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Abstract 

Howell, R.R., L.E. Rosier and H. Yen, Global and local views of state fairness, Theoretical 
Computer Science 80 ( 1991) 77- 104. 

In this paper. we compare global and local versions of state fairness for systems of concurrent 
programs and Petri nets. We then investigate complexity and decidability issues for the fair 
nontermination problem. It turns out that for systems of concurrent Boolean programs and 
l-bounded Petri nets, the problem is PSPACE-complete with respect to global state fairness, but 
EXPTIME-complete with respect to local state fairness. For general systems of concurrent 
programs. both the globally and locally state fair nontermination problems are undecidable. (In 
fact, they are FL,-complete and Z i -complete, respectively.‘) On the other hand, the problem is 
decidable for general Petri nets with respect to global state fairness, and undecidable t2,-complete) 

with respect to local state fairness. 
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systems that involve parallel computations (see, e.g., [2,14,27,34]). A major benefit 
of such (nondeterministic) models is that they often have a simpler structure than 
their deterministic counterparts (cf. [22,30,3 I] ). On the other hand, due to the 
nature of nondeterminism, it is, in general, hard to analyze these systems. One of 
the fundamental issues concerning nondeterministic systems is the study of problems 
concerning their infinite behavior (e.g., the deadlock, lockout [20], starvation, and 
termination problems), especially when a “fairness constraint” is taken into account. 
Throughout the last decade, several notions of fairness with respect to these models 
have been proposed in conjunction with problems related to nondeterministic 
computations. in fact, multitudes of papers have been written on the subject. For 
example, in [4], Carstensen and Valk investigated the well-known dining philoso- 
phers problem, taking fairness into consideration. In [3,15, 161, questions of fairness 
concerning Petri nets were examined. A hierarchy of notions of fairness for Petri 
nets can be found in [ 11. Problems concerning the fair termination of finite-state 
cottcurrent systems can be found in [ 13,23,28,36,39]. Each of the above investigated 
the problem of determining whether a given system of finite-state concurrent pro- 
grams will terminate under the assumption of some fairness constraint. With respect 
to finite-state concurrent programs more general problems (i.e., model checking) 
have also been extensfvely studied (cf. [7,8,38]). Definitions of fairness concerning 
networks of CFSMs can be found in [lo]. A hierarchy of fairness constraints with 
respect to CSP was proposed by Manna and Pnueli [25]. 

In the study of nondeterministic systems, a very useful practice is to represent 
each system configuration by a “stale”. A state can be regarded as the result of 

.rcmg a “snapshot” of tfre system at a given instant. Such a representatio&l allows 
us to describe a concurrent system by a directed graph in which each node represents 
a system state and each eoge indicates a transition (operation) of some program. 
As far as a single-program nondeterministic system is concerned, this definition of 
“state” is unambiguous. However, for a system with concurrency (i.e., a system 
consisting of several programs running in parallel), the concept of state can have 
either a “global” or “local” interpretation. A global state is a description of the 
entire system at some point in its execution. In contrast, a local state for a particular 
program describes only the information concerning the resources to which that 
program has access. That is, global states correspond to the view of a global observer 
while local states correspond to the view of ~g local observer. 

So far, most of the research in concurrent systems deals with the concept of global 
states. One of the reasons is that global state spaces appear to allow us to ha,qe a 
clean view of the actions within a system. Furthermore, verification and specification 
methods for concurrent systems under a global state space representation have been 
well investigated in recent years. owever, there are some cases (for example, 
systems with an arbitrary number of processes [37]) where a globaE observer cannot 
exist. For such cases, the notion of a global state is, in some sense, meaningless. A 
related problem is that online verification methods utilizing global states have 
implementation di culties for certain istributed systems from the practical point 



of view. (For example, in a message-passing system a machine cannot “freeze” the 
computation of the system and then acquire the necessary information.) Con- 
sequently, it is worth taking a closer look at the issue of “global” vs. “local” from 
both theoretical and practical points of view. 

The main contribution of this paper is to examine the above issue from the 
theoretical point of view. To achieve this goal, we investigate the global and local 
versions of state fairness with respect to the nontermination problem’ for concurrent 
programs and Petri nets. The notion of state fairness (or an enhanced version called 
extreme.fairne~s) due to Pnueli [28] is of interest because, as was shown in 1281, it 
can be used to capture the essence of “probabilistic” computations. Informally 
speaking, a computation is said to be stale fiir iff whenever a transition from a 
state occurs infinitely often, all enabled transitions from that state must be executed 
infinitely often. The motivation is that if a state occurs infinitely often and, at each 
juncture, one tosses an unbiased coin to determine the next transition, then the 
probability of almost always neglecting some outgoing transition (enabled at that 
particular state) is zero. A similar concept has also been considered by Queille and 
Sifakis [29] (under the name of fair choice from states) to study transition systems 
and their fairness-related properties. 

The main concern here is to study how the global and local views of state fairness 
will affect the complexity of the fair nontermination problem. Our study concentrates 
on four models of parallel computation- systems of concurrent Boolean programs, 
l-bounded Petri nets, general systems of concurrent programs, and general Petri 
nets. A summary of our results is presented in Table 1. Some related issues of local 
vs. common (global) knowledge in distributing computing can be found in 
[ l&9,12,21]. See also [ 33) for related problems concerning games. 

I 
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2. 
lain the issue of global vs. local state fairness in an 

informal manner. A more formal description will be provide in Section 3. To 
understand the difference between global and local versions of state fairnes 
the example in Table 2 (see also Fig. 1 for the carresponding transition 
Here two programs A and B are running concurrently using x and y 
variables (z is ‘s private variable). I, and I? (respectively m, and m-+) are program 
locations of program A (respectively program B). (Program locations are, concep- 
tually, similar to statement labels in conventional programming languages.) Also 

Table 2 

A concurrent system. 
.pJCp() 

Program B 

I, : if true then y := 1 got0 I, . . . a, 
Cl 
ifx=1thengotoI, . ..a2 

I, : (Termination) 

m, : if true then _r := 0; 2 := 0 goto m, . . . A, 
cl 
ify=lh z=Othen_r:=O;t:=Igotom, . ..& 

q 
ify=I~:=Ithens:=I . . . h 

m, : (Termination 1 

rogram A Program B 

‘\ 
‘\ ‘. . F‘ /it y=l * r=O then 

: 
.x.’ 

‘*.* 
-’ 

.- . . .a.- . . . . ..-. 

riables 

sitio own in le 2. 



Global and local oiew qf slate .fairne.w 

notice that transitions a, and a (respectively 6, , b2 and J+) of program 
tively program B), separated by boxes in Table 2, are executed nondeter 
We define a global state to be a tuple [(I; x, y), (m; X, y, z)], where I and m are 
program locations of A and B, respectively, and X, y and z are variables; while 
local states of A and B are represented by (I; X, y) and (m; X, y, z), respectively. 
(More rigorous definitions of global and local states will be given in Section 3.) 

Consider the infinite execution sequence (or: [a,, a,, b, , Q, , b2, b, , b,]” ( ai and b, 
refer to transitions shown in Fig. 1 and the superscript w indicates that the sequence 
will be repeated infinitely many times). Suppose that the job of an observer is to 
determine whether the above computation is state fair. The traditional view is that 
the observer is provided with a large observational window that views the entire 
system. However, such a view may not be feasible. Instead, one can 
observers, each having a small observational window which is capable of viewing 
the configuration of a single program. For example, suppose the current configuration 
(global state) of the system shown in Table 2 is [(I; X, JT), ( m; x, y, z)]. Two kinds 
of pictures, i.e., 

(I; x,y)(m; x,-v, z) and m(I; (or m(m;), 

can be viewed depending on the size of the observational window. In what follows, 
we shall see that the issue of whether the observer judges a computation to be state 
fair depends on the size of the observational window. Now, viewing a through the 
large window, the observer can see the following (global) state sequence: 

2 [(I, ; 0, 01, (m, ; 0, 0, O)]]“. 

