflation angle, respec-
tively, (rad).
A right-handed orthonormal basis of inertial
coordinate frame.

, , External forces along the axes , , and ,
respectively, .

, , Moment of inertia of the missile body about
the axes , , and , respectively, .

, Missile length (m) and missile mass (kg).
Mach number.
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, , Total moment of inertia about the axes , ,
and , respectively, .

, , Roll rate, pitch rate and yaw rate corre-
sponding to the axes , , and , respec-
tively (clockwise), (rad/s).
Dynamic pressure .
Aerodynamic reference area .
Thrust (kg).

, Velocity of sound (m/s) and velocity of mis-
sile (m/s).
Bandwidrh of actuator (rad/s).
Velocity vector of the missile transformed
with respect to the body frame (m/s).
Position vector of the center of mass of the
missile transformed with respect to the iner-
tial frame (m).

, Attack angle and sideslip angle, respectively,
(rad).

, , Actuator inputs for deflation angle, elevator
deflation angle, and rudder deflation angle,
respectively, (rad).
Body-axis roll angle measured from the
downward vertical to about the axis
(rad).
Body-axis pitch angle measured from the
projection of onto the horizontal plane to

(rad).
Body-axis yaw angle measured between a
fixed compass bearing and the projection of

onto the horizontal plane (rad).

I. INTRODUCTION

THE autopilot design for bank-to-turn (BTT) missiles has
received considerable attention according to BTT missiles

has higher maneuverability and aerodynamic acceleration com-
pared with skid-to-turn missiles [10]. However, the requirement
of high roll rate for BTT missiles to change the orientation of
the acceleration will induce undesirable cross coupling between
pitch and yaw motions [25]. Furthermore, the highly nonlinear
aerodynamics and missile dynamics of nonminimum phase
make the autopilot design more difficult.

A wide variety of approaches have been used successfully to
address the autopilot design for missiles. Adaptive robust con-
trol based on well-known input/output (I/O) feedback lineariza-
tion technique to achieve the satisfactory tracking performance
have been presented in [10] and [11]. In [12], the gain-sched-
uling approach based on control theory was proposed. In

1045-9227/04$20.00 © 2004 IEEE

Authorized licensed use limited to: National Taiwan University. Downloaded on January 21, 2009 at 01:25 from IEEE Xplore.  Restrictions apply.



1508 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 15, NO. 6, NOVEMBER 2004

the past decade, optimal control has been widely discussed
for robustness and its capability of disturbance rejection in linear
and nonlinear control systems [6], [7], however, for partly un-
known dynamics, the gain-scheduling for autopilot was
not satisfactory. Exploiting neural networks for BTT missiles
control has been studied recently years [24]–[28]. In [25], al-
though the hybrid radial basis function (RBF) network autopilot
with localized learning capability has demonstrated better per-
formance than gain scheduled autopilot, the adjustable parame-
ters of RBFs are only the hidden-to-output weights.

As to control theory combined with neural networks, not
only optimal tracking can be achieved while perturbations are
absent, but also the worst case effect on the tracking errors due
to the parameter uncertainties and external disturbances can be
reduced to be less than or equal a desired level [8], [9]. How-
ever, the input-to-hidden weights should be chosen by heuristic
method due to only the hidden-to-output weights can be tuned
in [8] and [9].

Motivated by the above approaches, we are inspired to inte-
grate a proposed ridge Gaussian neural network, which is just a
three-layer neural network with Gaussian activation functions,
and control theory to enhance the BTT missiles autopilot
design in handling the tracking control problem with unmodeled
uncertainties. It can be shown that the ridge Gaussian neural net-
work is equivalent to the radial Gaussian neural network with
matrices of scales and rotations of input vectors for each node.
The advantages of ridge Gaussian neural network are fewer pa-
rameters to be tuned than traditional radial Gaussian neural net-
work and both input-to-hidden and hidden-to-output weights
can be on-line tuned.

The remainder of this paper is organized as follows. In
Section II, the control objective is stated. Section III describes
the ridge Gaussian neural networks. The controller design
using the ridge Gaussian neural networks is given in Section IV.
In Section V, a highly nonlinear system, a BTT missile, is
controlled by the controller to demonstrate the availability
of the proposed controller. At last, Section VI concludes the
paper.

II. PROBLEM STATEMENT

The detailed dynamic equations and state notations of BTT
missiles can be referred to the Appendix I. In general, the guid-
ance of BTT missiles generates desired commands including de-
sired rolling angle , and desired accelerations and .
It is obvious that the objective of the autopilot design is to drive
the BTT missile to track the commands. However, the output
assignment ( , , ) will leave the BTT missile system with
the undesirable nonminimum phase phenomenon, which will re-
sult in the I/O feedback linearization technique can not be ap-
plied directly to acceleration control of BTT missiles [12], [28].
The nonminimum phase characteristic can be circumvented by
adopting redefined outputs as ( , , ) or ( , , ) [12] to
apply I/O feedback linearization technique. According to

and , there are several possible
alternatives for the redefined output set ( , , ) as ( , , ),
( , , ) and ( , , ), where is an aero-
dynamic bank angle [24]. In our approach, new output signals

, and are chosen according to the profile of the desired
trajectories.

