
Elsevier
omputer Science 80 (1991) 77-104 77

neY owe11
Department oj’ Computing and Information Sciences, Kansas State University, Manhattan,
KS 66506. USA

Louis E. Rosier
Department of Computer Sciences, University qf‘ Texas at Austin. Austin, TX 78712, USA

Department t$ Electrical Engineering, National Taiwan University, Taipei, Taiwan, ROC

Communicated by A. Salomaa
Received January 1988
Revised October 1988

Abstract

Howell, R.R., L.E. Rosier and H. Yen, Global and local views of state fairness, Theoretical
Computer Science 80 (1991) 77- 104.

In this paper. we compare global and local versions of state fairness for systems of concurrent
programs and Petri nets. We then investigate complexity and decidability issues for the fair
nontermination problem. It turns out that for systems of concurrent Boolean programs and
l-bounded Petri nets, the problem is PSPACE-complete with respect to global state fairness, but
EXPTIME-complete with respect to local state fairness. For general systems of concurrent
programs. both the globally and locally state fair nontermination problems are undecidable. (In
fact, they are FL,-complete and Z i -complete, respectively.‘) On the other hand, the problem is
decidable for general Petri nets with respect to global state fairness, and undecidable t2,-complete)

with respect to local state fairness.

78 K. R. Hmvel1, L. E. Rosier, H. YetI

systems that involve parallel computations (see, e.g., [2,14,27,34]). A major benefit
of such (nondeterministic) models is that they often have a simpler structure than
their deterministic counterparts (cf. [22,30,3 I]). On the other hand, due to the
nature of nondeterminism, it is, in general, hard to analyze these systems. One of
the fundamental issues concerning nondeterministic systems is the study of problems
concerning their infinite behavior (e.g., the deadlock, lockout [20], starvation, and
termination problems), especially when a “fairness constraint” is taken into account.
Throughout the last decade, several notions of fairness with respect to these models
have been proposed in conjunction with problems related to nondeterministic
computations. in fact, multitudes of papers have been written on the subject. For
example, in [4], Carstensen and Valk investigated the well-known dining philoso-
phers problem, taking fairness into consideration. In [3,15, 161, questions of fairness
concerning Petri nets were examined. A hierarchy of notions of fairness for Petri
nets can be found in [11. Problems concerning the fair termination of finite-state
cottcurrent systems can be found in [13,23,28,36,39]. Each of the above investigated
the problem of determining whether a given system of finite-state concurrent pro-
grams will terminate under the assumption of some fairness constraint. With respect
to finite-state concurrent programs more general problems (i.e., model checking)
have also been extensfvely studied (cf. [7,8,38]). Definitions of fairness concerning
networks of CFSMs can be found in [lo]. A hierarchy of fairness constraints with
respect to CSP was proposed by Manna and Pnueli [25].

In the study of nondeterministic systems, a very useful practice is to represent
each system configuration by a “stale”. A state can be regarded as the result of

.rcmg a “snapshot” of tfre system at a given instant. Such a representatio&l allows
us to describe a concurrent system by a directed graph in which each node represents
a system state and each eoge indicates a transition (operation) of some program.
As far as a single-program nondeterministic system is concerned, this definition of
“state” is unambiguous. However, for a system with concurrency (i.e., a system
consisting of several programs running in parallel), the concept of state can have
either a “global” or “local” interpretation. A global state is a description of the
entire system at some point in its execution. In contrast, a local state for a particular
program describes only the information concerning the resources to which that
program has access. That is, global states correspond to the view of a global observer
while local states correspond to the view of ~g local observer.

So far, most of the research in concurrent systems deals with the concept of global
states. One of the reasons is that global state spaces appear to allow us to ha,qe a
clean view of the actions within a system. Furthermore, verification and specification
methods for concurrent systems under a global state space representation have been
well investigated in recent years. owever, there are some cases (for example,
systems with an arbitrary number of processes [37]) where a globaE observer cannot
exist. For such cases, the notion of a global state is, in some sense, meaningless. A
related problem is that online verification methods utilizing global states have
implementation di culties for certain istributed systems from the practical point

of view. (For example, in a message-passing system a machine cannot “freeze” the
computation of the system and then acquire the necessary information.) Con-
sequently, it is worth taking a closer look at the issue of “global” vs. “local” from
both theoretical and practical points of view.

The main contribution of this paper is to examine the above issue from the
theoretical point of view. To achieve this goal, we investigate the global and local
versions of state fairness with respect to the nontermination problem’ for concurrent
programs and Petri nets. The notion of state fairness (or an enhanced version called
extreme.fairne~s) due to Pnueli [28] is of interest because, as was shown in 1281, it
can be used to capture the essence of “probabilistic” computations. Informally
speaking, a computation is said to be stale fiir iff whenever a transition from a
state occurs infinitely often, all enabled transitions from that state must be executed
infinitely often. The motivation is that if a state occurs infinitely often and, at each
juncture, one tosses an unbiased coin to determine the next transition, then the
probability of almost always neglecting some outgoing transition (enabled at that
particular state) is zero. A similar concept has also been considered by Queille and
Sifakis [29] (under the name of fair choice from states) to study transition systems
and their fairness-related properties.

The main concern here is to study how the global and local views of state fairness
will affect the complexity of the fair nontermination problem. Our study concentrates
on four models of parallel computation- systems of concurrent Boolean programs,
l-bounded Petri nets, general systems of concurrent programs, and general Petri
nets. A summary of our results is presented in Table 1. Some related issues of local
vs. common (global) knowledge in distributing computing can be found in
[l&9,12,21]. See also [33) for related problems concerning games.