In this sequence, a, is never executed from the global state [( I, ; 0, 0), ( m, ; 0, 0, 1 )], 
although Q, is enabied infinitely often in that state. Consequently, the computation 
is not state fair in the global sense. On the other hand, using smaller windows, 
observers will view the following two state sequences (depending upon whether the 
observer’s view is focused on A or B) corresponding to u: 

A: [(~,;0,0)~(1,;0,1)li:(l,;0,1)-1:(1,;0,0)fi:(1,;0,1) 

%1,;0,O)~(r,;o,o) $1, (I, ; 0, O)]” 

and 

. . [(m,;WhO)~( 

%m,;O,l,O)$ 



82 R. R. Howell, L. E. Rosier, H. Yen 

Transition a, occurs infinitely often in A’s two local states (I, ; 0,O) and (I, ; 0, 1). 
Also, transition b, (respectively 6,) occurs infinitely often in B‘s local states 
(lzl, ; 0, 0, 0), (ltl, ; 0, 0, 1) and (m, ; 0, 1,O) (respectively (m, ; 0, I, 0)). As a result, 
the computation will be judged state fair by the observers usi small windows; 

i.e., u is state fair in the local sense. It is reasonably easy to s that there is no 

globally state fair infinite computation for this system. Hence, the example reveals 
that the answer to the state fair termination proble for concurrent systems migh: 
depend on the underlying notion of fairness (i.e., al or local fairness 

is assumed). 
Consider also that in many real-world concurrent systems, t e ratio of execution 

speeds between processes can be arbitrarily large (but finite). This too, in some 
cases, will affect the termination of a system. To see this, consider again the example 
in Table 2. Suppose the speed ratio of A to B is exactly reflected by the computation 
G. In this case, transition ul was never ready when the global state 
[(I, ; 0, 0), (m, ; 0, 0, l)] was reached (i.e., when B’s private variable z had a value 
of 1). (This can happen if, at that moment, A was still executing its internal 
operations.) Hence, a, will never be executed in that state. Therefore, such “coI- 

laboration” can prevent terminating computations. As a result, state fair computa- 
tions for such a system might be those defined by local fairness. 

As far as we know, no efforts have been made to clarify the fundamental issue 
of global vs. local state fairness. In fact, the underlying architecture of concurrent 
systems appearing in the literature is usually based on the concept of a global state 
space [ 13,23,29]. Although for some applications this approach is applicable, for 
others it may not be suitable. In addition to this, since each globally state fair 
nonterminating computation is also locally state fair, proving that a system will 
terminate with respect to local state fairness will guarantee the termination of the 
system in terms of global state fairness. 

Based on the above observations, local vs. global state fairness is an issue that 
deserves further study from both theoretical and practical points of view. In Section 
3, we define formally global and local versions of siate fairness for two concurrent 
models, namely, systp ns of concurrent programs and Petri nets. In Section 4, we 
study the complexity of the nontermination problems for restricted versions of the 
above two models, i.e., systems of concurrent Boolean programs (i.e., programs 
with Boolean variables) and l-bounded Petri nets (i.e., Petri nets with l-bounded 
places). It turns out that for these restricted models, the globally state fair nontermi- 
nation problem is complete’ for PSPACEJ (polynomial space), whereas the locally 
state fair nontermination problpm is complete for EXPTIM E” (exponential time). 

Comp!eteness results mentioned in this paper. unless otherwise stated. are with respect to polynomial- 
time many-one reductions. 

’ PSPAC‘E = (J, _,, DSPAC’E( n’ 1. where DSPACE( S( n II denotes the class of languages accepted by 
achines in S( )I b spact. 

deterministic Turing machine\ in Tc PI I time. 
Ec 73 H 1) denote\ the class of languages accepted by 



In Section 5, we investigate the decidability of these problems with respect to general 

systems of concurrent programs and general Pelri nets. We are able to show that 

for concurrent programs, the globally and locally state fair nontermination problems 

are undecidable (II,-complete and X ! -complete, respectively). On the other hand, 

for Petri nets the globally state fair nontermination problem is decidable, while the 

locally state fair nontermination problem is undecidable (&-complete). These results 

seem to indicate that despite the above merits for some applications, problems 

related to local state fairness are, in general, harder to analyze than those related 

to global state fairness. We also hope that the results of this study will allow us to 

have a better insight into the nature of parallel computations. 

3. The models 

In this section, we define global and local versions of the state fair nontermination 

problem for two concurrent models, namely, systems of concurrent programs and 

Petri nets. 

Let Z denote the set of integers. A system of concurrent programs S is a triple 

(f’, V, z+,), where P=(P ,,..., &} is a finite set of programs (defined below), V = 

(u I,=*., u,,,} is a finite set of variables, and v,,: V - Z is the initial t&e function. 

Each program P,, 1 s is k, is a 5tuple ( Q1, V,, S,, X,, s,), where 

(I) Q,={r;,..., r:1,} is a finite set of program locations (the reader can think of 

program locations as statement labels, as in FORTRAN or PASCAL); 

(2) &={u’, ,..., Ui,,}E v; 

(3) S,={S’,,..., S:,,}, where each a;, 1 ~j s d,, is a set of transitions at location 

r: D Each transition t E 6; is of the following form: 

if p( z(, . . . , u;,,) then x, := yl + c, ; . . . ; x,,, := _rrlr + c,,, goto ri, 

where p is a logical expression over the variables vi, . . . , r!;,, , integer constants, 

the arithmetic operator +, the relational operators =, <, and >, and the 

logical operators v, A, and 1; { _Y, , . . . , x,,,, _I*, , . . . , y,,,) E V, ; cl , . . . , c,, are 

(possibly negative) integer constants; and r: E Q, ; 

(4) X, c Q, is the set of terminal program locations; and 

(5) s, E Q, is the initial program location. 

We also require that for 15 i,J ‘d k, if i #.j, then Q, A Q, = (3. ( Mte that this implies 

that 6, ~16, = Cn.) Figure 2 provides a pictorial description of a concurrent system. 

The size of a soncurrent system S 01’ a program P, (denoted by l[Sll and 11 

respectively) is dc Sned to be the length of its description when a standard binary 

encoding technique is used. Given a system S of k programs, the set of shared 

uariuhles between programs P, and P’,, i # j, is the set G,., = V, n l$ For a given 5 

K--U,*, G,., is the set of P,‘s prizyate variables. A global state of S is a pair [n, 

where a:P--+Uf ,Q, such that (u( P,) E Q, is the current locarion _fwwtion, an 

LJ: V - Z is the current wlwfuwtion. The i~titiQ~ state of S is the air I@09 4 



shared variables P2 

Uerminal program location private variables 

that Ck,,( P, ) = s,. For a program P’, E P, the ~OCQ/ smte of P, associated with the global 

state [a. v] is the pair ( (u( P, 1, v( V, I), where v( V, ) denotes the restriction of v to 

V,. A local state ( r:, v( V, )) is tev?vinal iff ri f X,. A global state [cu, v] is terminal 

iti there is an i such that cu( P,) E A’,. P Note that ihe sets of terminal locations are 

detined arbitrarily and have nothing to do with haking.) 

