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Abstract

Howell, R.R., L.E. Rosier and H. Yen, Global and local views of state fairness, Theoretical
Computer Science 80 (1991) 77-104.

In this paper, we compare global and local versions of state fairness for systems of concurrent
programs and Petri nets. We then investigate complexity and decidability issues for the fair
nontermination problem. It turns out that for systems of concurrent Boolean programs and
1-bounded Petri nets, the problem is PSPACE-complete with respect to global state fairness, but
EXPTIME-complete with respeci to local state fairness. For general systems of concurrent
programs, both the globally and locally state fair nontermination problems are undecidable. (In
fact, they are I1,-complete and X}-complete, respectively.') On the other hand, the problem is
decidable for general Petri nets with respect to global state fairness, and undecidable (2,-complete)
with respect to local state fairness.

1. Introduction

In recent years, nondeterministic models, such as Petri nets, concurrent programs,
communicating sequential processes (CSP), and networks of communicating finite-
state machines (CFSMs), have been successfully used to represent many real-world
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' X} (3,) stands for the first level of the analytical (arichmetic) hierarchy. IT} (IT,) denotes the set of

languages whose comnlements are in X} (3,).
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systems that involve paraliel computations (see, e.g., [2, 14, 27, 34]). A major benefit
of such (nondeterministic) models is that they often have a simpler structure than
their deterministic counterparts (cf. [22,30,31]). On the other hand, due to the
nature of nondeterminism, it is, in general, hard to analyze these systems. One of
the fundamental issues concerning nondeterministic systems is the study of problems
concerning their infinite behavior (e.g., the deadlock, lockout [20], starvation, and
termination problems), especially when a “fairness constraint™ is taken into account.
Throughout the last decade, several notions of fairness with respect to these models
have been proposed in conjunction with problems related to nondeterministic
computations. In fact, muliitudes of papers have been written on the subject. For
example, in [4], Carstensen and Valk investigated the well-known dining philoso-
phers problem, taking fairness into consideration. In [3, 15, 16], questions of fairness
concerning Petri nets were examined. A hierarchy of notions of fairness for Petri
nets can be found in [1]. Problems concerning the fair termination of finite-state
concurrent systems can be found in[13, 23, 28, 36, 39]. Each of the above investigated
the problem of determining whether a given system of finite-state concurrent pro-
grams will terminate under the assumption of some fairness constraint. With respect
to finite-state concurrent programs more general problems (i.e., model checking)
have also been extensively studied (cf. [7, 8, 38]). Definitions of fairness concerning
networks of CFSMs can be found in [10]. A hierarchy of fairness constraints with
respect to CSP was propcsed by Manna and Pnueli [25].

In the study of nondeterministic systems, a very useful practice is to represent
each system configucation by a “staie™. A state can be regarded as the result of
_.KIng a “‘snapshot™ of the system at a given instant. Such a representatioa allows
us to describe a concurrent system by a directed graph in which each node represents
a system state and each eage indicatcs a transition (operation) of some program.
As far as a single-program nondeterministic system is concerned, this definition of
“state’” is unambiguous. However, for a system with concurrency (i.e., a system
consisting of several programs running in parallel), the concept of state can have
either a “'global” or “local™ interpretation. A global state is a description of the
entire system at some point in its execution. in contrast, a local state for a particular
pregram describes only the information concerning the resources to which that
program has access. That is, global states correspond to the view of a global observer
while local states correspond to the view of u local observer.

So far, most of the research in concurrent systems deals with the concept of global
states. One of the reasons is that global state spaces appear to allow us to have a
clean view of the actions within a system. Furthermore, verification and specification
methods foi concurrent systems under a global state space representation have been
well investigated in recent years. However, there are some cases (for example,
systems with an arbitrary number of processes [37]) where a global observer cannot
exist. For such cases, the notion of a global state is, in some sense, meaningless. A
related problem is that online verification methods utilizing global states have
implementatior. difticulties for certain distributed systems from the practical point
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of view. (For example, in a message-passing system a machine cannot “‘freeze™ the
computation of the system and then acquire the necessary information.) Con-
sequently, it is worth taking a closer look at the issue of “‘global™ vs. *‘local™ from
both theoretical and practical points of view.

The main contribution of this paper is to examine the above issue from the
theoretical point of view. To achieve this goal, we investigate the global and local
versions of state fairness with respect to the nontermination problem? for concurrent
programs and Petri nets. The notion of state fairness (or an enhanced version called
extreme fairness) due to Pnueli [28] is of interest because, as was shown in [28], it
can be used to capture the essence of “probabilistic’’ computations. Informally
speaking, a computation is said to be state fair iff whenever a transition from a
state occurs infinitely often, all enabled transitions from that state must be executed

mﬁmtelv often. The motivation is that |f a state occurs infinitely often and
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Complexity of the nontermination problem (with respect to polynomial-time reductions).

Global state fairness Local state fairness
Systems of concurrent PSPACF .complete EXPTIME-complete
Boolean programs
1-bounded Petri nets PSPACE-complete EXPTIME-complete
Systems of concurrent M,-complete 2 ;-complete
programs
Petri nets decidable 3;-complete

The remainder of the paper is organized as follows. In Section 2, we provide an
informal di.cussion about global and local versions of state fairness. In Section 3,
we introduce the formal computational models utilized in this paper. Qur complexity
results with respect to systems of concurrent Boolean programs and 1-bounded Petri
nets are presented in Section 4. Our results with respect to general systems are
presented in Section 5.
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2. A discussion of the issue

In what follows, we explain the issue of global vs. local state fairness in an
informal manner. A more formal description will be provided in Section 3. To
understand the difference between global and local versions of state fairness, consider
the example in Table 2 (see also Fig. 1 for the corresponding transition diagram).
Here two programs A and B are running concurrently using x and y as shared
variables (z is B’s private variable). /, and I, (re:pectively m, and m,) are program
locations of program A (respectively program B). (Program locations are, concep-
tually, similar to statement labels in conventional programming languages.) Also

Table 2
A concurrent system.
x=y=z=0
Program A Program B
l,: iftruethen v:=1gotol, ...aq, m, : if true then y = 0; =:= 0 goto m, ... by
O O
if x = 1 then goto /, R 8 ify=1az=0theny:=0;z:=1gotom, ...b,
O
ify=1az=1then x:=1gotom, cooby
1,: (Termination) m,: (Termination)
Program A Program B
R y := 1 ’ -\\ - g h ~
. 7 it y=1 A 2=0 then .
Sy y:=0;2z:=1 N
K yi=2:=0"
m "~
(] 1/ x 1
. b3
it x=1:
: lit y=1 A 2=1
then x :=
% y ! z
v

shared variables

Fig. 1. A rransition diagram I'~r the concurrent system shown in Table 2.
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notice that transitions a, and a. (respectively b,, b, and b;) of program A (respec-
tively program B), separated by boxes in Table 2, are executed nondeterministically.
We define a global state to be a tuple [(/; x, y), (m; x, y, z)], where | and m are
program locations of A and B, respectively, and x, y and z are variables; while
local states of A and B are represented by (I; x, y) and (m; x, y, z), respectively.
(More rigorous definitions of global and local states will be given in Section 3.)