I

80 R. R. Howell, L. E. Rosier, H. Yen

2.
lain the issue of global vs. local state fairness in an

informal manner. A more formal description will be provide in Section 3. To
understand the difference between global and local versions of state fairnes
the example in Table 2 (see also Fig. 1 for the carresponding transition
Here two programs A and B are running concurrently using x and y
variables (z is ‘s private variable). I, and I? (respectively m, and m-+) are program
locations of program A (respectively program B). (Program locations are, concep-
tually, similar to statement labels in conventional programming languages.) Also

Table 2

A concurrent system.
.pJCp()

Program B

I, : if true then y := 1 got0 I, . . . a,
Cl
ifx=1thengotoI, . ..a2

I, : (Termination)

m, : if true then _r := 0; 2 := 0 goto m, . . . A,
cl
ify=lh z=Othen_r:=O;t:=Igotom, . ..&

q
ify=I~:=Ithens:=I . . . h

m, : (Termination 1

rogram A Program B

‘\
‘\ ‘. . F‘ /it y=l * r=O then

:
.x.’

‘*.*
-’

.- . . .a.--.

riables

sitio own in le 2.

Global and local oiew qf slate .fairne.w

notice that transitions a, and a (respectively 6, , b2 and J+) of program
tively program B), separated by boxes in Table 2, are executed nondeter
We define a global state to be a tuple [(I; x, y), (m; X, y, z)], where I and m are
program locations of A and B, respectively, and X, y and z are variables; while
local states of A and B are represented by (I; X, y) and (m; X, y, z), respectively.
(More rigorous definitions of global and local states will be given in Section 3.)

Consider the infinite execution sequence (or: [a,, a,, b, , Q, , b2, b, , b,]” (ai and b,
refer to transitions shown in Fig. 1 and the superscript w indicates that the sequence
will be repeated infinitely many times). Suppose that the job of an observer is to
determine whether the above computation is state fair. The traditional view is that
the observer is provided with a large observational window that views the entire
system. However, such a view may not be feasible. Instead, one can
observers, each having a small observational window which is capable of viewing
the configuration of a single program. For example, suppose the current configuration
(global state) of the system shown in Table 2 is [(I; X, JT), (m; x, y, z)]. Two kinds
of pictures, i.e.,

(I; x,y)(m; x,-v, z) and m(I; (or m(m;),

can be viewed depending on the size of the observational window. In what follows,
we shall see that the issue of whether the observer judges a computation to be state
fair depends on the size of the observational window. Now, viewing a through the
large window, the observer can see the following (global) state sequence:

2 [(I, ; 0, 01, (m, ; 0, 0, O)]]“.

In this sequence, a, is never executed from the global state [(I, ; 0, 0), (m, ; 0, 0, 1)],
although Q, is enabied infinitely often in that state. Consequently, the computation
is not state fair in the global sense. On the other hand, using smaller windows,
observers will view the following two state sequences (depending upon whether the
observer’s view is focused on A or B) corresponding to u:

A: [(~,;0,0)~(1,;0,1)li:(l,;0,1)-1:(1,;0,0)fi:(1,;0,1)

%1,;0,O)~(r,;o,o) $1, (I, ; 0, O)]”

and

. . [(m,;WhO)~(

%m,;O,l,O)$

82 R. R. Howell, L. E. Rosier, H. Yen

Transition a, occurs infinitely often in A’s two local states (I, ; 0,O) and (I, ; 0, 1).
Also, transition b, (respectively 6,) occurs infinitely often in B‘s local states
(lzl, ; 0, 0, 0), (ltl, ; 0, 0, 1) and (m, ; 0, 1,O) (respectively (m, ; 0, I, 0)). As a result,
the computation will be judged state fair by the observers usi small windows;

i.e., u is state fair in the local sense. It is reasonably easy to s that there is no

globally state fair infinite computation for this system. Hence, the example reveals
that the answer to the state fair termination proble for concurrent systems migh:
depend on the underlying notion of fairness (i.e., al or local fairness

is assumed).
Consider also that in many real-world concurrent systems, t e ratio of execution

speeds between processes can be arbitrarily large (but finite). This too, in some
cases, will affect the termination of a system. To see this, consider again the example
in Table 2. Suppose the speed ratio of A to B is exactly reflected by the computation
G. In this case, transition ul was never ready when the global state
[(I, ; 0, 0), (m, ; 0, 0, l)] was reached (i.e., when B’s private variable z had a value
of 1). (This can happen if, at that moment, A was still executing its internal
operations.) Hence, a, will never be executed in that state. Therefore, such “coI-

laboration” can prevent terminating computations. As a result, state fair computa-
tions for such a system might be those defined by local fairness.

As far as we know, no efforts have been made to clarify the fundamental issue
of global vs. local state fairness. In fact, the underlying architecture of concurrent
systems appearing in the literature is usually based on the concept of a global state
space [13,23,29]. Although for some applications this approach is applicable, for
others it may not be suitable. In addition to this, since each globally state fair
nonterminating computation is also locally state fair, proving that a system will
terminate with respect to local state fairness will guarantee the termination of the
system in terms of global state fairness.