Let t t. 6; be the transition 

ifp(l(. . , t’;,$t en s, := _tj + t’, ; . . . ; s,,, := J*,,, + t;,, got0 i(. . 

t is said to be enabled at the global state [CY, II] and the local state (( ? ~4 V, 1) iff 

tt ( P, ) = r: and /I( I’( C; 1. . . . , P ( L$ 1) = true. We then write [o, v] L [m’, 3*‘) and 

( r; , I’( C’, 1 1 L ( r’. , rl’( V, 1). where 

CI 7 f, ) - rl; ; 

fC(P, b=cr(P, 1 for i’Zi; 

i”( .\I, 1 -z rq _rlr 1 t cl1 for 1 * k - m; and 

P’( q, 1 = r(p( Q, 1 for all other q, c K 

A t’fmpfbh!? is a sequence of global stattts 

A computation can be tinite or infinite. A system S; ( P, V, I+,) is a system of Bookart 

pfqrfwis it‘ for all global states [ 0, P] in all computations, v( c, 1 c (0, 1) for all Li, E K 

A tr,rrl4ti0e1 1 ih glfhftllo~ .mw /&I- ( i(dl_~ .~~uw Itiir ) for a cumpulation fr iff t is 

executed intinitel> often in all the global (Ioc~:l) states at which it is enabled infiniteI> 

often A computation is globally state fair (localiy state fair) itI all of its transitions 

xe globally state fair (locally state fair). Note that a g!obally state fair computation 

ocalEy state fair computatiw and that the definitions are identical for 

~~I~g~e-~r~~&r~~~ systems. A rtr)irIt~~r,ljrtnljrll: ~~~r~~~tati~~~l is an i?l#ia? co utation 

state ih a ters~~;I~~ 



ivtmience, we now introduce son~tt akernative notation to that &tiblcd 

above. First, without increasing the exprrsive power, we can describe prog,ranls 

using high-level language constructs, such as loop. . . en 

is not hard to see that these constructs can easily be implemented using if-then-goto 

statements. We can then construct a system S from H programs so defined as long 

as all initial values of variables are clear from the context. We will then write 

s = ( P, , . * . , P,, 1. Also, if an ordering is assumed on the 11, variables in program P,, 
we may represEnt a restriction of a current value function u( V, ) as an /I,-dimensional 

vector V’=(O,,.. . , &,,), where each 6, = ~4 C, ). A local state of P, may then be 

represented as ( r:, 6, , . . . , fi,,, b (or ( r: ; e’ 1). A global state of S may then be 

represented as [y,, . . . , 9,,], where each y, is a local state of P,. It should be noted, 

however, that given a local state y, for each P,, [q, , . . . , q,,] does not necessarily 

repreccnt a global state of S. 

The glohall_v ( locally 1 state ,/i~ir rtatlturr,rinati(,t~ pddem is to determine, given a 

system of concurrent programs, whether there exists a globally (locally) state fair 

nonterminating computation. 

In the second part of this section, we define the globally and locally state fair 

nontermination problems with respect to Petri nets. We first pive some preliminaries 

of Petri nets that are needed for the remainder of this paper. The reader should 

consult [27,34] for more detailed definitions. A Petri rlet 4, is a 4-tuple I P, T, q, p,,), 

where P is a finite set of piares, T is a finite set of transitir~rts, q is the @vfurtctior? 

cp:(PxT)u(TxPk-+ N, and p,, is the initial markitlg pa,, : P - N, where N is the 

set of natural numbers. For each t E T, we let t=(plq(p,t)%l} and t = 

{q 1 q( I, y) >r 0) be the sets of input and output places of t, respectively. A mrking 
is a mapping p : P -3 IV. We often establish an order on the places, pI $ . . . , pk, and 

designate a marking p as a vector in N’ where the ith component represents p( p, 1. 

We say t_c( p, ) is the number of tokens in place p, at p. A transition t E T is enuhleJ 

at a marking I_C iff for every p E P, p( p) 2 Q( p, t ). If I is enabled at pc, we write 

I”- & p’, where p’( p) = p -- +( p, I) + q( t, p) for all p E P, to represent the action of 

jring t at p. p’ is the resulting marking. A sequence of transitions CT = 1, t2 . . . I,, . . . is 

a jirirrg sequeftce from p,, iff p,, rl pl L. . l l ‘It -L l l a . - PI, A tiring sequence can 

be finite or infinite. ( If u = I, t1 . . . t,, is finite we sometimes write p,, s p,,.) A 

computation from p,, is a (finite or infinite) sequence of markings p,,pI . . . p,, . . . such 
that p ‘I ” . . . ‘tl ‘*I* 1 , . . . , ~l-pl~ - p,, for some firing sequence t! !: . . . t,, . . . . If there 

exists a finite tiring sequence (/ - 1, fJ . . . t,, such that yr, 2 p,,, then I_c,, is said to be 

reachable from pc, via ct. For a Petri net 6 ; ( P, T, 9, p,,), the reucltuhilifj* .% denoted 

4) ), is the set of markings (p 1 p,, s p, for some finite u}. Given I Petri net f 

marking p, the reac,:lubilit~. p~oblent is to determine whether lu. E. 

net % is said to be 1 -bourrded itf for every p c R( f! ), p ( p 15 1, fm all p E P ( i.e., 

the numizr of tokens in any place will never exceed 1). 

A partitior; o,f a Petri net ( P, T, q, p,,) is a set of subsets of transitions 3 = 

1 T, 9 . . . . T,} which %:atisfies T, ry T, = ~‘1, for all i f j, and L_ J: , 

e9e is wit esp0zi Et) C?tri nets corres 
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programs.) Given a subset of transitions T’, we let T’ be the set of places { p 13 E 

T',q(p,tPO or cp(4p)- b 0). Given a marking CL and a subset of places P’ (C P), 

we use p( P’) to denote the restriction of ~1 to P’. (p( 7”) is referred to as a 

submarking.) Given a computation u : p,,pl . . . p, . . . and a subset of places P ‘, we 

define the projection of u on f ‘, denoted by G( f’), to be the sequence 

p,,( f’)p,( f’) . . . p,( f’) . . . Given a partition .F = { T, , . . . , K.}, an infinite computa- 

tion CT:~,,~, ..+ ,... is said to be stale ,fbir with respect to 5 if it satisfies the 

following condition: Vi, 1 5 is r, V marking CL, VI E 7; enabled at CL, if there exist 

infinitely many j’s such that p,( ?,) = p( T,), then I must be fired at infinitely many 

of these &s. 

The locally stalc.fi?ir rrortterrnirtatiort problem for Petri nets is to determine, given 

a Petri net and a partition 3, whether there exists an infinite computation which is 

state fair with respect to 3. The globally sfare_jiiir nontermination problem for Petri 

nets is to determine, given a Petri net Y = ( f, T, q, g,,), whether there exists an 

infinite computation which is state fair with respect to { T}. ( Note that 9 was ignored 

in the latter definition just as the set of programs was ignored in conjunction with 

global state fairness for systems of concurrent programs.) 

. Complexity results for systems of concurrent Boolean programs and 

In this section, we first establish the relationship between l-bounded Petri nets 

and systems of concurrent Boolean programs by showing that one is computationally 

harder in a specific way. We then derive the complexity of the nontermination 

problems for l-bounded Petri nets and systems of concurrent Boolean programs 

with respect to global and loca: state fairness. 

Lemma 4.1. Gioen a 1 -bounded Petri net % = ( f, T, q, CL,,) and a partition 3 = 

{ ‘c . l l l , T, ). we can construct, in po~rwomial time, a s_wtem of’ r concurrent Boolean 

pwgrams S .wc11 tlust % has Q globnllv ( locall_v ) stawjhir nonterminating computation 

t with respect lo ,F ) $‘S has a global!\* t locally 1 sfafejbir nonferminafing compufafion. 

roof. Let 4 = t f, T, q, CL,,) be a l-bounded Petri net and J = { T,, . . . , T,} a partition 

of 7 One simply constructs a system of r concurrent Boolean programs S = 

(PI,. . . , f, ) over 1 f 1 variables as follows. Each variable will correspond to a unique 
place in P. Each P,, I 5 i 5 r, will consist of a single program location and have 

access to the variables t correspond to places in t. P,, 1 d is r, will have !Kl 
transitions each design to simulate a transition of r. The variables then are 

The construction should now be obvious. Note 



We would like to show the converse of this lemma. That is, given a system of I- 

concurrent Boolean programs S, that we can construct, in polynomial time, a 

l-bounded Petri net % = ( f, T, cp, p,,) and a partition .F = { T, , . . . , Tr} such that S 

has a globally (locally) state fair nonterminating computation iff % has a globally 

(locally) state fair nonterminating computation (with respect to 9). Unfortunately, 

there seems to be a problem with such a construction. We would have to design a 

way for ‘c; to emulate the if-then-goto statements. Now suppose S (or a program in 

S) has access to n variables. Each Boolean predicate over these variables is a 

function from (0, 1)” to (0, 1). Hence, we can write doubly exponential distinct such 

predicates. Because there are only singly exponential global states for S, however, 

only singly exponential outcomes may arise. Yet, it seems hard to devise a way for 

% to distinguish the action caused by a particular predicate-at least in polynomial 

time. As a result the converse of Lemma 4.1 appears questionable. With respect to 

the issues of complexity studied here, however, we will show that this does nat matter. 