Consider the infinite execution sequence o: [a,, a,, &;, a,, b,, b,, b,]° (a; and b,
refer to transitions shown in Fig. 1 and the superscript o indicates that the sequence
will be repeated infinitely many times). Suppose that the job of an observer is to
determine whether the above computation is state fair. The traditionai view is that
the observer is provided with a large observationai window that views the entire
system. However, such a view may not be feasible. Instead, one can have many
observers, each having a small observational window which is capable of viewing
the configuration of a single program. For example, suppose the current configuration
(global state) of the system shown in Table 2 is [(/; x, y), (m; x, y, z)]. Two kinds
of pictures, i.e.,

I(I;x,y)(m;x,y,z)l and (or ),

can be viewed depending on the size of the observational window. In what follows,
we shall see that the issue of whether the observer judges a computation to be state
fair depends on the size of the observational window. Now, viewing o through the
large window, the observer can see the following (global) state sequence:

[[(1,;0,0), (m,;0,0,00]=>[(1,;0,1),(m,;0,1,0]=[(],;0,1), (m,;0,1,0)]
2 [(1,30,0), (m,; 0,0,0)] 5 [(1,; 0, 1), (m, 0, 1,0)]
% [(1,;0,0), (m,; 0,0, 1)]=>[(/,; 0,0), (m, 0,0,0)]

2 [(1,50,0), (m,; 0,0, 0)]}“.

In this sequence, a, is never executed from the global state [(/,;0,0), (m,; 0,0, 1)],
although a, is enabied infinitely often in that state. Consequently, the computation
is not state fair in the global sense. On the other hand, using smailer windows,
observers will view the following two state sequences (dzpending upon whether the
observer’s view is focused on A or B) corresponding to o:

a oy b, dy
A: [('I;O,O)_I)(llsoyl)_’(’%;osl)—’(ll;OyO)_’('ll;Ool)

b, h, b "
= (1,;0,00—(1,;0,0)— (1,;0,0)]

and
a % b,
B: [(m,;0,0,0)— (m,;0,1,0)— (m,;0,1,0)— (m,;0,9,0)

a b, hl bl w
—(m,;0,1,0) = (m,;¢,0,1)— (m,;0,0,0) — (m,;0,0,0)]".
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Transition a, occurs infinitely often in A’s two local states (/,;0,0) and (/,;0, 1).
Also, transition b, (respectively b.) occurs infinitely often in B’s local states
(m,;0,0,0),(m,;0,0,1) and (m,;0,1,0) (respectively (m,;0,1,0)). As a result,
the computation will be judged state fair by the observers using small windows;
i.e., o is staie fair in the local sense. It is reasonably easy to see that there is no
globally state fair infinite computation for this system. Hence, the example reveals
that the answer to the state fair termination problem for concurrent systems migh:
depend on the underlying notion of fairness (i.e., whether global or local fairness
is assumed).

Consider also that in many real-world concurrent systems, the ratio of execution
speeds between processes can be arbitrarily large (but finite). This too, in some
cases, will affect the termination of a system. To see this, consider again the example
in Table 2. Suppose the speed ratio of A to B is exactly reflected by the computation
o. In this case, transition a, was never ready when the global state
[(4,;0,0),(m,;0,0,1)] was reached (i.e., when B’s private variable z had a value
of 1). (This can happen if, at that moment, A was still executing its internal
operations.) Hence, a, will never be executed in that state. Therefore, such *“‘col-
laboration™ can prevent terminating computations. As a result, state fair computa-
tions for such a sysiem might be those defined by local fairness.

As far as we know, no efforts have been made to clarify the fundamental issue
of global vs. local state fairness. In fact, the underlying architecture of concurrent
systems appearing in the literature is usually based on the concept of a global state
space [13, 23, 29]. Although for some applications this approach is applicable, for
others it may not be suitable. In addition to this, since each giobally state fair
nonterminating computation is also locally state fair, proving that a system will
terminate with respect to local state fairness will guarantee the termination of the
system in terms of global state fairness.

Based on the above observations, local vs. global state fairness is an issue that
deserves further study from both theoretical and practical points of view. In Section
3, we define formally global and local versions of siate fairness for two concurrent
models, namely, syst~ ns of concurrent programs and Petri nets. In Section 4, we
study the complexity of the nontermination problems for restricted versions of the
above two models, i.e., systems of concurrent Boolean programs (i.e., programs
with Boolean variables) and 1-bounded Petri nets (i.e., Petri nets with 1-bounded
places). It turns out that for these restricted models, the globally state fair nontermi-
nation problem is complete® for PSPACE” (polynomial space), whereas the locally
state fair nontermination probl=m is complete for EXPTIME® (exponential time).

' Completeness results mentioned in this paper. unless otherwise stated, are with respect to polynomial-
time many-one raductions.

* PSPACE =, , DSPACE(n'), where DSPACE(S(n)) denotes the class of languages accepted by
deterministic Turing machines in Sin) spacz.

CEXPTIME =, , DTIME(2" ), where DTIME( T{a)) denotes the class of languages accepted by
deterministic Turing machines in T(n) time.
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In Section 5, we investigate the decidability of these problems with respect to gereral
systems of concurrent programs and general Petri nets. We are able to show that
for concurrent programs, the globally and locally state fair nontermination problems
are undecidable (IT,-compiete and Zi-complete, respectively). On the other hand,
for Petri nets the globally state fair nontermination problem is decidable, while the
locally state fair nontermination problem is undecidable (X,-complete). These results
seem to indicate that despite the above merits for some applications, problems
related to local state fairness are, in genera!, harder to analyze than those related
to global state fairness. We also hope that the results of this study will allow us to
have a better insight into the nature of parallel computations.

3. The models

In this section, we define global and local versions of the state fair nontermination
problem for two concurrent models, namely, systems of concurrent programs and
Petri nets.

Let Z denote the set of integers. A system of concurrent programs S is a triple
(P, V, v,), where P={P,,..., P} is a finite set of programs (defined below), V =
{vi,..., v} is a finite set of variables, and v,: V — Z is the initial value function.
Each program P,, 1<i<k, is a 5-tuple (Q,, V,, §,, X,, s,), where

(1) Q,={r\,...,ru} is a finite set of program locations (the reader can think of

program locations as statement labels, as in FORTRAN or PASCAL);

(2) Vi={v),...,v,}c V;

(3) 8,={b},...,84}, where each §,, 1<j=d,, is a set of transitions at location

r,. Each transition 1 € §; is of the following form:

if p(vy,...,v5)thenx,; ==y, +¢;;...; X, =¥, +c,gotor.,

where p is a logical expression. over the variables v}, . . ., v}, , integer constants,
the arithmetic operator +, the relational operators =, <, and >, and the
logical cperators v, A, and =, {X;, ..., Xp, V1s..., Y} S Vis €1,.... Cp are
(possibly negative) integer constants; and r.€ Q,;
(4) X, < Q, is the set of rerminal program locations; and
(5) s, € Q, is the initial program location.
We alsc require that for 1 < i, j< k, if i # j, then Q, ~ Q, = 0. (N-ste that this implies
that 8, " &, =.) Figure 2 provides a pictorial description of a concurrent systern.
The size of a concurrent system S or a program P, (denoted by ||S|| and || P,|
respectively) is d« Sned to be the length of its description when a standard binary
encoding technique is used. Given a system S of k prograris, the set of shared
variables between programs P, and P, i #j, is the set G,,= V,n V,. For a given P,.
V,-U.,., G, is the set of P’s private variables. A global state of S is a pair [a, v'].
where a:P—»U:‘,, Q, such that a(P,)e Q, is the current locadion function, and
v:V— Z is the current value function. The initial siate of S is the pair [a., r,] such
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P2

1 shared variables

terminal program location private variables

Fig. 2. A two-program concurrent system.

that a,( P,) = s,. For a program P, € P, the local state ot P, associated with the global
state [a, r] is the pair (a(P,), v(V,)), where v(V,) denotes the restriction of v to
V,. A local state (r), »(V,)) is terminal iff r;c X,. A global state [, v] is terminal
iff there is an i such that a(P,) € X,. {Note that the sets of terminal locations are
detined arbitrarily and have nothing to do with halting.)