Based on the above observations, local vs. global state fairness is an issue that
deserves further study from both theoretical and practical points of view. In Section
3, we define formally global and local versions of siate fairness for two concurrent
models, namely, systp ns of concurrent programs and Petri nets. In Section 4, we
study the complexity of the nontermination problems for restricted versions of the
above two models, i.e., systems of concurrent Boolean programs (i.e., programs
with Boolean variables) and l-bounded Petri nets (i.e., Petri nets with l-bounded
places). It turns out that for these restricted models, the globally state fair nontermi-
nation problem is complete’ for PSPACEJ (polynomial space), whereas the locally
state fair nontermination problpm is complete for EXPTIM E” (exponential time).

Comp!eteness results mentioned in this paper. unless otherwise stated. are with respect to polynomial-
time many-one reductions.

’ PSPAC‘E = (J, _,, DSPAC’E(n’ 1. where DSPACE(S(n II denotes the class of languages accepted by
achines in S()I b spact.

deterministic Turing machine\ in Tc PI I time.
Ec 73 H 1) denote\ the class of languages accepted by

In Section 5, we investigate the decidability of these problems with respect to general

systems of concurrent programs and general Pelri nets. We are able to show that

for concurrent programs, the globally and locally state fair nontermination problems

are undecidable (II,-complete and X ! -complete, respectively). On the other hand,

for Petri nets the globally state fair nontermination problem is decidable, while the

locally state fair nontermination problem is undecidable (&-complete). These results

seem to indicate that despite the above merits for some applications, problems

related to local state fairness are, in general, harder to analyze than those related

to global state fairness. We also hope that the results of this study will allow us to

have a better insight into the nature of parallel computations.

3. The models

In this section, we define global and local versions of the state fair nontermination

problem for two concurrent models, namely, systems of concurrent programs and

Petri nets.

Let Z denote the set of integers. A system of concurrent programs S is a triple

(f’, V, z+,), where P=(P ,,..., &} is a finite set of programs (defined below), V =

(u I,=*., u,,,} is a finite set of variables, and v,,: V - Z is the initial t&e function.

Each program P,, 1 s is k, is a 5tuple (Q1, V,, S,, X,, s,), where

(I) Q,={r;,..., r:1,} is a finite set of program locations (the reader can think of

program locations as statement labels, as in FORTRAN or PASCAL);

(2) &={u’, ,..., Ui,,}E v;

(3) S,={S’,,..., S:,,}, where each a;, 1 ~j s d,, is a set of transitions at location

r: D Each transition t E 6; is of the following form:

if p(z(, . . . , u;,,) then x, := yl + c, ; . . . ; x,,, := _rrlr + c,,, goto ri,

where p is a logical expression over the variables vi, . . . , r!;,, , integer constants,

the arithmetic operator +, the relational operators =, <, and >, and the

logical operators v, A, and 1; { _Y, , . . . , x,,,, _I*, , . . . , y,,,) E V, ; cl , . . . , c,, are

(possibly negative) integer constants; and r: E Q, ;

(4) X, c Q, is the set of terminal program locations; and

(5) s, E Q, is the initial program location.

We also require that for 15 i,J ‘d k, if i #.j, then Q, A Q, = (3. (Mte that this implies

that 6, ~16, = Cn.) Figure 2 provides a pictorial description of a concurrent system.

The size of a soncurrent system S 01’ a program P, (denoted by l[Sll and 11

respectively) is dc Sned to be the length of its description when a standard binary

encoding technique is used. Given a system S of k programs, the set of shared

uariuhles between programs P, and P’,, i # j, is the set G,., = V, n l$ For a given 5

K--U,*, G,., is the set of P,‘s prizyate variables. A global state of S is a pair [n,

where a:P--+Uf ,Q, such that (u(P,) E Q, is the current locarion _fwwtion, an

LJ: V - Z is the current wlwfuwtion. The i~titiQ~ state of S is the air I@09 4

shared variables P2

Uerminal program location private variables

that Ck,,(P,) = s,. For a program P’, E P, the ~OCQ/ smte of P, associated with the global

state [a. v] is the pair ((u(P, 1, v(V, I), where v(V,) denotes the restriction of v to

V,. A local state (r:, v(V,)) is tev?vinal iff ri f X,. A global state [cu, v] is terminal

iti there is an i such that cu(P,) E A’,. P Note that ihe sets of terminal locations are

detined arbitrarily and have nothing to do with haking.)

Let t t. 6; be the transition

ifp(l(. . , t’;,$t en s, := _tj + t’, ; . . . ; s,,, := J*,,, + t;,, got0 i(. .

t is said to be enabled at the global state [CY, II] and the local state ((? ~4 V, 1) iff

tt (P,) = r: and /I(I’(C; 1. . . . , P (L$ 1) = true. We then write [o, v] L [m’, 3*‘) and

(r; , I’(C’, 1 1 L (r’. , rl’(V, 1). where

CI 7 f,) - rl; ;

fC(P, b=cr(P, 1 for i’Zi;

i”(.\I, 1 -z rq _rlr 1 t cl1 for 1 * k - m; and

P’(q, 1 = r(p(Q, 1 for all other q, c K

A t’fmpfbh!? is a sequence of global stattts

A computation can be tinite or infinite. A system S; (P, V, I+,) is a system of Bookart

pfqrfwis it‘ for all global states [0, P] in all computations, v(c, 1 c (0, 1) for all Li, E K