The next lemma indicates that for l-bounded Petri nets, the globally (locally) 

state fair nontermination problem is as hard as the reachability problem for l- 

bounded Petri nets under polynomial time reductions. Since the reachability problem 

for l-bounded Petri nets is PSPACE-complete [ 173, we will have shown that the 

globally (locally) state fair nontermination prablems for systems of Boolean pro- 

grams and l-bounded Petri nets are PSPACE-hard. 

4.2. For an arbitrary 1 -bounded Petri net 6 = ( P, T, cpI CL,,) and marking p, 

one can construct, in poivnomial time, a 1 -bounded Petri net 6 ’ = ( P’, T’, Q', p,f,) and 

a partition 3 in such a way that p E R ( ‘6 ) jfl’ 6 ’ has a global!?* ( locally ) state -fair 

nonterminating computation with respect to 3. 

Proof. The new Petri net ‘%’ = ( P ‘, T’, Q', pi,) is constructed as follows (see Fig. 3). 

( 1) P’ = {q’, ~“1 q E P} u {c, q ,,,,, J-all distinct. 
(2) Vt E T, if t = {I), , . . . , p,,} and t = (4,. . . . , q,,,), T’ contains a transition t’ 

where the sets of input and output places of I” are {p;, . . . , p:. 1; qy, . . . , yz,} 

and (p; ,..., pE,c+yi ,..., y:,,}, respectively. (Recall that t and t are the 

sets of input and output places of I, respectively.) Note that c serves as a 

control place in the sense that t’ is tirable only if c possesses a token. 

!3) T’ contains a transition t, where I, = {c). and I, = c3 (Le., I, is used to remove 

the token in c). 
(4) T’ contains a transition I/,,,,,, where I~,,,,,, = {q~,,,~i and f~,,,,, = (~~~~1. 
(5) Lastly T’ contains a transition h where the set of input places of 11 is 

{r’I~(r)=1}u{s”l~(o)=O)andthesetofoutput p aces of 11 is { ~L~,J. ( h is 

used to test whether ~1 is reached.) 

(6) &,(q’) = p,,(y), &,(y”) = 1 --p,,(q). vyt: P, 

&,(cP = 1, and 

&,( 4/,#,,,, ) = 0. 



cl(r)=1 
v(s)=0 

Petri net that 4mul;lte\ the reachahilit> problem \ia the nontermination problem. 

i ’ behaves as follows. As long as /I has not fired f’ mimics the moves of M. 

During this time the current marking being simulated is represented by the number 

of tokens in the primed places (i.e., the current value of y E P is in 4% P’). Also, 

during this time the total number of tokens in y” and q’ together is always exactly 

1. ~~‘~~c~~~~~~ E, Gres, ~‘5 tokar is removed and cannot subsequently be replaced. 

This action disables any further simulation of f by d *. Thus. after t, fires the only 

possible enabled transition is h. Rut /I is only enabled if the number of tokens in 

the primed places corresponds to cc. Hence. if p c I?( 6 ) then there is a firing sequence 

for f ’ that cm result in the tiring of I,, then la. Afterward, only I!,,,,,, can be enabled. 

~n~~~~tely many times. It is now 



Now suppose that 6’ has an infinite computation 0 whi is glob;iliy (l~c;gjly ) state 

fair with respect to 7. Clearly, t, must fire in O-. Thus, 11 does not fire, ir will be 

finite. But u is infkite. Therefore, 11 must fire in +---and this c;m only 

p E R( (6). This compktes the proof. fl.~ 

In what FOIIOWS, we show that the globally (locally) state fair n~~~~termif~~~tion 

problem is complete for PSPA~‘E l EXPTI ME) for systems of concurrent Bt,ole;tn 

programs and 1 -bounded Petri net&. This suggests that problems rel;ated to local 

fairness are, in some cases, harder to analyze than those related to glo 

We first introduce some terminology. 

Given a system of concurrent programs S z= ( P, , P:, . . . , Pk 1, the a/frhnI.o-tniear.~ylt, 

denoted by GI., is a dii-ected labelled grapE in which: 

each node in G, is a k-tuple [q,, q:, . . . , qL ] which rchtprewnt~ a 

S, and 

there exists an edge labelled I from node [q, , . . . , qr ] to node 1 q;, . . . . Y; ] in <i, 

iff [QI 9 l **,q~l~[q;..*..q;l. 

6iven two ttodes s and s’ in G,. we use s h* s’ 40 denote thiit there is a p;rth f’rom 

s to s’ in G+ Let s,, be the initial state. A subgraph G’ of G, is ~~u~~tuhlt~ iff t,, ‘1-0 s’ 

in Gu, for some node S’E G’. A finite subgraph G’ of G, is tailed a a-dinor iff 

( 1: G’ is a strongly ctinnected component (i.e., if S. .F’[~ (;‘. then s - S’ and s - \ 

in G’) having at leaht one edge. 

(2) no node in G’ is a terminal node (a node representing a terminal state I. and 

(3) V transition t, if I is enabled in a node (state) s in G’, then there is an edge 

(s, s’) labelled I in G’. (An equivalent definition is thitt, Vv c C;‘. if 5 -4 s’. 

then S’E G’.) 
G’ is an I-knot iff 

( 1) G’ is a strongly connected component ha%;ing at least one edge, 

(2) no node in G’ is a terminal node. and 

(5) Vtransit~on~,ifrisenabledinanodetstate)~q,....,q,,...,q,]in~i’.where 

P, is the program containing I, then there exists in G’ an edge ( II. t.1 labelled 

1, where u = [ 11, , . . . , u,, . . . , 1~~ ] L L’ = [ ~7,. e . . , rh ] and q, = 14,. 

Note that in the definition of the I-knot, no edge labelied t in G’ is required to 

originate at [q,, . . . , q,. . . . , qJ9 as was the case in the definition of the R-knot. 

Figure 4 is an I-knot with respect to the state graph corresponding to the syste 

Table 2. (The dashed ed does not belong to the graph. f 

since transition a, indicated by the dashed 

[(I,; O,O), (rn,; O,O, 1 I], but not includ d-qgaph as an 

[(l,;O,O1, (999 d\ an 0 

containing the local state ( I, ; 0.0). 
g- and C-knots for Petri nets can be 

conceptually, the notion of I$- 

similar. (A trap is a subset of places with the pr 

at le .t t ca ea 
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*a 

I8 

1 

Fig. 4. An I-knot in the state graph of the system shown in Table 2. 

transitions.) Both have the property that once a computation “falls” into a “black- 

hole” (a g-knot or a trap), the computation must remain in the blackhole forever. 

The fundamental difference between g-knots and traps for Petri nets is that g-knots 

are defined on the reachability graph of a Petri net; while traps are defined on the 
Petri net structure. 

Before we derive the complexity result for the globally state fair nontermination 

problem, we first prove the following lemma, which provides a characterization of 

those global state graphs that admit globally state fair nonterminating computations. 

Lemma 4.3. Given Q system of concurrent Boolean programs S (or a 1 -bounded Petri 

net and a partition 3-), there is a globally state *fair nonterminating computation ifl 
G, has a reachable g-knot. 

roof. Suppose G’ is a reachable g-knot of Gs. Let so be the initial node (state). 

According to the definition of a reachable g-knot, there exists a node s’ in G’ such 

that so - s’ in G,. Furthermore, there exists a path s’- s, - l l . - sd - s’ in G’, 

for some d, which contains every node and utilizes every edge in G’. It is then easy 
to see that so - [s’ - s, - 9 9 l 3 stI ---* ~‘1”’ is a nonterminating globally state fair 
computation of S. 