Let 1< 8, be the transition

ifpler. . vy thenxy =y el X, = n, to, goto i

1 is said 1o be enabled at the global state [a, r] and the local state (r,, v(V,)) iff
a(P)=r, and p(r(e)),...,r(v,))=true. We then write [e, v] > [e’, #'] and
(r, (V) = r', v'(V,))), where
® o' (P)=r';
® a'(P)=a(P) fori #i;
® '(n,)=r(y,)t ¢, tor 1= h<m; and
® v'(v,)= r(v,) for all other v, ¢ V.
A computation is a sequence of global states
o I, ' [
ailag vy -==la,, 1] —= - -<=[a, 1]

A computation can be finite or infinite. A system S = (P, V, v,) is a system of Boolean
programs if tor all global states [ a, »] in all computations, v(t,) < {0, 1} for all v, € V.

A transition ¢ is globally state fair (iceally state fair) for a computation o iff 1 is
executed intinitely often in all the global (loc:al) states at which it is enabled infinitely
often. A computation is globally state fair (localiy state fair) iff all of its transitions
are globally state fair (locally state fair). Note that a globally state fair computation
is also a locally state fair computation and that the definitions are identical for
single-program systems. A nonterminating computation is an infinite computation
in which no global state is a terminal state.
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For convenience, we now introduce some alternative notation to that defined
above. First, without increasing the expressive power, we can describe programs
using high-level language constructs, such as loop . . . end-loop, if . . . then. . . else. It
is not hard to see that these constructs can easily be implemented using if-then-goto
statements. We can then construct a system S from n programs sc defined as long
as all initial values of variables are clear from the context. We will then write
S=(P,,...,P,). Also, if an ordering is assumed on the h, variables in program P,
we may represant a restriction of a current value function v( V,) as an A,-dimensional
vector V'=(b,,..., b,), where each & = »r(r,). A local state of P, may then be
repiesented as (r), &,,...,5,) (or (r;; V')). A global state of S may then be
represented as [g,, ..., q,], where each ¢, is a local state of P,. It should be noted,
however, that given a local state g, for each P, [q,...., g,] does not necessarily
represent a global state of S.

The globally (locally) state fair nontermination problem is to determine, given a
system of concurrent programs, whether there exists a globally (locally) state fair
nonterminating computation.

In the second part of this section, we define the globally and locally state fair
noniermination problems with respect to Petri nets. We first give some preliminaries
of Petri nets that are needed for the remainder of this paper. The reader should
consult [27, 34] for more detailed definitions. A Petri net ¢ is a 4-tuple (P, T, ¢, u,),
where P is a finite set of piaces, T is a finite set of transitions, ¢ is the flow function
¢ (PXxT)u(TxP)— N, and p,, is the initial marking u,: P— N, where N 1is the
set of natural numbers. For each 1T, we let r={pl¢(p,t)>0} and ¢t =
{q|¢(i, q) >0} be the sets of input and output places of t, respectively. A marking
is a mapping u: P— N. We often establish an order on the places, p,....,p, and
designate a marking u as a vector in N* where the ith component represents u( p,).
We say u( p,) is the number of tokens in place p, at u. A transition t€ T is enabled
at a marking u iff for every pe P, u(p)=¢(p,1). If 1 is enabled at u, we write
pnu', where u'(p)=pu -¢(p, 1) +¢lt, p) for all pe P, to represent the action of
firing 1 at w. p' is the resulting marking. A sequence of transitions o =1,t...1,...1s
a firing sequence from p, iff py 2o g, Lo ly p, i, oo LA firing sequence can
be finite or infinite. (If o =1,1-...1, is finite we sometimes write u, = u,.) A
computation from u, is a (finite or infinite) sequence of markings g, ... ... such

] !

that y, I, My Loy M, =, -+ for some firing sequence 1,1, ... 1,.... If there
exists a finite firing sequence o — iy, ... 1, such that u, > u,, then u, is said to be
reachable from pu,, via . For a Petrinet € = (P, T, ¢, p.), the reachability set, denoted
by R(€), is the set of markings {u|u, == u, for some finite o}. Given 1 Petri net €
and a marking u, the reachability problem is to determine whether w € R(£). A Petri
net ‘¢ is said to be 1-bounded iff for every e R(€), u(p)=<1, forall pec P (ie,
the number of tokens in any place will never exceed 1).

A partition of a Petri net (P, T, ¢, p,) is a set of subsets of transitions ./ =
{T,..... T} which satisfies T,~ T,=@, for all i#j, and J, | T,=T. (Partition
elements with respeci to P2tri nets correspond o programs in a system of concurrent



R6 R.R. Howell, L.E. Rosier, H. Yen

programs.) Given a subset of transitions T', we let T’ be the set of places {p|3Ite
T', ¢(p,1)>0 or ¢(1, p) >0}. Given a marking u and a subset of places P’ (< P),
we use u(P’) to denote the restriction of u to P'. (u(P’) is referred to as a
submarking.) Given a computation o : e, ... &,...and a subset of places P’, we
define the projection of o on P, denoted by a(P’), to be the sequence
po( P (P') ... (P') ... Given a partition 7 ={T,,..., T.}, an infinite computa-
tion ¢:pap, ... M. ..is said to be staie fair with respect to 7 if it satisfies the
following condition: Vi, 1 <i=<r, V marking u, Vte T, enabled at y, if there exist
infinitely many j's such that g, ( T.) = u(T,), then t must be fired at infinitely many
of these u,’s.

The locally state fair nontermination problem for Petri nets is to determine, given
a Petri net and a partition .7, whether there exists an infinite computation which is
state fair with respect to .7. The globally state fair nontermination problem for Petri
nets is to determine, given a Petri net ¢ =(P, T, ¢, u,), whether there exists an
infinite computation which is state fair with respect to { T}. (Note that .7 was ignored
in the lawter definition just as the set of programs was ignored in conjunction with
global state fairness for systems of concurrent programs.)

4. Complexity results for systems of concurrent Boolean programs and
I-bounded Petri nets

In this section, we first establish the relationship between 1-bounded Petri nets
and systems of concurrent Boolean programs by showing that one is computationally
harder in a specific way. We then derive the complexity of the nontermination
problems for 1-bounded Petri niets and systems of concurrent Boolean programs
with respect to global and loca!l state fairness.

Lemma 4.1. Given a 1-bounded Petri net ¢ =(P, T, ¢, u,) and a partition T =
{T\...., T}, we can construct, in polyvnomial time, a svstem of r concurrent Boolean
programs S such that € has a globally (locaily) state fair nonterminating computation
(with respect to .7) iff S has a globally (locally) state fair nonterminating computation.