The nominal plant of BTT missiles can be rewritten by the
input-output feedback linearization technique in the following
form:

(1)

where ,
and . The

relative degree ( , , ) for the three input-output channels is
found to be (3, 2, 2). In the above equation, is an unknown
function vector, is a known gain matrix as given in the
Appendix I and is the input vector. It is also assumed that zero
dynamics are exponentially stable.

For alleviating the nonminimum phase phenomenon, output-
redefinition method is applied such that the new command set
( , , ) should be transformed from the original command
set ( , , ). After transforming commands, is not
changed, and with a constant

. In practice, the desired trajectories (for ) and (for
), which should be smooth, are generated by two first-order

filters with inputs and . The desired trajectory for , ,
still remains zero for keeping small sideslip angle due to

.
Then, the tracking errors are defined as follows:

(2a)

(2b)

(2c)

where , , and are the desired trajectories of , , and
, respectively. Hence, a sliding-surface vector is defined

as

(3)

where each is a strictly positive constant for .
Differentiating with respect to time, we can get

or

(4)

where
.

Assume the inverse of known matrix , , exists
and the unknown is approximated by , then the control
law can be of the following form:

(5)
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where and is used to atten-
uate approximation errors. Substituting (5) into (4) yields

(6)

where . The estimation , which can
approximate accurately, is implemented by the proposed
ridge Gaussian neural network described in the next section.
Due to the appearance of approximation error , our control
goal is to design an BTT autopilot with which the BTT mis-
sile system can suppress the approximation error and follow the
desired commands while maintaining the small sideslip angle.
The tracking performance represented in terms of a finite

gain relationship is expressed as follows [8]:

(7)

where , , and , i.e.,
( is the extended space). Therefore, our control objective
is to design a ridge Gaussian neural network-based autopilot for
BTT missiles to achieve the above tracking performance.

III. RIDGE GAUSSIAN NEURAL NETWORKS

A basic building block of nearly all artificial neural networks
is an adaptive linear combiner which computes the sum of the
weighted inputs [13]. The Gaussian neural networks as other ra-
dial neural networks lack of the adaptive linear combiner, how-
ever, the general multilayed neural networks with sigmoid func-
tions lack of the local learning capability. Therefore, another
purpose of the ridge Gaussian neural networks is to show that
ridge Gaussian neural networks can be also represented by an
architecture consisting of adaptive linear combiners cascaded
with Gaussian activation functions and take advantage of local
learning capability.

A real-valued function defined on is said to be a ridge
function if there exist a linear functional : and a func-
tion : such that [14]. Thus, has the form

. Therefore, the
three-layered neural networks can be viewed as superpositions
of ridge functions. With the ridge functions chosen as sigmoid
activations, it is just the feedforward multi-layered neural net-
work, which has been proved to be an accurate approximator
in [15] and [16]. Different ridge functions as Gaussian function
should be considered, however, the proof in [15] and [16] re-
stricted the set of monotone increasing ridge functions.

The idea using Gaussian functions as activation functions of
neural networks is good but needs theoretical support. Now, let
us try to formulate what we have in mind more clearly. Given
an input vector in , the output of a ridge
Gaussian neural network is determined by

(8)

with the Gaussian ridge function, the
hidden-to-output layer weights, the input-to-hidden layer

weights, and the hidden layer neuron number. According
to the amplitude modification should be
positive and not greater than 1, s should be positive.

Rewrite (3.1) the matrix expression as

(9)

where hidden-to-output weight matrix is , and
input-to-hidden weight matrix is . At first, the defini-
tion of traditional radial Gaussian basis functions is given.

Definition 1: Define radial Gaussian basis functions as

(10)
where , is
the center vector of radial Gaussian basis functions and

.
The following theorem proves that the ridge Gaussian neural

network is equivalent to the sum of scaled and rotated radial
Gaussian basis functions.

Theorem 1: A three-layer ridge Gaussian neural network is
equalivent to a three-layer neural network with rotated Gaussian
activation functions.

Proof: In (8), let such that each
output of ridge Gaussian activation functions can be written as

(11)

where is the th element of and is the th column of
. If we can prove that ridge Gaussian basis functions can be

represented as

(12)

where is the amplitude modification, is the rotation
matrix, is the rotated input vector and
is the center vector, then the proof of Theorem 1 is completed.
According to is a symmetric matrix, there exists
a matrix with orthogonal columns such that

(13)

where . The matrix can be divided
into four blocks

(14)

where is 1 by 1, is 1 by , is by 1 and is
by matrix. Thus (11) can be rewritten as

(15)

where , , the
rotated input vector , the center vector and
the rotation matrix .
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Fig. 1. The tracking errors of redefined outputs with different  .