A tr,rrl4ti0e1 1 ih glfhftllo~ .mw /&I- (i(dl_~ .~~uw Itiir) for a cumpulation fr iff t is

executed intinitel> often in all the global (Ioc~:l) states at which it is enabled infiniteI>

often A computation is globally state fair (localiy state fair) itI all of its transitions

xe globally state fair (locally state fair). Note that a g!obally state fair computation

ocalEy state fair computatiw and that the definitions are identical for

~~I~g~e-~r~~&r~~~ systems. A rtr)irIt~~r,ljrtnljrll: ~~~r~~~tati~~~l is an i?l#ia? co utation

state ih a ters~~;I~~

ivtmience, we now introduce son~tt akernative notation to that &tiblcd

above. First, without increasing the exprrsive power, we can describe prog,ranls

using high-level language constructs, such as loop. . . en

is not hard to see that these constructs can easily be implemented using if-then-goto

statements. We can then construct a system S from H programs so defined as long

as all initial values of variables are clear from the context. We will then write

s = (P, , . * . , P,, 1. Also, if an ordering is assumed on the 11, variables in program P,,
we may represEnt a restriction of a current value function u(V,) as an /I,-dimensional

vector V’=(O,,.. . , &,,), where each 6, = ~4 C,). A local state of P, may then be

represented as (r:, 6, , . . . , fi,,, b (or (r: ; e’ 1). A global state of S may then be

represented as [y,, . . . , 9,,], where each y, is a local state of P,. It should be noted,

however, that given a local state y, for each P,, [q, , . . . , q,,] does not necessarily

repreccnt a global state of S.

The glohall_v (locally 1 state ,/i~ir rtatlturr,rinati(,t~ pddem is to determine, given a

system of concurrent programs, whether there exists a globally (locally) state fair

nonterminating computation.

In the second part of this section, we define the globally and locally state fair

nontermination problems with respect to Petri nets. We first pive some preliminaries

of Petri nets that are needed for the remainder of this paper. The reader should

consult [27,34] for more detailed definitions. A Petri rlet 4, is a 4-tuple I P, T, q, p,,),

where P is a finite set of piares, T is a finite set of transitir~rts, q is the @vfurtctior?

cp:(PxT)u(TxPk-+ N, and p,, is the initial markitlg pa,, : P - N, where N is the

set of natural numbers. For each t E T, we let t=(plq(p,t)%l} and t =

{q 1 q(I, y) >r 0) be the sets of input and output places of t, respectively. A mrking
is a mapping p : P -3 IV. We often establish an order on the places, pI $. . . , pk, and

designate a marking p as a vector in N’ where the ith component represents p(p, 1.

We say t_c(p,) is the number of tokens in place p, at p. A transition t E T is enuhleJ

at a marking I_C iff for every p E P, p(p) 2 Q(p, t). If I is enabled at pc, we write

I”- & p’, where p’(p) = p -- +(p, I) + q(t, p) for all p E P, to represent the action of

jring t at p. p’ is the resulting marking. A sequence of transitions CT = 1, t2 . . . I,, . . . is

a jirirrg sequeftce from p,, iff p,, rl pl L. . l l ‘It -L l l a . - PI, A tiring sequence can

be finite or infinite. (If u = I, t1 . . . t,, is finite we sometimes write p,, s p,,.) A

computation from p,, is a (finite or infinite) sequence of markings p,,pI . . . p,, . . . such
that p ‘I ” . . . ‘tl ‘*I* 1 , . . . , ~l-pl~ - p,, for some firing sequence t! !: . . . t,, If there

exists a finite tiring sequence (/ - 1, fJ . . . t,, such that yr, 2 p,,, then I_c,, is said to be

reachable from pc, via ct. For a Petri net 6 ; (P, T, 9, p,,), the reucltuhilifj* .% denoted

4)), is the set of markings (p 1 p,, s p, for some finite u}. Given I Petri net f

marking p, the reac,:lubilit~. p~oblent is to determine whether lu. E.

net % is said to be 1 -bourrded itf for every p c R(f!), p (p 15 1, fm all p E P (i.e.,

the numizr of tokens in any place will never exceed 1).

A partitior; o,f a Petri net (P, T, q, p,,) is a set of subsets of transitions 3 =

1 T, 9 T,} which %:atisfies T, ry T, = ~‘1, for all i f j, and L_ J: ,

e9e is wit esp0zi Et) C?tri nets corres

Rh R. R. Howell. L. E. Rosier, H. 1211

programs.) Given a subset of transitions T’, we let T’ be the set of places { p 13 E

T',q(p,tPO or cp(4p)- b 0). Given a marking CL and a subset of places P’ (C P),

we use p(P’) to denote the restriction of ~1 to P’. (p(7”) is referred to as a

submarking.) Given a computation u : p,,pl . . . p, . . . and a subset of places P ‘, we

define the projection of u on f ‘, denoted by G(f’), to be the sequence

p,,(f’)p,(f’) . . . p,(f’) . . . Given a partition .F = { T, , . . . , K.}, an infinite computa-

tion CT:~,,~, ..+ ,... is said to be stale ,fbir with respect to 5 if it satisfies the

following condition: Vi, 1 5 is r, V marking CL, VI E 7; enabled at CL, if there exist

infinitely many j’s such that p,(?,) = p(T,), then I must be fired at infinitely many

of these &s.