Proof. Let ¢ =(P, T, ¢, u,) be a i-bounded Petrinetand .7 ={T,,..., T,}apartition
of T. One simply coastructs a system of r concurrent Boolean programs S =
(Py,..., P,))over |P| variables as follows. Each variable will correspond to a unique
place in P. Each P, 1=i=r, will consist of a single program location and have
access to the variables that correspond to places in T,. P, 1<i=<r, will have |T}|
transitions each designed to simulate a transition of T,. The variables then are
initialized so as to correspond to u,,. The construction should now be obvious. Note
that since € is 1-bounded. S is a system of Boolean programs. The lemma then
fcllows immediately from the respective definitions of state fairness. [
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We would like to show the converse of this lemma. That is, given a syster: of r
concurrent Boolean programs S, that we can construct, in polynomial time, a
1-bounded Petri net € = (P, T, ¢, u,) and a partition 7 ={T,,..., T,} such that S
has a globally (locally) state fair nonterminating computation iff 6 has a globally
(locally) state fair nonterminating computation (with respect to 7). Unfortunately,
there seems to be a problem with such a construction. We would have to design a
way for € to emulate the if-then-goto statements. Now suppose S (or a program in
S) has access to n variables. Each Boolean predicate over these variables is a
function from {0, 1}" to {0, 1}. Hence, we can write doubly exponential distinct such
predicates. Because there are only singly exponential globai states for S, however,
only singly exponential outcomes may arise. Yet, it seems hard to devise a way for
% to distinguish the action caused by a particular predicate—at least in polynomial
time. As a result the converse of Lemma 4.1 appears questionable. With respect to
the issues of complexity studied here, however, we will show that this does not matter.

The next lemma indicates that for 1-bounded Petri nets, the globally (locally)
state fair nontermination problem is as hard as the reachability problem for 1-
bounded Petri nets under polynomial time reductions. Since the reachability problem
for 1-bounded Petri nets is PSPACE-compleie [17], we will have shown that the
globally (locally) state fair nontermination problems for systems of Boolean pro-
grams and 1-bounded Petri nets are PSPACE-hard.

Lemma 4.2. For an arbitrary 1-bounded Petri net € =(P, T, ¢, u,) and marking p,
one can construct, in polvnomial time, a 1-bounded Petri net €' =(P', T', ¢', uy) and
a partition .7 in such a way that p € R(¢) ifi ¢’ has a globaliy (locally) state fair
nonterminating computation with respect to .7.

Proof. The new Petri net ¢'=(P', T', ¢', u,) is constructed as follows (see Fig. 3).

(1) P'={4',q"|q9<€ P}u{c, q.,}—all distinct.

(2) VieT,if t={p,,....p.,} and t ={q,,...,q.}, T' contains a transition 1’
where the sets of input and output places of 1 are {p},...,p. ~qi,..., qm}
and {p},....pn.C.q),....qn}, respectively. (Recall that f and r are the
sets of input and output places of 1, respectively.) Note that ¢ serves as a
control place in the sense that 1’ is firable only if ¢ possesses a token.

(3) T’ contains a transition 1. where 1, ={c}and 1, =0 (i.e., 1, is used to remove
the token in ¢).

(4) T’ contains a transition 1,,,, where 1., ={4..,} and 1,.,, = {G.up}-

(5) Lastly T’ contains a transition h where the set of input places of h is
{r'lm(r)=1}U{s"| u(s) =0} and the set of output places of h is {qu.,}. (h is
used to test whether u is reached.)

(6) uo(g)=pmolq), ui(qg")=1-puq), Vqge P,
mole) =1, and
Bk Gronp) = 0.

Finally, let .7 ={T'}.
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Fig. 3. Portions of a Petri net that simulates the reachability problem via the nontermination problem.

¢’ behaves as follows. As long as h has not fired ¢’ mimics the moves of €.
During this time the current marking being simulated is represented by the number
of tokens in the primed places (i.e., the current value of g€ P is in q'€ P’). Also,
during this time the total number of tokens in ¢” and q’ together is always exactly
1. Whenever ¢ fires, ¢’y token is removed and cannot subsequently be replaced.
This action disables any further simulation of ¢ by €. Thus, after ¢, fires the only
possible enabled transition is i But h is only enabled if the number of tokens in
the primed places corresponds to u. Hence, if u € R( ¢ ) then there is a firing sequence
for ¢’ that can result in the firing of 1,, then h. Afterward, only #,.,, can be enabled.
This firing sequence can be extended by firing ¢,,.,. infinitelv many times. It is now
easy to see that this extended firing sequence defines a globally (locally) state fair
nonterminating computation (with respect to .7 ). This takes care of the only if part.
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Now suppose that ' has an infinite computation o which is globally (locally) state
fair with respect to ./. Clearly, r must fire in . Thus, if b does not fire, o will be
finite. But o is infinite. Therefore, & must fire in o—and this can only h.ppen if
p € R('€). This completes the proof. [

In what follows, we show that the globally (locally) state fair nontermination
problem is complete for PSPACE (EXPTIME) for systems of concurrent Boolean
programs and 1-bounded Petri net.. This suggests that problems related to local
fairness are, in some cases, harder to analvze than those related to global fairness.
We first introduce some terminology.

Given a system of concurrent programs S = (P,, P., ..., P,), the global state graph,
denoted by G, is a divected labelled grapb in which:
® each node in G, is a k-tuple [q,. g-,.... ¢ ] which represents a global state of

S, and
® there exists an ¢dge labelled  from node {q,.....q, Jtonode [¢,,....4,]in G,

iff [gr,....q]=1q.....q:)

Given two #odes s and s’ in G, we use s ~ s’ 10 denote that there is a path from
s to s’ in . Let s, be the initial state. A subgraph G’ of G, is reachable iff s, v &
in G, for some node s'€ G'. A finite subgraph G’ of G, is called a g-knor iff

(1; G'is astrongly connected component (i.e.,if s, s~ GG', then s ~ s"and s "~

in G') having at least one edge.

(2) no node in G’ is a terminal node (a node representing a terminal state), and

(3) V transition ¢, if 1 is enabled in a node (state) s in ', then there is an edge

(s, s') labelled 1 in G'. (An equivalent definition is that, Vs (G if s~ ',
then s’e G")
G’ is an l-knot iff

(1) G’ is a strongly connected component having at least one edge,

(2) no node in G’ is a terminal node, and

(3) V¥ transition ¢, if ¢ is enabled in a node (state) {¢,,....q,....,q.]in G', where

P, is the program containing 1, then there exists in G” an edge (u, v) labelled

t, where u=[u,,... . u,.... ;] = v=[rv,,...,0u]and ¢, = u,.
Note that in the definition of the I-knot, no edge labelied 1 in G’ is required to
originate at [q,,....q,....,q.), as was ihe case in the definition of the g-knot.
Figure 4 is an l-knot with respect io the state graph corresponding to the system in
Table 2. (The dashed edge does not belong to the graph.) Note that it is not a g-knot
since transition a, (indicated by the dashed edge) is enabled in
[(1,;0,0),(m,;0,0,1)], but not included in the subgraph as an outgoing edge of
[(1,;0,0),(m,;0,0,1)]. however, it is included as an outgoing edge of some node
containing the local state (/,; 0, 0).

g- and I-knots for Petri nets can be defined similarly. It is worth mentioning that,
conceptually, the notion of g-knots and that of so-called rraps (defined in [11]} are
similar. (A trap is a subset of places with the property that if, initially, it contains
at least one token, then it cannot become empty (i.e., contain no token-) by firing
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[(1, 30,0) (m, ;0,0,0)]

[(1,:0,3) (m, 30,:.0)]

Fig. 4. An I-knot in the state graph of the system shown in Table 2.

transitions.) Both have the property that once a computation “falls” into a *‘black-
hole™ (a g-knot or a trap), the computation must remain in the blackhnle forever.
The fundamental difference between g-knots and traps for Petri nets is that g-knots
are defined on the reachability graph of a Petri net; while traps are defined on the
Petri net structure.