Now suppose 1 is a nonterminating globally state fair computation of S. Let G’ 

be a subgraph of G, consisting of those states and transitions that occur infinitely 

often in 1. Clearly, G’ is a strongly connected component. Since 1 is nonterminating, 

G’ does not contain any terminal node. Furthermore, since 1 is globally state fair, 
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any transition that is enabled in a state in G’ must be executed infinitely often in 

1. Hence, the transition is in G’. Consequently, G’ satisfies the three conditions of 

being a p-knot. This completes the proof Cl 

Now, given a system of k concurrent Boolean programs S = (P,, . . . , Pk) of size 
n, the number of distinct global states can be as many as 27 for some fixed constant 

c. Hence, the size of the corresponding global state graph is, in general, R(2”*“)-and 

always 0(2’*“). One might expect therefore that an algorithm to decide the globally 

state fair nontermination problem might require an exponential amount of space 

or time. In what follows, we show that despite the size of the global state graph, 

we need only space polynomial in n to solve the globally state fair nontermination 

problem for systems of concurrent Boolean programs. The next lemma provides a 

method to test for the existence of a g-knot without actually generating the global 

state graph or the g-knot. 

Lermnw 4.4. Suppose Gs is finite. Then Gs has a reachable g-knot #there is a reachable 

node s in Gs such that 
(1 j there is no terminal node reachable from s, and 

(2) there is no deadend node (i.e., a node with no successors) reachable from .T. 

Proof. According to the definition, a subgraph G = (V, E) of GS is a reachable 
g-knot iff it satisfies the following conditions: 

(a) 3s E G such that so- s in Gs, 

(b) G is a strongly connected component with at least one edge, 

(c) G contains no terminal node, and 

(d) Vs E G, if s - s’ in Gs, for some s’, then S’E G. 

NOW, we first show the only if part, (i.e., if a reachable g-knot exists, then there is 

a reachable node s satisfying conditions (1) and (2)). Let G = (V, E) be such a 

g-knot. Let s be bny node in V. Suppose s can reach (in Gs) a deadend state or a 

terminal state, say s’. Let s * sl + l l l - s’ be such a path. Due to condition (d), 

s’ E K Since this conclusion contradicts either (b) or (c), the only if part holds. 

On the other hand, suppose there is a node s satisfying both (1) and (2). Let Q 

be the set of all nodes reachable from s. Recall that u - v (u + v) denotes that v 

can be reached from u (in one step). We define an equivalence relation “-” such 

that u - v iff u - v and v - u. Using “ - “, one can decompose Q into equivalence 

classes. Let Q’ be an equivalence class which has no successors with respect to 

“e”. (The finiteness of Gs, and hence Q, guarantees the existence of such a Q’.) 

Now, Q’ cannot contain just a single state s’ having no outgoing edges since such 

an s’ would be a deadend node. Let E = {(u, v) 1 u E Q’ and (u, v) is an edge in G,}. 

We claim that the subgraph G = (Q’, E) is a reachable g-knot. Condition (a) follows 

immediately from the definition of Q. Since no terminal node is reachabie from s, 

(c) is satisfied. Also, (b) and (d) are satisfied because Q’ is an equivalence class 

having no successors with respect to “4”. This completes the proof of the if part. Cl 
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Theorem 4.5. 73e following two problems are PSPACE-comple?e: 

(I) the globally state fair nontermination problem for systems of concurrent Boolean 
programs, 

(2) the globally state fair nontermination problem for l-bounded Petri nets. 

Proof. Since the reachability problem for I -bounded Petri nets is PSPACE-complete 

[17], the lower bound for (1) and (2) follows directly from Lemmas 4.1 and 4.2. 

Hence, we need only consider the upper bound, and then only with respect to 

systems of concurrent Boolean programs (Lemma 4.1). But the upper bound follows 

directly from the characterization provided by Lemma 4.4. Cl 

Recall that for systems consisting of a single program the notions of local and 
global state: fairness are identical. in what follows, we show tlr*. . the locally state 

fair nontermination problem is EXPTIME-complete for systems consisting of more 

than one concurrent Boolean program (or for l-bounded Petri nets when the size 

of the partition is greater than 1). In what follows we show that an arbitrary 

polynomially space bounded Alternatitig Turing Machine (ATM) can be simulated, 

in some sense, by the locally state fair computations of a system of two concurrent 

Boolean programs. The lower bound is then obtained since polynomia!ly space 

bounded ATMs have the same computational power as exponential time bounded 

deterministic Turing machines [6] (i.e., the class of machines defining EXPTIME). 

An ATM M is a Stuple (Q, C, 6, 90, g), where 

Q is a finite set of states, 

C is a finite tape alphabet (without loss of generality, we assume that the input 

and worktape alphabets are identical), 

6c(QxZ)x(Qx2x{-l,O,+l}) is the next move relation, 

90 is the initial state, 

g : Q + {existential, universal, accepting, rejecting). 
Basically the concept of alternation is a generalization of nondeterminism in a way 

that allows existential and universal quantifiers to alternate during the course of a 

computation. Four kinds of states exist in an ATM; namely existential, universal, 

accepting and rejecting states. ATM configurations, !ikewise, fall into one of the 

r.ame four categories -depending solely on the current state. A universal configura- 

tion leads to acceptance iff all successor configurations lead to acceptance. An 

existential configuration leads to acceptance ifI there exists a successor configuration 
that leads to acceptance. An ATM accepts its input iff the initial configuration leads 

to acceptance. Basicaily, the computation of an ATM is a tree. A path in this tree 

is called a computation path. During the course of a computation path, the segment 

between two consecutive alternations between types of configurations is called an 

alternation block. Detailed definitions can be found in [6]. The complexity classes 

of languages accepted by space (rime) bounded ATMs were also defined in [6]. In 

particular, APSPACE is the set of languages accepted by polynomially space 
bounded ATMs. It was shown in [6] that APSPACE = EXPTIME. In what follows, 
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this result will be used to prove the EXPTI ME lower bound. Without loss of 

generality, we require that our polynomially space bounded ATMs: 

(1) have initial configurations which are existential, 

(2) be such that each computation path culminates in either an’ accepting or 

rejecting configuration, and 

(3) be such that the number of successors of any configuration be 0 if the 

configuration is accepting or rejecting and 2 otherwise. 
If Ad is a polynomially space bounded ATM that does not satisfy these properties 

an equivalent ATM !“vE’ that does can readily be constructed using standard tech- 

niques (see [6]). 

To show the upper bound, we need the following easily shown lemma. Since the 

proof is very similar to that of Lemma 4.3, we leave it to the reader. 

Lemma 4.6. Given a system of concurrent Boolean programs S (or a 1 -bounded Petri 
net and a partition T), there is a locally state-fair nonterminating computation iff Gs 

has a reachable l-knot. 

Theorem 47. Tile following two problems are complete for EXPTIh4E: 

( 1) the locally state fair nontermination problem for systems of concurrent Boolean 

programs, 
(2) the locally state fair nontermination problem for 1. -bounded Petri nets. 

Proof. Because of Lemma 4.1, it will be sufficient to establish the lower (upper) 

bound with respect to (2) (( 1)). We do illustrate the upper bound with respect to 

(1). However, we choose to illustrate the lower bound with respect to (1) also. We 

do this for what we feel is a very good reason. The lower bound proof is somewhat 

tedious and is much easier to understand in terms of Boolean programs. The same 

general idea works with respect to l-bounded Petri nets but explanations thereof 

tend to become overly concerned with the ATM encodings. Getting a l-bounded 

Petri net to simulate an ATM in the same fashion (as the Boolean programs do) is 

not difficult, but it does add significantly to the technical detail. The interested 

reader should consult [ 171, where simulations of LBAs (linear bounded automata) 

via l-bounded Petri nets are discussed. The generalization to ATMs should be clear 

once the general strategy is understood. 