The locally stalc.fi?ir rrortterrnirtatiort problem for Petri nets is to determine, given

a Petri net and a partition 3, whether there exists an infinite computation which is

state fair with respect to 3. The globally sfare_jiiir nontermination problem for Petri

nets is to determine, given a Petri net Y = (f, T, q, g,,), whether there exists an

infinite computation which is state fair with respect to { T}. (Note that 9 was ignored

in the latter definition just as the set of programs was ignored in conjunction with

global state fairness for systems of concurrent programs.)

. Complexity results for systems of concurrent Boolean programs and

In this section, we first establish the relationship between l-bounded Petri nets

and systems of concurrent Boolean programs by showing that one is computationally

harder in a specific way. We then derive the complexity of the nontermination

problems for l-bounded Petri nets and systems of concurrent Boolean programs

with respect to global and loca: state fairness.

Lemma 4.1. Gioen a 1 -bounded Petri net % = (f, T, q, CL,,) and a partition 3 =

{ ‘c . l l l , T,). we can construct, in po~rwomial time, a s_wtem of’ r concurrent Boolean

pwgrams S .wc11 tlust % has Q globnllv (locall_v) stawjhir nonterminating computation

t with respect lo ,F) $‘S has a global!* t locally 1 sfafejbir nonferminafing compufafion.

roof. Let 4 = t f, T, q, CL,,) be a l-bounded Petri net and J = { T,, . . . , T,} a partition

of 7 One simply constructs a system of r concurrent Boolean programs S =

(PI,. . . , f,) over 1 f 1 variables as follows. Each variable will correspond to a unique
place in P. Each P,, I 5 i 5 r, will consist of a single program location and have

access to the variables t correspond to places in t. P,, 1 d is r, will have !Kl
transitions each design to simulate a transition of r. The variables then are

The construction should now be obvious. Note

We would like to show the converse of this lemma. That is, given a system of I-

concurrent Boolean programs S, that we can construct, in polynomial time, a

l-bounded Petri net % = (f, T, cp, p,,) and a partition .F = { T, , . . . , Tr} such that S

has a globally (locally) state fair nonterminating computation iff % has a globally

(locally) state fair nonterminating computation (with respect to 9). Unfortunately,

there seems to be a problem with such a construction. We would have to design a

way for ‘c; to emulate the if-then-goto statements. Now suppose S (or a program in

S) has access to n variables. Each Boolean predicate over these variables is a

function from (0, 1)” to (0, 1). Hence, we can write doubly exponential distinct such

predicates. Because there are only singly exponential global states for S, however,

only singly exponential outcomes may arise. Yet, it seems hard to devise a way for

% to distinguish the action caused by a particular predicate-at least in polynomial

time. As a result the converse of Lemma 4.1 appears questionable. With respect to

the issues of complexity studied here, however, we will show that this does nat matter.

The next lemma indicates that for l-bounded Petri nets, the globally (locally)

state fair nontermination problem is as hard as the reachability problem for l-

bounded Petri nets under polynomial time reductions. Since the reachability problem

for l-bounded Petri nets is PSPACE-complete [173, we will have shown that the

globally (locally) state fair nontermination prablems for systems of Boolean pro-

grams and l-bounded Petri nets are PSPACE-hard.

4.2. For an arbitrary 1 -bounded Petri net 6 = (P, T, cpI CL,,) and marking p,

one can construct, in poivnomial time, a 1 -bounded Petri net 6 ’ = (P’, T’, Q', p,f,) and

a partition 3 in such a way that p E R (‘6) jfl’ 6 ’ has a global!?* (locally) state -fair

nonterminating computation with respect to 3.

Proof. The new Petri net ‘%’ = (P ‘, T’, Q', pi,) is constructed as follows (see Fig. 3).

(1) P’ = {q’, ~“1 q E P} u {c, q ,,,,, J-all distinct.
(2) Vt E T, if t = {I), , . . . , p,,} and t = (4,. . . . , q,,,), T’ contains a transition t’

where the sets of input and output places of I” are {p;, . . . , p:. 1; qy, . . . , yz,}

and (p; ,..., pE,c+yi ,..., y:,,}, respectively. (Recall that t and t are the

sets of input and output places of I, respectively.) Note that c serves as a

control place in the sense that t’ is tirable only if c possesses a token.

!3) T’ contains a transition t, where I, = {c). and I, = c3 (Le., I, is used to remove

the token in c).
(4) T’ contains a transition I/,,,,,, where I~,,,,,, = {q~,,,~i and f~,,,,, = (~~~~1.
(5) Lastly T’ contains a transition h where the set of input places of 11 is

{r’I~(r)=1}u{s”l~(o)=O)andthesetofoutput p aces of 11 is { ~L~,J. (h is

used to test whether ~1 is reached.)

(6) &,(q’) = p,,(y), &,(y”) = 1 --p,,(q). vyt: P,

&,(cP = 1, and

&,(4/,#,,,,) = 0.

cl(r)=1
v(s)=0

Petri net that 4mul;lte\ the reachahilit> problem \ia the nontermination problem.

i ’ behaves as follows. As long as /I has not fired f’ mimics the moves of M.

During this time the current marking being simulated is represented by the number

of tokens in the primed places (i.e., the current value of y E P is in 4% P’). Also,

during this time the total number of tokens in y” and q’ together is always exactly

1. ~~‘~~c~~~~~~ E, Gres, ~‘5 tokar is removed and cannot subsequently be replaced.

This action disables any further simulation of f by d *. Thus. after t, fires the only

possible enabled transition is h. Rut /I is only enabled if the number of tokens in

the primed places corresponds to cc. Hence. if p c I?(6) then there is a firing sequence

for f ’ that cm result in the tiring of I,, then la. Afterward, only I!,,,,,, can be enabled.