Before we derive the complexity result for the globally state fair nontermination
problem, we first prove the following lemma, which provides a characterization of
those global state graphs that admit globaliy state fair nonterminating computations.

Leama 4.3. Given a system of concurrent Boolean programs S (or a 1-bounded Petri

net and a partition J), there is a globally state fair nonterminating computation iff
Gy has a reachable g-knot.

Proof. Suppose G' is a reachable g-knot of Gg. Let s, be the initial node (state).
According to the definition of a reachable g-knot, there exists a node s’ in G’ such
that s,~ s’ in Gs. Furthermore, there exists a path s’ —> s, = -+ — s, = s’ in G,
for some d, which contains every node and utilizes every edge in G'. It is then easy
to see that sy~ [s'— 5, — -+ - — 5, — 5']” is a nonterminating globally state fair
computation of S.

Now suppose ! is a nonterminating globally state fair computation of S. Let G’
be a subgraph of G consisting of those states and transitions that occur infinitely
often in L Clearly, G' is a strongly connected component. Since [ is nonterminating,
G’ does not contain any terminal node. Furthermore, since [ is globally staie fair,
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any transition that is enabled in a state in G’ must oe executed infinitely often in
I. Hence, the transition is in G'. Consequently, G’ satisfies the three conditions of
being a g-knot. This completes the proof [

Now, given a system of k concurrent Boolean programs S=(P,,..., P,) of size
n, the number of distinct global states can be as many as 2¢“", for some fixed constant
c. Hence, the size of the corresponding global state graph is, in general, Q(2*")—and
always O(2""). One might expect therefore that an algorithm to decide the globally
state fair nontermination problem might require an exponential amount of space
or time. In what follows, we show that despite the size of the global state graph,
we need only space polynomial in n to solve the globally state fair nontermination
problem for systems of concurrent Boolean programs. The next lemma provides a
method to test for the existence of a g-knot without actually generating the global
state graph or the g-knot.
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d) Vse G, if s~ s’ in Gg, for some s', then s'e G.
Now, we first show the oniy if part, (i.e., if a reachabie g-knot exists, then there is
a reachable node s satisfying conditions (1) and (2)). Let G=(V, E) be such a
g-knot. Let s be «ny node in V. Suppose s can reach (in Gs) a deadend state or a
terminal state, say s’. Let s — s, — - - - — s’ be such a path. Due to condition (d),
s'€ V. Since this conclusion contradicts either (b) or (c), the only if part holds.
On the other hand, suppose there is a node s satisfying both (1) and (2). Let Q
be the set of all nodes reachable from s. Recall that u ~ v (u — v) denotes that v
can be reached from u (in one step). We deﬁne an equivalence reiation “~" such
that u ~ v iff u » v and v » u. Using ** ~ ", one can decompose Q into equivalence
classes. Let Q' be an equivalence class whlch has no successors with respect to
“—"_ (The finiteness of Gs, and hence Q, guarantees the existence of such a Q'.)
Now, Q’ cannot contain just a single state s’ having no outgoing edges since such
an s’ would be a deadend node. Let E ={(u, v)|u e Q' and (u, v) is an edge in Gs}.
We claim that the subgraph G = (Q’, E) is a reachable g-knot. Condition (a) follows
immediately from the definition of Q. Since no terminal node is reachabie from s,
(c) is satisfied. Also, (b) and (d) are satisfied because Q' is an equivalence class
espect to “—"". This completes the proof of the if part. [

1aving NO successors wit t completes

=
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Theorem 4.5. The following two problems are PSPACE-complete:
(1) the globally state fair nontermination problem for systems of concurrent Boolean
programs,
(2) the globally state fair nontermination problem for 1-bounded Petri nets.

Proof. Since the reachability problem for 1-bounded Petri nets is PSPACE-complete
[17], the lower bound for (1) and (2) follows directly from Lemmas 4.1 and 4.2.
Hence, we need only consider the upper bound, and then only with respect to
systems of concurrent Boolean programs (Lemma 4.1). But the upper bound follows
directly from the characterization provided by Lemma 4.4. O

Recall that for sysiems consisting of a single program the notions of local and
global state fairness are identical. in what follows, we show tii. . the locally state
fair nontermination problem is EXPTIME-complete for systems consisting of more
than one concurrent Boolean program (or for 1-bounded Petri neis when the size
of the partition is greater than 1). In what follows we show that an arbitrary
polynomially space bounded Alternating Turing Machine (ATM) can be simuiated,
in some sense, by the locally state fair computations of a system of two concurrent
Boolean programs. The lower bound is then obtained since polynomially space
bounded ATMs have the same computational power as exponentia! time bounded
deterministic Turing machines [6] (i.e., the class of machines defining EXPTIME).

An ATM M is a 5-tuple (Q, 2, 8, q0, g), Where
® (Q is a finite set of states,

@ 3 is a finite tape alphabet (without loss of generality, we assume that the input
and worktape alphabets are identical),

6c(Qx2)x(Qx3Xx{-1,0,+1}) is the next move relation,

® q, is the initial state,

@ g:(Q — {existential, universal, accepting, rejecting}.

Basically the concept of alternation is a generalization of nondeterminism in a way
ihat allows existential and universal quantifiers to alternate during the course of a
computation. Four kinds of states exist in an ATM; namely existential, universai,
accepting and rejecting states. ATM configurations, likewise, fall into one of the
same four categories—depending solely on the current state. A universal configura-
tion leads to acceptance iff all successor configurations lead to acceptance. An
existential configuration leads to acceptance iff there exists a successor configuration
that leads to acceptance. An ATM accepts its input iff the initial configuration leads
to acceptance. Basicaily, the computation of an ATM is a tree. A path in this tree
is called a computation path. During the course of a computation path, the segment
between two consecutive alternations between types of configurations is called an
alternation block. Detailed definitions can be found in [6]. The complexity classes
of languages accepted by space (time) bounded ATMs were also defined in [6]. In
particular, APSPACE is the set of languages accepted by polynomially space
bounded ATMs. It was shown ir: [6] that APSPACE = EXPTIME. In what follows,
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this result will be used to prove the EXPTIME lower bound. Without loss of
generality, we require that our polynomially space bounded ATMs:
(1) have initial configurations which are existential,
(2) be such that each computation path culminates in either an accepting or
rejecting configuration, and
(3) be such that the number of successors of any configuration be 0 if the
configuration is accepting or rejecting and 2 otherwise.
If M is a polynomiaily space bounded ATM that does not satisfy these properties
an equivalent ATM A’ that does can readily be constructed using standard tech-
niques (see [6]).
To show the upper bound, we need the following easily shown lemma. Since the
proof is very similar to that of Lemma 4.3, we leave it to the reader.

Lemma 4.6. Given a systen: of concurrent Boolean programs S (or a 1-bounded Petri
net and a partition J), there is a locally state fair nonterminating computation iff G
has a reachable I-knot.

Theorem 4.7. The following two problems are complete for EXPTIME:
(1) the locally state fair nontermination problem for systems of concurrent Boolean
programs,
(2) the locally state fair nontermination problem for 1-bounded Petri nets.

Proof. Because of Lemma 4.1, it will be sufficient to establish the lower (upper)
bound with respect to (2) ((1)). We do illustrate the upper bound with respect to
(1). However, we choose to illustrate the lower bound with respect to (1) also. We
do this for what we feel is a very good reason. The lower bound proof is somewhat
tedious and is much easier to understand in terms of Boolean programs. The same
general idea works with respect to 1-bounded Petri nets but explanations thereof
tend to become overly concerned with the ATM encodings. Getting a 1-bounded
Petri net to simulate an ATM in the same fashion (as the Boolean programs do) is
not difficult, but it does add significantly to the technical detail. The interested
reader should consult [17], where simulations of LBAs (linear bounded automata)
via 1-bounded Petri nets are discussed. The generalization to ATMs should be clear
once the general strategy is understood.