Let M be an h(n) space bounded ATM, where h is a polynomial function. Let 

x be an input for M. Let 1x1= n. In what follows, we will show how to construct 

(in polynomial time) a system S = (P, , P,) of two concurrent Boolean programs 

that will “simulate” the computation of M on x in such a way that S will have a 

locally state fair nonterminating computation iff M accepts x. Without loss of 

generality, we assume that M operates over a binary alphabet. 

Basically, P, repeatedly simulates a computation path of M on x as long as each 

simulation path culminates in an accepting configuration. Each repetition of this 

simulation is referred to as a period. h (n ) local variables in , will be used to 
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simulate the contents of M’s worktape. log h(n) (plus some constant number of) 
local variables of P, will be used to record M’s current tapehead position (state, 
etc.). During different periods, P, may simulate different computation paths of M 
on x. If when simulating a computation path an accepting configuration is reached, 
p, reinitializes its variables in order to simulate another computation patl:. If, on 
the other hand, a rejecting configuration is reached, & terminates. 

consider now a computation path (of M on x) that passes through a configuration 
4. Suppose that during an infinite computation (T of S, P, enters infinitely often a 
local state where the simulation being performed by Pi is at q. If q is a universal 
configuration, P, should be enabled to advance the simulation to either of q’s 
successor configurations. P, in conjunction with P, will be constructed so as to 
allow this. Thus in this case, providing a is locally state fair, P, will infinitely often 
enter local states where the simulation being performed by P, is at each of q’s 
successor configurations. If q is instead an existential configuration, P, should be 
enabled to advance the simulation to only one of q’s successor configurations-the 
one that leads to acceptance. Pz in conjunction with P, will be constructed so as to 
allow this. So, in this case, if o is locally state fair Pi need only enter infinitely 
often one of the two possible local states where the simulation being performed by 
Pi is at a successor of q. Therefore overall, if c is locally state fair, P, will infinitely 
often enter only and exactly those local states where the simulation being performed 
by P, is at a configuration of M on x that leads to acceptance. Since along a, P, 
must infinitely often enter a local state where the simulation being performed is at 
the initial configuration of M on X, M must accept X. Likewise, if M does not 
accept x, o cannot be locally state fair. 

In what follows, we dub a local state of P, accqting, rejecting, universal, or 
existential depending on the category of the current configuration of M on x. Now 
the simulation of a computation path by P, (a period) proceeds in phases correspond- 
ing to the alternation blocks in the path. When P, is in a universal state, P, will be 
busy waiting. A shared variable D, set to 0, will insure this. At this time, P, will be 
enabled to simulate either of M’s available moves. When P, enters a state that is 
existential (from any state), control is passed to P2 by setting D to I. P, is then 
busy waiting until Pz sets D back to 0. P2 then sets D to 0 andf nondeterministically 
to either 0 or 1, and resumes busy waiting. P, will now be enabled to simulate one 
of M’s available moves if f = 0 and the other if f = 1. Thus, P, in an existential state 
will always be enabled to simulate exactly one but not both of M’s available moves. 
6 (via its nondeterministic setting off) simply controls which one becomes enabled. 
Finally, once the simulation of P, reaches an accepting configuration of M on X, 
f'~ sets D to 1, Pz then sets f to 0 or to I (P, does not use this value off; rather, 
this step is included only in order to ensure that the computation can be locally 
state fair with respect to P2), then F, sets D to 0 and the entire procedure begins 
anew. As a result, S = (PI, P2) behaves in the desired fashion. A detailed description 

now appears in Table 3. The detailed proof showing that S behaves 
as described is left to tt:k iedder. 
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Table 3 

w-m_- 

Shared variables: D,f: 

The concurrent system ( P, , P.,). 

Program P, : 
Ll: Initialization; /Set the current configuration being simulated 

to the initial configuration of M on x./ 
El_‘-fiag := 0; /O and 1 denote existential and universal phases, respectively./ 
D := 0; f := 0; 

loop 

/Assume that the current configuration of M on x is q and q - q’ 
and q- q” are its left and right transitions, respectively./ 

if EU-flag = 0 then 
begin 

D:= 1; /enable P2/ 
L,: if D = 1 then goto L3 /busy-waiting/; 

if D = 0 A.f = 0 then “simulate q - q”‘; 
if D = 0 A-f = 1 then “simulate q - q”“; 

end 
else 

L,: “pick q - q’ or q - q” to simulate nondeterministically” 
L,: case current configuration /now either q’ or q”/ 

accepting: got0 L2; 
rejecting: TERM I NATE; 
universal: EU-flag := 1; 
existential: EU-flag := 0; 

end case 
end loop 

L2: D:= I; 
L3: if D = 0 then goto LI else goto L3; 
end 

Program Pr : 
loop 

wait: if D = 0 then goto wait; 
begin /nondeterministic choice/ 

f:=O 
q f:=I 

end 
D:= 0; 

end loop 
-._____- 

It should be noted that a locally state fair computation of S need not be globally 
state fair. The reason is that in order for existential moves to be simulated “correctly” 

infinitely often, P, must be able to set f “correctly” each time. This may not be 

possible if the computation is required to be globalky state fair. 

No!v, we will show the upper bound with respect to (1) Q; a system S of n 

concur-rent Boolean programs, the number of global states is 0(2’*“), for some fixed 

constant c. Hence, in exponential time we can construct the corresponding global 

state graph Gs. Recall that each node in C$ represents a global system state and 

that each edge in Gs represents a transition of one of the Boolean programs. Recall 
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also that S will have a locally state fair nonterminating computation iff Gs has a 

reachable I-knot (Lemma 4.6). The following procedure can then be used to deter- 

mine the existence of a reachable Z-knot in Gs : 

Algorithm: Partition Gs into maximal strongly connected components (SCCs) Q = 

{G ,,-..,GA 
while Q # 0 do 

pick one element from Q, say G, and let Q = Q -{G) 
if G is reachable from so 

them 
if G is an I-knot, 

then output “Gs has a reachable l-knot” and halt 

else 

(i) let G’ be the subgrapk obtained from G by removing all nodes and 
associated edges that violate the definition of an I-knot 

(ii) partition G’ into maximal SCCS Gi, . . . , G; 
(iii) let Q=Qv(G’,,...,G;-) 

end-while 
output “Gc has no reachable l-knot”. 

The basic idea of the algorithm is the following. An I-knot is a special type of 

SCC. So to test whether an I-knot exists in Gs, we first decompose Gs into its set 
of maximal SCCs. Then, an arbitrary SCC G is chosen to test whether it is an 

I-knot. If it is, the procedure terminates; otherwise, the set Q is refined and the test 

is repeated. The fact that the algorithm works should almost be clear from the 

definitions. The only point that might need clarification is step (i). If G is not an 

I-knot, then there must exist either: 

0 a terminal node 9l in G, or 
0 a node 91 in G, a node 9? outside of G, and a transition t (belongtng to a program, 

say Pi) such that 9! 1, 9?. Furthermore, t does not label any edge in G emanating 

from a node whose local state (with respect to Pi) is the same as that of 91. 

(Note that by definition one of these items must exist.) Let G’ be the subgraph of 

G resulting from the removal of 9l and its incident edges. Clearly G’# G. Now if 

G contains an I-knot, the I-knot cannot contain 9,-hence it must be contained 

within an SCC of G”. The fact that the algorithm works should now be obvious. 

Now we are ready to analyze the algorithm’s complexity. First note that each of 

the following two steps can be carried out in time polynomial in the size of Gs : 

constructing the set of maximal WCs, and 

determining whether a subgraph is an I-knot. 