~n~~~~tely many times. It is now

Now suppose that 6’ has an infinite computation 0 whi is glob;iliy (l~c;gjly) state

fair with respect to 7. Clearly, t, must fire in O-. Thus, 11 does not fire, ir will be

finite. But u is infkite. Therefore, 11 must fire in +---and this c;m only

p E R((6). This compktes the proof. fl.~

In what FOIIOWS, we show that the globally (locally) state fair n~~~~termif~~~tion

problem is complete for PSPA~‘E l EXPTI ME) for systems of concurrent Bt,ole;tn

programs and 1 -bounded Petri net&. This suggests that problems rel;ated to local

fairness are, in some cases, harder to analyze than those related to glo

We first introduce some terminology.

Given a system of concurrent programs S z= (P, , P:, . . . , Pk 1, the a/frhnI.o-tniear.~ylt,

denoted by GI., is a dii-ected labelled grapE in which:

each node in G, is a k-tuple [q,, q:, . . . , qL] which rchtprewnt~ a

S, and

there exists an edge labelled I from node [q, , . . . , qr] to node 1 q;, Y;] in <i,

iff [QI 9 l **,q~l~[q;..*..q;l.

6iven two ttodes s and s’ in G,. we use s h* s’ 40 denote thiit there is a p;rth f’rom

s to s’ in G+ Let s,, be the initial state. A subgraph G’ of G, is ~~u~~tuhlt~ iff t,, ‘1-0 s’

in Gu, for some node S’E G’. A finite subgraph G’ of G, is tailed a a-dinor iff

(1: G’ is a strongly ctinnected component (i.e., if S. .F’[~ (;‘. then s - S’ and s - \

in G’) having at leaht one edge.

(2) no node in G’ is a terminal node (a node representing a terminal state I. and

(3) V transition t, if I is enabled in a node (state) s in G’, then there is an edge

(s, s’) labelled I in G’. (An equivalent definition is thitt, Vv c C;‘. if 5 -4 s’.

then S’E G’.)
G’ is an I-knot iff

(1) G’ is a strongly connected component ha%;ing at least one edge,

(2) no node in G’ is a terminal node. and

(5) Vtransit~on~,ifrisenabledinanodetstate)~q,....,q,,...,q,]in~i’.where

P, is the program containing I, then there exists in G’ an edge (II. t.1 labelled

1, where u = [11, , . . . , u,, . . . , 1~~] L L’ = [~7,. e . . , rh] and q, = 14,.

Note that in the definition of the I-knot, no edge labelied t in G’ is required to

originate at [q,, . . . , q,. . . . , qJ9 as was the case in the definition of the R-knot.

Figure 4 is an I-knot with respect to the state graph corresponding to the syste

Table 2. (The dashed ed does not belong to the graph. f

since transition a, indicated by the dashed

[(I,; O,O), (rn,; O,O, 1 I], but not includ d-qgaph as an

[(l,;O,O1, (999 d\ an 0

containing the local state (I, ; 0.0).
g- and C-knots for Petri nets can be

conceptually, the notion of I$-

similar. (A trap is a subset of places with the pr

at le .t t ca ea

90 R. R. Howell, L. E. Rosier, H. YetI

*a

I8

1

Fig. 4. An I-knot in the state graph of the system shown in Table 2.

transitions.) Both have the property that once a computation “falls” into a “black-

hole” (a g-knot or a trap), the computation must remain in the blackhole forever.

The fundamental difference between g-knots and traps for Petri nets is that g-knots

are defined on the reachability graph of a Petri net; while traps are defined on the
Petri net structure.

Before we derive the complexity result for the globally state fair nontermination

problem, we first prove the following lemma, which provides a characterization of

those global state graphs that admit globally state fair nonterminating computations.

Lemma 4.3. Given Q system of concurrent Boolean programs S (or a 1 -bounded Petri

net and a partition 3-), there is a globally state *fair nonterminating computation ifl
G, has a reachable g-knot.

roof. Suppose G’ is a reachable g-knot of Gs. Let so be the initial node (state).

According to the definition of a reachable g-knot, there exists a node s’ in G’ such

that so - s’ in G,. Furthermore, there exists a path s’- s, - l l . - sd - s’ in G’,

for some d, which contains every node and utilizes every edge in G’. It is then easy
to see that so - [s’ - s, - 9 9 l 3 stI ---* ~‘1”’ is a nonterminating globally state fair
computation of S.

Now suppose 1 is a nonterminating globally state fair computation of S. Let G’

be a subgraph of G, consisting of those states and transitions that occur infinitely

often in 1. Clearly, G’ is a strongly connected component. Since 1 is nonterminating,

G’ does not contain any terminal node. Furthermore, since 1 is globally state fair,

Global and local views of state .fhwess 91

any transition that is enabled in a state in G’ must be executed infinitely often in

1. Hence, the transition is in G’. Consequently, G’ satisfies the three conditions of

being a p-knot. This completes the proof Cl

Now, given a system of k concurrent Boolean programs S = (P,, . . . , Pk) of size
n, the number of distinct global states can be as many as 27 for some fixed constant

c. Hence, the size of the corresponding global state graph is, in general, R(2”*“)-and

always 0(2’*“). One might expect therefore that an algorithm to decide the globally

state fair nontermination problem might require an exponential amount of space

or time. In what follows, we show that despite the size of the global state graph,

we need only space polynomial in n to solve the globally state fair nontermination

problem for systems of concurrent Boolean programs. The next lemma provides a

method to test for the existence of a g-knot without actually generating the global

state graph or the g-knot.