Besides from the local learning capability, the ridge Gaussian
neural network has other advantages. To avoid tuning s to be
negative, s are selected as small positive values. Thus, a tra-
ditional Gaussian neural network [17] with input variables has

centers, variances and hidden-to-output layer in-
terconnection weights, that is, parameters.
As to the ridge Gaussian neural network, the total number of pa-
rameters is . In other words, the ridge Gaussian
neural network has fewer parameters to be tuned. Another draw-
back of Gaussian neural networks is that guaranteeing the capa-
bility of reconstruction makes the size of the network sparse and
large.

In consequence of using ridge Gaussian neural networks as
approximators, we will show that the ridge Gaussian neural net-
works can approximate any nonlinear function to any desired
accuracy.

Theorem 2: Let and
be a compact metric space, be the set of all continuous

real-valued functions on , and be a subset of . If

1) is an algebra;
2) separates points of ;
3) contains the constant functions, then the closure of

, That is, given and a function on , we can
find a function in (8) such that

.

The proof of this theorem given in Appendix II, which is sim-
ilar to [3] and based on Stone-Weierstrass theorem, is just to ex-
amine that the set

satisfies the three conditions of Theorem 2 (or three con-
ditions of the Stone–Weierstrass theorem [18]). In other words,
this theorem states that ridge Gaussian neural networks are uni-
versal approximators.
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Fig. 2. Comparisons of the tracking errors of redefined outputs with and without noises.

IV. CONTROLLER DESIGN

In the controller design, a ridge Gaussian neural network
is employed to approximate . From Theorem 2, the ridge
Gaussian neural networks with sufficient number of nodes can
approximate any function with arbitrary accuracy. Therefore,
an assumption is given as follows.

Assumption 1: There exist ideal matrices and such that
with can ap-

proximate with accuracy over a compact set , that is,
, such that .

For ease of notation, we denote and
. By employing weight updating law, and

can approach the optimal weight matrices and . Applying

to (6), we obtain

(16)

where , and

. By Taylor series expansion [19], rewrite as

(17)
where , and

denotes the Taylor series higher-order terms.
Substituting (17) in (16) yields

(18)
where . Take
initial conditions , and into consider, the
tracking performance [9] is modified as

(19)
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where

, ,
and and are diagonal matrices. Then the control
objective is to determine , and the weight update law of
and to guarantee the tracking performance (18) with a
prescribed disturbance attenuation level .

Theorem 3: Applying the control law (5) to the nonlinear
system (1) with

(20)

(21)

(22)

where and are diagonal matrices, and is a positive
constant. The matrix is the solution of

(23)

Then the tracking performance is achieved.
Proof: Select a storage function candidate

(24)

The time derivative of can be written as

(25)
Substituting (18) and (20)–(22) in (25) yields

(26)

Since

and

, (26) becomes

(27)

To complete the proof, it is necessary to integrate the both side
of the above inequality from to

(28)

TABLE I
COMMAND SET VERSUS TIME

Since , (28) becomes

(29)

that is, (19) is obtained.
Remark: Since is a diagonal matrix, the Riccati-like (23)

can be solved simply. Let and be diagonal matrices, and
, then (23) is simplified to three simple

quadratic equations. Therefore, (23) can be solved easily by
choosing , , and carefully.

V. SIMULATION RESULTS

In the gain scheduling controller [12], the controller is highly
dependent on the LTI controller at each fixed operating point.
It is of practical significance for a gain-scheduling controller
with a fewer number of linear controllers [28]. In our approach,
complexity is reduced for only one autopilot is used. Therefore,
our approach is simpler and easier to design.

In the following simulations, the BTT missile is subject to the
following physical limitations:

1) attack angle : ;
2) sideslip angle : ;
3) roll rate : ;
4) pitch rate : ;
5) yaw rate : ;
6) actuator position saturation: , and

.
In the first simulation, during the time interval between

0 and 2 s, the desired output signals were ,
and . And

for 2 4 s. For obtaining de-
sired smooth trajectories, and were generated by

and .
The number of neurons in the hidden layer was chosen as 20.
If we use the method in [2], then the size will be over 2000
neurons. The initial conditions are
and .
In addition, the design parameters were selected as

and three different ( , ) pairs:
, (0.1, 0.01), and (10.0, 2.0). The
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Fig. 3. All states of the BTT missile in example 2. (a) P, Q, R. (b) �, �, and 	. (c) U, V, and W. (d) X, Y, and Z. (e) d , d , and d . (f) � and �.

weights ( and ) were initiated as small random
values and s were all set to be 0.0001. The simulation pro-
grams written in C language ran on Pentium II PC with 128
MB RAM. Equation (4.6) can be easily solved without running
any software. From the computer simulations, Fig. 1 shows the
errors of redefined-outputs and the commands. As expected, the
errors decrease with the decrease of . Fig. 2 shows the results
of adding noises, which are driven by three random noises with
maximum 0.02 degree amplitude, to the outputs of the actuator.