Therefore, the execution time required for the algorithm is polynomial in the size 
of Gs. Since the size of Gs is bounded by 2”*” , this establishes the upper bound-and 
thus completes our proof. q 



5. Decidability results for general systems 

In this section, we investigate decidability issues of the globally (locally) state 

fair nontermination problems for general Petri nets and systems of concurrent 

programs. We will show that both the globally and locally state fair nontermination 

problems are undecidable for systems of concurrent programs. In particular, we 

show that the locally state fair nontermination problem is complete for Z&the first 
level of the analytical hierarchy (see, e.g., [35])-whereas the globally state fair 

nontermination problem is complete for II, -the set of languages whose comple- 
ments are accepted by Turing machines. With respect to Petri nets, the problem is 

decidable for global state fairness, but still undecidable for local state fairness. In 

particular, we show that the locally state fair nontermination problem for Petri nets 

is complete for X, -the set of languages accepted by Turing machines. (The results 

here with respect to Petri nets should be compared and contrasted with those of 

[ 161 where each undecidable fair nontermination problem was X:-complete rather 

than &-complete.) The disparity between concurrent systems and Petri nets is mainly 

because Petri nets operate in a more asynchronous fashion due to the lack of zero 

testing capabilities. 

We first reproduce the following theorem, which we first showed in [16]. 

Theorem 5.1 (from [ 161). Tile globally state fair nontermination problem for Petri nets 
is decidable. 

Proof. Let % be an arbitrary Petri net. We first determine whether % is bounded. 

(See [ 19,321 for boundedness algorithms.) If CG is unbounded, there is an infinite 

firing sequence o which reaches each marking at most once. (T is clearly globally 

state fair. On the other hand, if (T is bounded, we can construct the reachability 

graph. Then there is an infinite state fair firing sequence ifi the reachability graph 

contains a g-knot (i.e., a strongly connected component from which there is no 

exit). Cl 

In what follows, we show the locally state fair nontermination problem with 

respect to Petri nets to be complete for & . The typical strategy for showing fair 

nontermination problems (with respect to Petri nets) to be undecidable is to show 

that the fairness constraint can be used to eventually force correct zero-testing in 

the simulation of a counter machine (see, e.g., [3]). This strategy is used in showing 

the following theorem. 

Theorem 5.2. TIte locally state fair nontermination problem for Petri nets is &-hard. 

Proof. We use a reduction from the halting problem for 2-counter machines, which 

is known to be &-hard [26]. Let A4 be an arbitrary 2-counter machine of [26]. We 

will construct a Petri net % and a partition .“/ of E’s transitions such that % has a 

locally state fair nonterminating computation with respect to Y iff M accepts E (the 

empty string). Without loss of generality, assume A4 is deterministic and has a 
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unique final state 4,. that can only be entered when both counters are 0. The strategy 
is similar to that given by Carstensen [3]. First, an arbitrary natural number is 
generated. This number is then used to bound the length of the simulation and the 
size of the counters. Accepting computations are then repeatedly simulated so that 
eventually all zero tests are correct. 

The Petri net % is divided into two main parts, INIT and SIM. % as well as the 
partition $ is portrayed in Fig. 5. The purpose of INIT is to generate an arbitrary 
natural number. In any locally state fair computation, s2 must eventually fire, 
permanently disabling sl . When s2 fires, SIM may begin simulating a computation 
of M. At this point, the places clock, E, , C2 all contain some arbitrary integer n 
generated by INIT. From this point on, airs (clock, clock), (c,, c^,), and (cZ, &) 
are duals in the sense that clock + clock = c, 6 Z, = c2 + Cz = n. The transitions I,, . . . , I, 

then simulate the moves of M by keeping token in the current state, updating cl 
and c2 to store the contents of the counters, u ating 2, and & so that cl + 3, = c2 + & = 
n, decrementing clock, and incrementing each move. Thus, any computation 
of length n or less may be simulated. If this computation terminates in the accepting 

ZERO i 

query Y@S no 

Partitions are denoted by shaded boxes. 

Fig. 5. A Petri net for simulating a Z-counter machine. 



state ql, a new computation ot length n or less may Le simulated. However, there 
is no guarantee that SKM will always correctly simulate some computation of M. 

In pcrticular, a move that can only be executed by M when some counter is zero 

may be executed by SIM when that counter is positive. To overcome this problem, 

SIM contains two subcomponeats, ZERO, and ZERO?. As SIM simulates M 

entering any state in which a zero-test occurs on some counter, say c,, it places a 

token on query in ZERO,, and waits for ZERO, to respond by placing a token on 
either yes or no. If c, = 0, shs7 must be fired, so a token is piaced on yes. If c, f 0, 
either .ss or s6 may be fried. If s5 fires, .s token is placed on no. On the other hand, 

if s6 fires, s8 is enabled. Since cl never exceeds n, if sx is enabled infinitely many 

times in any locally state fair computation, it must eventually fire, leaving nc 

transitions enabled. Thus, in any locally state fair nonterminating computation, sh 

will fire when c, Z 0 at most finitely many times. After the last of these times, SIM 

correctly simulates moves of M. After this point, g, can only be entered when both 

cl and c-, are zero. Thus, in any locally state fair nonterminating computation, % 

must eventually simulate correctly an accepting computation of M. 

Now suppose M ha3 an accepting computation u of length n. Let (T’ be the 

computation of % in which INIT generates n and SIM repeatedly simulates U. We 

will now show that u’ is locally state fair with respect to Y by considering each 

T E 5 separately. 

7;: = {s,}: s1 is enabled only finitely many times in G’, 
T = {s,}: s2 is enabled only finitely many times in u’. 

T = {s3}: s3 is fired every time it is enabled in (T’. 

Q Ti = {ss}: Ti = {qo, q1 }, all markings reached in G’ at which s4 is enabled have 

qo=O and q/ = 1, and s4 is fired infinitely often. 

T = (ss}: s5 is fired every time it is enabled in (T’. 
e Ti= {s6, s3}: Fj = {query, test, yes}, and all markings reached in (T’ at which sh is 

enabled have query = 1, test = 0, and yes = 0. Since G ends with both counters 
zero, we can assume without loss of generality that u contains at least one 

successful zero-test; hence, sh is fired infinitely often in (J’. s7 is fired every time 
it is enabled in CT’. 

7;-=(t,,..., t,,l}: Since M is deterministic, each of these transitions is fired every 
time it is enabled in 0’. 

We can conclude that % has a locally state fair nonterminating computation with 
respect to 3 iff M has an accepting computation on E. ill 

The above proof shows how local state fairness can be used to force the generation 

of arbitrary natural numbers and zero-testing. In [16], we showed how these 

capabilities can typically be used to show fair nontermination problems for Petri 

nets to be X:-complete. However, such is not the case with respect to local state 

fairness, because each locally state fair compuration must be bounded in order for 

zero-testing to be enforced. The next two kmmas and the subsequent theorem show 

the locally state fair nontermination problem to be in &. 
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Lemma 5.3. Let p be a place in a Petri net % = (P, T, (o, CL(,). If CT = bob, . . . is an 

infinite computation in which p is unbounded, then u fires a sequence 0 such hat 

PI s gi, pi < pj, pi(p) < pi( p), and if‘p’ is any place that is bounded in a; pi( p’) = 

!%( P’)* 

Prosf. Sinca p is unSounded, there is an infinite sequence I of natural numbers 

i,@,< l . l such tnat IC,,,( p) i !A,,( p) < l l l . Furthermore, there must be an infinite 

subsequence I’ sf 1, i,‘, < ii < l 9 l such that pi:, < ru;i < l 9 l . Clearly, there must exist 

i, j E I’ such that i <j and for all places p’ that are bounded in a, pi( p’) = pj( p’). @ 

L,emma 5.4. Ls! ‘K = ( f, T, p, ,u,,) be a Petri net, and let 3 be a partition of T. If there 

is a locally state fai; nontermina ting computation of %’ with respect to 3, then there 

exist jinite,firing sequences 0, and i& such that t.~() -11: I_C~ 2 fiL:! 2 p3 2 l l 9 is a locally 

state jair computation of % wiih respect tc~ 9. 