Lermnw 4.4. Suppose Gs is finite. Then Gs has a reachable g-knot #there is a reachable

node s in Gs such that
(1 j there is no terminal node reachable from s, and

(2) there is no deadend node (i.e., a node with no successors) reachable from .T.

Proof. According to the definition, a subgraph G = (V, E) of GS is a reachable
g-knot iff it satisfies the following conditions:

(a) 3s E G such that so- s in Gs,

(b) G is a strongly connected component with at least one edge,

(c) G contains no terminal node, and

(d) Vs E G, if s - s’ in Gs, for some s’, then S’E G.

NOW, we first show the only if part, (i.e., if a reachable g-knot exists, then there is

a reachable node s satisfying conditions (1) and (2)). Let G = (V, E) be such a

g-knot. Let s be bny node in V. Suppose s can reach (in Gs) a deadend state or a

terminal state, say s’. Let s * sl + l l l - s’ be such a path. Due to condition (d),

s’ E K Since this conclusion contradicts either (b) or (c), the only if part holds.

On the other hand, suppose there is a node s satisfying both (1) and (2). Let Q

be the set of all nodes reachable from s. Recall that u - v (u + v) denotes that v

can be reached from u (in one step). We define an equivalence relation “-” such

that u - v iff u - v and v - u. Using “ - “, one can decompose Q into equivalence

classes. Let Q’ be an equivalence class which has no successors with respect to

“e”. (The finiteness of Gs, and hence Q, guarantees the existence of such a Q’.)

Now, Q’ cannot contain just a single state s’ having no outgoing edges since such

an s’ would be a deadend node. Let E = {(u, v) 1 u E Q’ and (u, v) is an edge in G,}.

We claim that the subgraph G = (Q’, E) is a reachable g-knot. Condition (a) follows

immediately from the definition of Q. Since no terminal node is reachabie from s,

(c) is satisfied. Also, (b) and (d) are satisfied because Q’ is an equivalence class

having no successors with respect to “4”. This completes the proof of the if part. Cl

92 R. R. Howell, L. E. Rosier, H. Yen

Theorem 4.5. 73e following two problems are PSPACE-comple?e:

(I) the globally state fair nontermination problem for systems of concurrent Boolean
programs,

(2) the globally state fair nontermination problem for l-bounded Petri nets.

Proof. Since the reachability problem for I -bounded Petri nets is PSPACE-complete

[17], the lower bound for (1) and (2) follows directly from Lemmas 4.1 and 4.2.

Hence, we need only consider the upper bound, and then only with respect to

systems of concurrent Boolean programs (Lemma 4.1). But the upper bound follows

directly from the characterization provided by Lemma 4.4. Cl

Recall that for systems consisting of a single program the notions of local and
global state: fairness are identical. in what follows, we show tlr*. . the locally state

fair nontermination problem is EXPTIME-complete for systems consisting of more

than one concurrent Boolean program (or for l-bounded Petri nets when the size

of the partition is greater than 1). In what follows we show that an arbitrary

polynomially space bounded Alternatitig Turing Machine (ATM) can be simulated,

in some sense, by the locally state fair computations of a system of two concurrent

Boolean programs. The lower bound is then obtained since polynomia!ly space

bounded ATMs have the same computational power as exponential time bounded

deterministic Turing machines [6] (i.e., the class of machines defining EXPTIME).

An ATM M is a Stuple (Q, C, 6, 90, g), where

Q is a finite set of states,

C is a finite tape alphabet (without loss of generality, we assume that the input

and worktape alphabets are identical),

6c(QxZ)x(Qx2x{-l,O,+l}) is the next move relation,

90 is the initial state,

g : Q + {existential, universal, accepting, rejecting).
Basically the concept of alternation is a generalization of nondeterminism in a way

that allows existential and universal quantifiers to alternate during the course of a

computation. Four kinds of states exist in an ATM; namely existential, universal,

accepting and rejecting states. ATM configurations, !ikewise, fall into one of the

r.ame four categories -depending solely on the current state. A universal configura-

tion leads to acceptance iff all successor configurations lead to acceptance. An

existential configuration leads to acceptance ifI there exists a successor configuration
that leads to acceptance. An ATM accepts its input iff the initial configuration leads

to acceptance. Basicaily, the computation of an ATM is a tree. A path in this tree

is called a computation path. During the course of a computation path, the segment

between two consecutive alternations between types of configurations is called an

alternation block. Detailed definitions can be found in [6]. The complexity classes

of languages accepted by space (rime) bounded ATMs were also defined in [6]. In

particular, APSPACE is the set of languages accepted by polynomially space
bounded ATMs. It was shown in [6] that APSPACE = EXPTIME. In what follows,

Global and lmal views af state fairness 93

this result will be used to prove the EXPTI ME lower bound. Without loss of

generality, we require that our polynomially space bounded ATMs:

(1) have initial configurations which are existential,

(2) be such that each computation path culminates in either an’ accepting or

rejecting configuration, and

(3) be such that the number of successors of any configuration be 0 if the

configuration is accepting or rejecting and 2 otherwise.
If Ad is a polynomially space bounded ATM that does not satisfy these properties

an equivalent ATM !“vE’ that does can readily be constructed using standard tech-

niques (see [6]).