Let M be an h(n) space bounded ATM, where h is a polynomial function. Let
x be an input for M. Let |x| = n. In what follows, we will show how to construct
(in polynomial time) a system S=(P,, P.) of two concurrent Boolean programs
that will “simulate” the computation of M on x in such a way that S will have a
locally state fair nonterminating computation iff M accepts x. Without loss of
generality, we assume that M operates over a binary alphabet.

Basically, P, repeatedly simulates a computation path of M on x as long as each
simulation path culminates in an accepting configuraticn. Each repetition of this
simulation is referred to as a period. h(n) local variables in P, will be used to
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simulate the contents of M’s worktape. log h(n; (plus some constant number of)
local variables of P, will be used to record M’s current tapehead position (state,
etc.). During different periods, P, may simulate different computation paths of M
on x. If when simulating a computation path an accepting configuration is reached,
P, reinitializes its variables in order to simulate another computation pati:. If, on
the other hand, a rejecting configuration is reached, P, terminates.

Consider now a computation path (of M on x) that passes through a configuration
g. Suppose that during an infinite computation o of S, P, enters infinitely often a
local state where the simulation being performed by P, is at q. If q is a universal
configuration, P, should be enabled to advance the simulation to either of ¢’s
successor configurations. P, in conjunction with P, will be constructed so as to
allow this. Thus in this case, providing o is locally state fair, P, will infini:ely often
enter local states where the simulation being performed by P, is at each of ¢’s
successor configurations. If g is instead an existential configuration, P, should be
enabled to advance the simulation to only one of g’s successor configurations—the
one that leads to acceptance. P, in conjunction with P, will be constructed so as to
allow this. So, in this case, if o is locally state fair P, need only enter infinitely
often one of the two possible local states where the simulation being performed by
P, is at a successor of g. Therefore overall, if o is locally state fair, P, will infinitely
often enter only and exactly those local states where the simulation being performed
by P, is at a configuration of M on x that leads to acceptance. Since along o, P,
must infinitely often enter a local state where the simulation being performed is at
the initial configuration of M on x, M must accept x. Likewise, if M does not
accept x, o cannot be locally state fair.

In what follows, we dub a local state of P, accepiing, rejecting, universal, or
existential depending on thc category of the current configuration of M on x. Now
the simulation of a computation path by P, (a period) proceeds in phases correspond-
ing to the alternation blccks in the path. When P, is in a universal state, P, will be
busy waiting. A shared variable D, set to 0, will insure this. At this time, P, will be
enabled to simulate either of M’s available moves. When P, enters a state that is
existential (from any state), control is passed to P, by setting D to 1. P, is then
busy waiting until P, sets D back to 0. P, then sets D to 0 and f ncndeterministically
to either 0 or 1, and resumes busy waiting. P, will now be enabled to simulate one
of M’s available moves if f =0 and the other if f= 1. Thus, P, in an existential state
will always be enabled to simulate exactly one but not both of M’s available moves.
P, (via its nondeterministic setting of f) simply controls which one becomes enabled.
Finally, once the simulation of P, reaches an accepting configuration of M on x,
P, sets D to 1, P, then sets f to 0 or to 1 (P, does not use this value of f; rather,
this step is included only in order to ensure that the computation can be locally
state fair with respect to P,), then P, sets D to 0 and the entire procedure begins
anew. As a result, S = (P,, P,) behaves in the desired fashion. A detailed description

of P, and P, now appears in Table 3. The detailed proof showing that S behaves
as described is left to th:¢ icuder.
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Table 3
The concurrent system (P,, P,).

Shared variables: D, f.

Program P,:
L1: Initialization; /Set the current configuration being simulated
to the initial configuration of M on x./

EU-fiag:=0; /0 and 1 denote existential and universal phases, respectively./

Di=0; f:=0;

loop

/Assume that the current configuration of M on x is q and g — ¢’

and g — g" are its left and right transitions, respectively./
if EU-flag =0 then

begin
D:=1; /enable P,/
Ly: if D=1 then goto L5 /busy-waiting/;

if D=0xf=0then “simulate g — ¢"";
if D=0Af=1 then “simulate g — q"";
end
else
Ly: “pick g — g’ or g — q" to simulate nondeterministically
Ly: case current configuration /now either g’ or q"/
accepting: goto L2;
rejecting: TERMINATE;
universal: EU-flag = 1;
existential: EU-flag == 0,
end case
end loop
L2: D=1,
L3: if D=0thengoto L1 else goto L3;
end

L1}

Program P,:
loop
wait: if D =0 then goto wait;
begin /nondeterministic choice/
f=0
Of=1
end
D=0,
end loop

It should be noted that a locally state fair computation of S need not be globally
state fair. The reason is that in order for existential moves to be simulated ‘“correctly”
infinitely often, P, must be able to set f ‘“‘correctly” each time. This may not be
possible if the computation is required to be globally state fair.

Now, we will show the upper bound with respect to (1) '« a system S of n
concu:rent Boolean programs, the number of global states is O(27"), for some fixed
constant c. Hence, in exponential time we can construct the corresponding global
state graph Gg. Recall that each node in Cs represents a global system state and
that each edge in G; represents a transition of one of the Boolean programs. Recall
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also that S will have a locally state fair nonterminating computation iff G5 has a
reachable I-knot (Lemma 4.6). The following procedure can then be used to deter-
mine the existence of a reachable l-knot in Gs:

Algorithm: Partition Gs into maximal strongly connected compenents (SCCs) Q=
f Pl |
1Y, YUdyge
S W) PRy o WPAY, T
wilie ¢ =y a0
LR TR DRIV Ny cnw £ amd lae N_N_ 1721
pick one element from Q, say G, and let @ =Q —1G;
a s Nt S DR TS TR\ SN,
1T U 1S reacnavi€ ITOII &g
then

if G is an I-knot,
then output “Gg has a reachabie i-knot™ and hait
else
(i) let G’ be the subgraph obtained from G by removing all nodes and
associated edges that violate the definition of an I-knot
(ii) partition G’ into maximal SCCs Gy, ..., G}
(iii) let Q=Qu{G},...,G}}
end-while
output “Gs has no reachable l-knot™.