Proof. Let 0 be a locally state fair nonterminating computation of % with respect 

to 9. Let U be the set of places unbounded in a, and let B be the set of places 

bounded in U. Let ul = p. !?, gl be a finite prefix of u containing all markings /A 

such that the submarking p( B) is reached only finitely many times in cr, and 3uch 

that the submarking g,(B) is reached infinitely many times in ET. Let CT? be the 

remainder of o. For each p E U, let ep be the firing sequence from nZ guaranteed 

by Lemma 5.3. Let o3 = gl *, pZ be a finite prefix of Q? such that 

(1) 8 contains all e,, such that p E U; 

(2) if the transition t is fired from infinitely many markings in oZ containing the 

submarking p(B), then t is fired from some marking $ in CT, such that 

p( B) = r_l’( B) (since there are only finitely many distinct values of p(B) such 

that p is in u?, this condition is satisfied by a finite prefix of u?); and 

(3) pZ( B) - EL, ( B) (since IL, ( B) is reached infinitely many times in o, this condi- 

tion can be satisfied). 
e now construct e2 from e as follovs. Scanning 8 from left to right, when the 

beginning of a loop ep is encountered, insert enough copies of t?,, to make t!le 

displacement of p in the resulting firing sequence positive. Since the displacement 

of each 8,, is positive, the resulting sequence & has a positive displacement. 

Furthermore, since each O,, has a zero displacement on all places in B, and since 

t-c,(B) =pJB), & h as a zero displacement on all places in B. Hence, oniy sub- 
markings wholly contain4 

*I H, 
in B are repeated infinitely often in 

tt- 07 
po--,pI-_,p~~~+b”‘. Thus, from condition (2) above, 8, and & satisfy the 
lemma. El 

5.5. The locally state fair nontermination problem for Petri nets is in & l 

Let ~7 = (B, T, cp, p,,) be an arbitrary Petri net, and let Y be an arbitrary 

on of T. We now describe a TM Ikl that accepts (%, E/I) iff 95’ has a locally 
state fair nonterminating computation with respect to T. (Note that A4 is not required 



to halt on ail inputs.) M fi-st guesses 8, and & given by Lemma 5.4, and verifies 

that ~~~~~,~~~ such that 
-87 

p: 6 pL. M then verifies that Q= 
ti, fj7 

p~,1)1*p,ip+p~i”’ is locally state fair with respect to Y. This verification 

is done in the following manner. Let B = {p 1 p,(p) = p2( p)}, and let U = {pi pl( p) < 

p2( p)}. Clearly, if z contains a place in U, there will be only finitely many markings 

p in O- such that p( z) = ru_‘( i’;) for any given cc’, Hence, M only needs to consider 

those elements r E 3 such that T, G B. M therefore verifies that for all p in pl 2 pZ, 
. . 

if transition t E Ti such that T, G B is enabled at p, then t is fired at some & in . . . . 
pi .% pZ such that p( Ti) = p’( Ti). Qnce this is verified, M accepts. From Lemma 

5.4, M accepts iff %’ has a locally state fair nonterminating computation with respect 

LO 3. cl 

The following result follows immediately from Theorems 5.2 and 5.5. 

Corollary 5.6. The locally state fair rxontermination problem for Petri nets is I:,- 

complete. 

As mentioned above, local state fairness with respect to Tetri nets cannot be used 

to enforce arbitrary use of both zero-testing and the generation of arbitrary natural 

numbers. However, concurrent programs can perform zero-testing without relying 

on a fairness constraint. Therefore, we can use local state fairness with concurrent 

programs to generate arbitrary natural numbers at will. This capability allows us to 
show that the locally state fair nontermination problem for concurrent programs is 

XI-complete. In order to characterize the class Z$, we introduce the notion of 

infinite-branching programs. An infinite-branching program is simply a program with 

the added ability to nondeterministically generate an arbitrary natural number. We 

now give the following lemma from [5], which gives a characterization of 2;. 

Lemma 5.7 (from [S]). The set of all infinite-branching programs that contain an 

infinite computation is E !-complete. 

We can now show the following theorem. 

Theorem 5.8. The locally state fair nontermination problem for concurrent programs 

is X !-complete. 

Proof. We will show this problem to be equivalent to determining whether an 

infinite-branching program contains an infinite computation. Let P be an infinite- 

branching program. We will show how to construct a system (P,, P2) of programs 

(without infinite-branching) that has a locally state fair nonterminating computation 

iff P has an infinite computation. First, consider Table 4. Suppose Program Pz is 

compiete!y deterministic. (Note that the portion shown is.) Since both P, and P2 

are deterministic, any nonterminating computation in which both programs execute 

transitions infinitely often is locally state fair. Furthermore, it is easily verified that 

any nonterminating computation in which P, executes transitions only finitely many 
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Table 4 
Simulation of infinitehanching. 

PC-- _-p- 

Program P, Program P2 
~~________~ -_- 

I, : if true then x := 1 got0 I, - . . 
VI, : if true then n := 0; x := 0 goto m, 
nt, : if r = 1 then goto m, 

cl 
if .Y = 0 then II := II + I goto no, 

n1q: . . . 

times is not locally state fair. Thus, in a ioca!iy state fair computation, n may be 

incremented to an arbitrary value, as long as the resulting computation is nonter- 

minating, but the loop at m2 must always terminate. Since this technique can be 

used to simulate bounded nondeterminism as well as infinite branching, we can 
construct a deterministic program & such that (Pi, R) has a locally state fair 

nonterminating computation iff P has an infinite computation. 

NowietS=(P,,..., Pk ) be an arbitrary system of k concurrent programs (without 

infinite branching). We will construct a program P with infinite-branching that has 

an infinite computation iff S has a locally state fair nonterminating com:>utation. P 
simulates S by nondeterministicaily selecting transitions to simulate. As the simuia- 

tion progresses, P maintains a table containing ail local states reached by each Pi. 
When 9 new local state 9 is reached by some Pi, P guesses for each transition t c.7 

Pi enabled at 9 how many times 4 will be in state 9 before t is executed. P then 

stores this value as q,, . Each time pI is in state 9, P decrements q,,. Each time t 

is executed from state 9, P guesses a new II,,,. If, after a new n,,, is generated, some 
n,;,;. is zero_ P halts. Clearly, P has an infinite computation iff S has a locally state 

fair nonterminating computation. Cl 

As our last result, we show that the globally state fair nontermination problem 
for concurrent programs is II,-complete. In order to show this, we must describe a 

TM that can verify that there is no globally state fair nonterminating computation 

in a given system. The main reason we are able to do this is given in the following 
lemma. 

Any system S of concurrent programs having an injinite set of reachuble 
states has a globnl!by state fair nonterminating computation. 

roof. Consider the reachability tree T of S defined as follows. Let the initial state 
of S be the root of T. For each nonterminali state 9 in T, the children of 9 are ail 

states reachable from 9 by one move of S, except those states that are ancestors of 

9 (vkre 9 is considered an ancestor of itself). Since the set of reachable states is 

infinite, T must be infinite. Since T has a bounded branching factor, T must have 

infinite depth. Therefore, there is an infinite path in T representing a nonterminating 

computation in which no state is entered more than once. This nonterminating 
computation is globally state fair. 3 



Theorem 5.10. 7114 globally statejih- nontec mination problem for concurrent programs 
IS II, -complete. 

Given an arbitrary deterministic TM M, we can clearly construct a determinis- 

tic program P that terminates iff A4 haltp J in E. Since the only computation of a 
single deterministic program is always globally state fair, P has a globally state fair 
nonterminating computation iff M does not halt. The problem is therefore I&-hard. 

Let S be a system of concurrent programs. We -&vi11 describe a TM M that accepts 
s iff S has no globally state fair nonterr linating computation. M first begins to 
construct Gs. If this graph is infinite 12 s q.411 never accept S, but from Lemmc 5.9 
there is a globally state fair nonterminating computation. If the graph is finite, when 
M completes the graph it then searches the graph for a g-knot, accepting iff one 
does not exist. From Lemma 4.3, IbI accepts S iff S has no globally state fair 
nonterminsting computation. Therefore, the problem is &complete. 0 
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