The next simulation has the same initial conditions and the
command set in the continuous flight is listed in Table I. The
desired trajectories and were also generated by

and . During
the first 1.2 s, the large demand acceleration command is
to force the BTT missile to increase the height fast. In the four
nonzero commands intervals, BTT missile should roll to and
achieve the demand acceleration command by means of
a high rolling rate [as shown in Fig. 3(a)] which induces a
cross-coupling effect resulting in a small transient in pitch ac-
celeration and a small overshoot in yaw acceleration as

shown in Fig. 4. Furthermore, Fig. 4 also confirms the cross
coupling effect can be overcome by our autopilot design. Such
a continuous flight scenario needs only one proposed autopilot
rather than many linear controllers in gain-scheduled autopilot
design.

Fig. 3 shows that all states of the BTT missiles meet the phys-
ical constraints during the 18 s. Fig. 3(a) shows that not only
the high roll rate meets the physical limitation, but also the
pitch rate and yaw rate meet the physical requirements, re-
spectively. In Fig. 3(f), we can verify that the requirements of
positive angle-of-attack and small sideslip angle are satis-
fied. Moreover, effective aileron deflection angle , effective
elevator angle and effective rudder deflection angle fall
in the toleration regions as shown in Fig. 3(e). In the above two
simulations, only one controller is used in the flight process,
and the parameters of the controller are the same. All training
processes are on-line and no physical limitations listed in Ap-
pendix I were violated to track the signals as well. Therefore,
use of the proposed controller clearly results in superior
tracking performance and robustness.
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Fig. 4. The outputs of the BTT missile in the continuous flight.

VI. CONCLUSION

In this paper, a ridge Gaussian neural network combined
with control theory has been proposed to the autopilot
design for BTT missiles. The ridge Gaussian neural network
with a flexible architecture employing control technique
can achieve the desired tracking performance with attenuation
of disturbances including approximation errors and external
uncertainties. And the solution of Ricatti-like equation for
disturbance rejection control signals can be simplified to be
easy to determine in this paper. For ridge Gaussian neural
networks, not only the input-to-hidden and hidden-to-output
layers weights but also the orientations and shapes of Gaussian
functions can be tuned and that improves the flexibility
of Gaussian neural networks. The proposed controller was
applied to BTT missiles and simulations demonstrated the
effectiveness successfully.

Fig. 5. The BTT missile diagram.

APPENDIX I
STATE NOTATIONS AND DYNAMIC

EQUATIONS OF BTT MISSILES

Assuming the BTT missile shown in Fig. 5 is a rigid body, the
complete 6 degrees-of-freedom (DOF) dynamics of BTT mis-
siles can be given by ,

,
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, ,
, ,

, ,
and (see equation at the bottom

of the page) where ,
, ,

, ,
, and . The ac-

tuator is modeled by a first-order system as follows:
, , .

The nine elements of the gain matrix derived by
input-output linearization technique are as follows:

,
,

, , ,
, ,

, and , where s are aerodynamic
coefficients that are complex functions of and and not
given here. The above 6-DOF missile dynamic equations and
detailed process of derivation can be referred to [12].

APPENDIX II
PROOF OF THEOREM 2

Proof of Theorem 2: Let be the set of all ridge
Gaussian functions s expansion, and

be the sup-metric; then ( , ) is

a metric space [3]. At first, we should prove that ( , ) is an
algebra. Replacing (12) into (8) and let , , we can get

(30)

(31)

Adding (30) and (31) yields

(32)

It is obvious that (32) is the same form as the expansions of (12),
so that . Similarly, multiplying (30) with (31), we
can obtain

(33)

where
. The (33) is also in the same form as the expansions of (12).

Therefore, . For arbitrary

(34)

which is again the expansions of (12); hence, . The
result is that ( , ) is an algebra.

Next, we will prove the second condition, that is, ( , )
separates points on . This part of the proof is derived from
constructing a required ; i.e., specifying a such that

for arbitrarily given , with
( and ). We

choose two ridge Gaussian functions (i.e., ) with
as

(35)

(36)

With
, we have

(37)

(38)

If and , then . Therefore, for
every , , , there exists such that

, that is, ( , ) separates points on .
The last condition is that ( , ) vanishes at no point on .

It is easy to meet the condition; for example, we can set all s
in (8) are positive such that any with meets
the condition.

Finally, using Stone-Weierstrass theorem, we have completed
the proof.
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