S
fact that the aigorithm works shouid aimost be ciear from the
definitions. The only point that might nee
i-knot, then there must exist either:
® a terminal node ¢, in G, or
® anode q, in G, a node g, outside of G, and a transition f (belonging to a program,
say P;) such that g, > g.. Furthermore, t does not label any edge in G emanating
from a node whose local state (with respect to P;) is the same as that of gq,.
(Note that by definition one of these items must exist.) Let G' be the subgraph of
G resulting from the removal of g, and its incident edges. Clearly G’ # G. Now if
G contains an I-knot, the I-knot cannot contain g,—hence it must be contained
within an SCC of G'. The fact that the algorithm works should now be obvious.
Now we are ready to analyze the algorithm’s complexity. First note that each of
the following two steps can be carried out in time polynomial in the size of Gg:
@ constructing the set of maximal SCCs, and
® determining whether a subgraph is an I-knot.
Therefore, the execution time required for the algorithm is polynomial in the size
of Gs. Since the size of G is bounded by 2*", this establishes the upper bound—and
thus completes our proof. [
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5. Decidability results for general systems

In this section, we investigate decidability issues of the globally (locally) state
fair nontermination problems for general Petri nets and systems of concurrent
programs. We will show that both the globally and locally state fair nontermination
problems are undecidable for systems of concurrent programs. In particular, we
show that the locally state fair nontermination problem is complete for =,—the first
level of the analytical hierarchy (see, e.g., [35])—whereas the globally state fair
nontermination problem is complete for IT,—the set of languages whose comple-
ments are accepted by Turing machines. With respect to Petri nets, the problem is
decidable for global state fairness, but still undecidable for local state fairness. In
particular, we show that the locally state fair nontermination problem for Petri nets
is complete for X,—the set of languages accepted by Turing machines. (The results
here with respect to Petri nets should be compared and contrasted with those of
[16] where each undecidable fair nontermination problem was X |-complete rather
than X ,-complete.) The disparity between concurrent systems and Petri nets is mainly
because Petri nets operate in a more asynchronous fashion due to the lack of zero
testing capabilities.

We first reproduce the following theorem, which we first showed in [16].

Theorem 5.1 (from [16]). The globally state fair nontermination problem for Petri nets
is decidable.

Proof. Let € be an arbitrary Petri net. We first determine whether € is bounded.
(See [19, 32] for boundedness algorithms.) If € is unbounded, there is an infinite
firing sequence o which reaches each marking at most once. o is clearly globally
state fair. On the other hand, if o is bounded, we can construct the reachability
graph. Then there is an infinite state fair firing sequence iff the reachability graph
contains a g-knot (i.e., a strongly connected component from which there is no
exit). O

In what follows, we show the locally state fair nontermination problem with
respect to Petri nets to be complete for X,. The typical strategy for showing fair
nontermination problems (with respect to Petri nets) to be undecidable is to show
that the fairness constraint can be used to eventually force correct zero-testing in
the simulation of a counter machine (see, e.g., [3]). This strategy is used in showing
the following theorem.

Theorem 5.2. The locally state fair nontermination problem for Petri nets is X,-hard.

Proof. We use a reduction from the halting problem for 2-counter machines, which
is known to be 3,-hard [26]. Let M be an arbitrary 2-counter machine of [26]. We
will construct a Petri net 6 and a partition J of €’s transitions such that € has a
locally state fair nonterminating computation with respect to J iff M accepts € (the
empty string). Without loss of generality, assume M is deterministic and has a
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unique final state g, that can only be entered when both counters are 0. The strategy
is similar to that given by Carstensen [3]. First, an arbitrary natural pumber is
generated. This number is then used to bound the length of the simulation and the
size of the counters. Accepting computations are then repeatedly simulated so that
eventually all zero tests are correct.

The Petri net € is divided into two main parts, INIT and SIM. € as well as the
partition J is portrayed in Fig. 5. The purpose of INIT is to generate an arbitrary
natural number. In any locally state fair computation, s, must eventually fire,
permanently disabling s,. When s, fires, SIM may begin simulating a computation
of M. At this point, the places clock, ¢,, and ¢, all contain some arbitrary integer n
generated by INIT. From this point on, the pairs (clock, clock), (c,, ¢,), and (c,, &)
are duals in the sense that clock + clock = ¢, + &, = ¢+ & = n. The transitions t,, . . . , t,
then simulate the moves of M by keeping a token in the current state, updating c,
and ¢, to store the contents of the counters, updating ¢, and &;sothat ¢, + ¢, = ¢, + ¢, =
n, decrementing clock, and incrementing clock each move. Thus, any computation
of length n or less may be simulated. If this computation terminates in the accepting
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Fig. 5. A Petri net for simulating a 2-counter machine.
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state ¢, a new computation ot length n or less may Le simulated. However, there
is no guaraniee that SIM wili always correctly simulate shme computation of M.
In particular, a move that can only be executed by M when some counter is zero
may be executed by SIM when that counter is positive. To overcome this problem,
SIM contains two subcomponents, ZERO, and ZERO,. As SIM simulates M
entering any state in which a zero-test occurs on seme counter, say c,, it places a
token on query in ZERO,, and waits for ZERO, to respond by placing a token on
either yes or no. If ¢, =0, s.s, must be fired, so a token is piaced on ves. If ¢, #0,
either 55 or s, may be fived. If s; fires, i token is placed on no. On the other hand,
if s, fires, sy is enabled. Since ¢, never exceeds n, if sy is enabled infinitely many
times in any locally state fair computaiion, it must eventually fire, leaving nc
transitions enabled. Thus, in any locally state fair nonterminating computation, s,
will fire when ¢, # 0 at most finitely many times. After the last of these times, SIM
correctly simulates moves of M. After this point, g, can only be entered when both
¢, and ¢, are zero. Thus, in any locally state fair nonterminating computation, €
must eventually simulate correctly an accepting computaticn of M.

Now suppose M has an accepting computation o of length n. Let o’ be the
computation of € in which INIT generates n and SIM repeatedly simulates o. We
will now show that o' is locally state fair with respect to I by considering each
T.€ J separately.

e T,={s,}: s, is enabled only finitely manv times in o',

® T,={s,}: s, is enabled only finitely many times in o',

® T,={s:}: s, is fired every time it is enabled in o'

o T,={s}: T.,={qo, g, }, all markings reached in o’ at which s, is enabled have

q,=0 and g, =1, and s, is fired infinitely often.

T, ={ss}: ss is fired every time it is enabled in o'.

® T,={s,, s;}: T,={query, test, yes}, and all markings reached in o' at which s is
enabled have query =1, test =0, and yes =0. Si:ice o ends with both counters
zero, we can assume without loss of generality that o contains at least one
successful zero-test; hence, s, is fired infinitely often in o'. s, is fired every time

it is enabled in o'.

e T.={t,,...,1,}: Since M is deterministic, each of these transitions is fired every

time it is enabled in o'

We can conclude that € has a locally state fair nonterminating computation with
respect to & iff M has an accepting computation on . (]

The above proof shows how local state fairness can be used to force the generation
of arbitrary natural numbers and zero-testing. In [16], we showed how these
capabilities can typically be used to show fair nontermination problems for Petri
nets to be X,-complete. However, such is not the case with respect to local state
fairness, because each locally state fair compuiation must be bounded in order for
zero-testing to be enforced. The next two lemmas and the subsequent theorem show
the locally state fair nontermination problem to be in Z,.
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Lemma 5.3. Let p be a place in a Petri net € =(P, T, ¢, o). If o =popu,...is an
infirite computation in which p is unbounded, then o fires a sequence 6 such *hat
i iy i < g, i p) < p(p), and if p' is any place that is bounded in o, p,(p') =

wmi(p').

Proof. Since p is unbounded, there is an infinite sequence I of natural numbers
ip<i < - --such that j,(p)<u,(p)< - - -. Furthermore, there must be an infinite
subsequence I’ of 1, i, <iy< - - - such that u;; < pu;; < - - -. Clearly, there must exist
i, j€ I' such that i <j and for all places p’ that are bounded in o, u;(p') = u;(p’'). O

Lemma 5.4. Let € =(P, T, ¢, u,) be a Pztri net, urd let T be a partition of T. If there
is a locally state faii nonterminating computation of € with respeci to J, then there
exist finite firing sequences 0, and 6. such that p, 2 p, AERR 5 3 -« - is a locally

state fair computation of ‘€ with respect to J.

Proof. Let o be a locally state fair nonterminating computation of € with respect
to J. Let U be the set of places unbounded in o, and let B be the set of places
bounded in 0. Let o, =y 25 u, be a finite prefix of o containing all markings p
such that the submarking w(B) is reached only finitely many times in ¢, and such
that the submarking u,(B) is reached infinitely many times in 7. Let o, be the
remainder of . For each pe U, let 6, be the firing sequence from o, guaranteed
by Lemma 5.3. Let o3 =, % u- be a finite prefix of o, such that

(1) 6 contains all 6, such that pe U;

(2) if the transition ¢ is fired from infinitely many markings in o, containing the
submarking p(B), then t is fired from some marking u' in o, such that
n(B) = u'(B) (since there are only finitely many distinct values of u(B) such
that u is in o, this condition is satisfied by a finite prefix of o,); and

(3) pa2(B)=pu (B) (since p,(B) is reached infinitely many times in o, this condi-
tion can be satisfied).

We now construct 8, from 6 as follov's. Scanning 6 from left to right, when the
beginning of a loop 6, is encountered, insert enough copies of 6, to make the
displacement of p in the resulting firing sequence positive. Since the displacement
of each 6, is positive, the resulting sequence 6. has a positive displacement.
Furthermore, since each 6, has a zero displacement on all places in B, and since
p1(B) = u-(B), 6, has a zero displacement on all places in B. Hence, oniy sub-
markings wholly containcd in B are repeated infinitely often in

LA o, - 0

Mo — My = > — p3— -+ . Thus, from condition (2) above, 6, and 6, satisfy the
lemma. O

Theorem 5.5. The locally state fair nontermination problem for Petri nets is in 3.

Proof. Let €=(P, T, ¢, u,) be an arbitrary Petri net, and let  be an arbitrary
partition of T. We now describe a TM M that accepts (6, 7) iff € has a locally
staie fair nonterminating computation with respect to 7. (Note that M is not required
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to hailt on aill inputs.) M fi-st guesses 6, and 0. given by Lemma 5.4, and verifies
that oS u, S u>  such that mi<m>. M then verifies that o=
po<b B a5 w5 - - - is locally state fair with respect to J. This verification
is done in the following manner. Let B={p|u,(p) = p:(p)},andlet U ={pju,(p) <
p>(p)}. Clearly, if T, contains a place in U, there will be only finitely many markings
p in o such that u(7T;) = p'(T)) for any given u'. Hence, M only needs to consider
those elements T; ¢ 7 such that T, = B. M therefore verifies that for all win 5 s,
if transition t € T, such that T,c_: B is enabled at u, then 1t is fired at some u' in
1 2w, such that w(T;) = w'(T,). Once this is verified, M accepts. From Lemma
5.4, M accepts iff € has a locally state fair nonterminating computation with respect
e J. O

The following result follows immediately from Theorems 5.2 and 5.5.

Corollary 5.6. The locally state fair nontermination problem for Petri nets is X,-
complete.

As mentioned above, local state fairmess with respect to Peiri nets cannot be used
to enforce arbitrary use of both zero-testing and the generation of arbitrary natural
numbers. However, concurrent programs can perform zero-testing without relying
on a fairness constraint. Therefore, we can use local state fairness with concurrent
prograrms to generate arbitrary natural numbers at will. This capability allows us to
show that the locally state fair nontermination problem for concurrent programs is
31-complete. In order to characterize the class |, we introduce the notion of
infinite-branching programs. An infinite-branching program is simply a program with
the added ability to nondeterministically generate an arbitrary natural number. We
now give the following lemma from [5], which gives a characterization of 3.

Lemma 5.7 (from [5]). The set of all infinite-branching programs that contain an
infinite computation is = \-complete.

We can now show the following theorem.

Theorem 5.8. The locally state fair nontermination problem for concurrent programs
is X}-complete.

Proof. We will show this problem to be equivalent to determining whether an
infinite-branching program contains an infinite computation. Let P be an infinite-
branching program. We will show how to construct a system (P,, P») of programs
(without infinite-branching) that has a locally state fair nonterminating computation
iff P has an infinite computation. First, consider Table 4. Suppose Program P, is
compietely deterministic. (Note that the portion shown is.) Since both P, and P,
are deterministic, any nonterminating computation in whicli both programs execute
transitions infinitely often is locaily state fair. Furthermore, it is easily verified that
any nonterminating computation in which P, executes transitions cnly finitely many
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Table 4
Simulation of infinite-branching.

Program P, Program P,

1,: if true then x:= 1 goto /,
m,: if true then n:=0; x =0 goto m,
ma.: if x =1 then goto m;

O

if x =0 then n:=n+1 goto m,
my: ...

times is not locally state fair. Thus, in a locally state fair computation, n may be
incremented to an arbitrary value, as long as the resulting computation is nonter-
minating, but the loop at m, must always ierminate. Since this technique can be
used to simulate bounded nondeterminism as wel! as infinite branching, we can
construct a deterministic program P, such that (P,, P,) has a locally state fair
nonterminating computation iff P has an infinite computation.

Nowlet S =(P,,..., P;) be an arbitrary system of k concurrent programs { without
infinite branching). We will construct a program P with infinite-branching that has
an infinite computation iff S has a locally state fair nonterminating com-utation. P
simulates S by nondeterministically selecting transitions to simulate. As the simula-
tion progresses, P maintains a table containing all local siates reached by each P,.
When 2 new local state q is reached by some P;, P guesses for each transition ¢ ¢.
P; enabled at g how many times P, will be in state g befere ¢ is executed. P then
stores this value as n,,. Each time P, is in state q, P decrements n,,. Each time ¢
is executed from state g, P guesses a new n,,. If, after a new n,, is generated, some
n, . is zero, P halts. Clearly, P has an infinite computation iff S has a locally state
fair nonterminating computation. [

As our last result, we show that the globally state fair nontermination problem
for concurrent programs is IT,-completc. In order to show this, we must descrite a
TM that can verify that there is no globally state fair nonterminating computation
in a given system. The main reason we are able to do this is given in the following
lemma.

Lemma 5.9. Any system S of concurrent programs having an infinite set of reachable
states has a globally state fair nonterminating computation.

Proof. Consider the reachability tree T of S defined as follows. Let the initial state
of § be the root of T. For each nonierminai state ¢ in T, the children of q are all
states reachable from q by one move of S, except those states that are ancestors of
q (where q is considereda an ancestor of itself). Since the set of reachable states is
infinite, T must be infinite. Since T has a bounded branching factor, T must have
infinite depth. Therefore, there is an infinite path in T representing a nonterminating
computation in which no state is entered more than once. This nonterminating
computation is globally state fair. ]
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Theorem 5.10. The glokally state fair nonte: mination problem for concurrent progranis
15 II,-complete.

Proof. Given an arbitrary deterministic TM M, we can clearly construct a determinis-
tic program P that terminates iff M halts un €. Since the only computation of a
single deterministic program is always globaily state fair, P has a globally state fair
nonterminating computation iff M docs not halt. ‘fhe preblem is therefore T1,-hard.
Let S be a system of concurrent programs. We will describe a TM M that accepts
> iff S has no globally state fair nonterriinating computation. M first begins to
construct Gs. If this graph is infinite M* will never accept S, but from Lemm: 3.9
there is a globally state fair nonterminating computation. If the graph is finite, when
M compietes the graph it then searches the graph for a g-knot, accepting iff one
does not exist. From Lemma 4.3, M accepts S iff 5 has no globall; state fair
nonterminiting computation. Therefore, the problem is f,-complete. [
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