To show the upper bound, we need the following easily shown lemma. Since the

proof is very similar to that of Lemma 4.3, we leave it to the reader.

Lemma 4.6. Given a system of concurrent Boolean programs S (or a 1 -bounded Petri
net and a partition T), there is a locally state-fair nonterminating computation iff Gs

has a reachable l-knot.

Theorem 47. Tile following two problems are complete for EXPTIh4E:

(1) the locally state fair nontermination problem for systems of concurrent Boolean

programs,
(2) the locally state fair nontermination problem for 1. -bounded Petri nets.

Proof. Because of Lemma 4.1, it will be sufficient to establish the lower (upper)

bound with respect to (2) ((1)). We do illustrate the upper bound with respect to

(1). However, we choose to illustrate the lower bound with respect to (1) also. We

do this for what we feel is a very good reason. The lower bound proof is somewhat

tedious and is much easier to understand in terms of Boolean programs. The same

general idea works with respect to l-bounded Petri nets but explanations thereof

tend to become overly concerned with the ATM encodings. Getting a l-bounded

Petri net to simulate an ATM in the same fashion (as the Boolean programs do) is

not difficult, but it does add significantly to the technical detail. The interested

reader should consult [171, where simulations of LBAs (linear bounded automata)

via l-bounded Petri nets are discussed. The generalization to ATMs should be clear

once the general strategy is understood.

Let M be an h(n) space bounded ATM, where h is a polynomial function. Let

x be an input for M. Let 1x1= n. In what follows, we will show how to construct

(in polynomial time) a system S = (P, , P,) of two concurrent Boolean programs

that will “simulate” the computation of M on x in such a way that S will have a

locally state fair nonterminating computation iff M accepts x. Without loss of

generality, we assume that M operates over a binary alphabet.

Basically, P, repeatedly simulates a computation path of M on x as long as each

simulation path culminates in an accepting configuration. Each repetition of this

simulation is referred to as a period. h (n) local variables in , will be used to

94 R. R. Howell, L. E. Rosier, H. Yert

simulate the contents of M’s worktape. log h(n) (plus some constant number of)
local variables of P, will be used to record M’s current tapehead position (state,
etc.). During different periods, P, may simulate different computation paths of M
on x. If when simulating a computation path an accepting configuration is reached,
p, reinitializes its variables in order to simulate another computation patl:. If, on
the other hand, a rejecting configuration is reached, & terminates.

consider now a computation path (of M on x) that passes through a configuration
4. Suppose that during an infinite computation (T of S, P, enters infinitely often a
local state where the simulation being performed by Pi is at q. If q is a universal
configuration, P, should be enabled to advance the simulation to either of q’s
successor configurations. P, in conjunction with P, will be constructed so as to
allow this. Thus in this case, providing a is locally state fair, P, will infinitely often
enter local states where the simulation being performed by P, is at each of q’s
successor configurations. If q is instead an existential configuration, P, should be
enabled to advance the simulation to only one of q’s successor configurations-the
one that leads to acceptance. Pz in conjunction with P, will be constructed so as to
allow this. So, in this case, if o is locally state fair Pi need only enter infinitely
often one of the two possible local states where the simulation being performed by
Pi is at a successor of q. Therefore overall, if c is locally state fair, P, will infinitely
often enter only and exactly those local states where the simulation being performed
by P, is at a configuration of M on x that leads to acceptance. Since along a, P,
must infinitely often enter a local state where the simulation being performed is at
the initial configuration of M on X, M must accept X. Likewise, if M does not
accept x, o cannot be locally state fair.

In what follows, we dub a local state of P, accqting, rejecting, universal, or
existential depending on the category of the current configuration of M on x. Now
the simulation of a computation path by P, (a period) proceeds in phases correspond-
ing to the alternation blocks in the path. When P, is in a universal state, P, will be
busy waiting. A shared variable D, set to 0, will insure this. At this time, P, will be
enabled to simulate either of M’s available moves. When P, enters a state that is
existential (from any state), control is passed to P2 by setting D to I. P, is then
busy waiting until Pz sets D back to 0. P2 then sets D to 0 andf nondeterministically
to either 0 or 1, and resumes busy waiting. P, will now be enabled to simulate one
of M’s available moves if f = 0 and the other if f = 1. Thus, P, in an existential state
will always be enabled to simulate exactly one but not both of M’s available moves.
6 (via its nondeterministic setting off) simply controls which one becomes enabled.
Finally, once the simulation of P, reaches an accepting configuration of M on X,
f'~ sets D to 1, Pz then sets f to 0 or to I (P, does not use this value off; rather,
this step is included only in order to ensure that the computation can be locally
state fair with respect to P2), then F, sets D to 0 and the entire procedure begins
anew. As a result, S = (PI, P2) behaves in the desired fashion. A detailed description

now appears in Table 3. The detailed proof showing that S behaves
as described is left to tt:k iedder.

Global and local views qf state_fairness 95

Table 3

w-m_-

Shared variables: D,f:

The concurrent system (P, , P.,).

Program P, :
Ll: Initialization; /Set the current configuration being simulated

to the initial configuration of M on x./
El_‘-fiag := 0; /O and 1 denote existential and universal phases, respectively./
D := 0; f := 0;

loop

/Assume that the current configuration of M on x is q and q - q’
and q- q” are its left and right transitions, respectively./

if EU-flag = 0 then
begin

D:= 1; /enable P2/
L,: if D = 1 then goto L3 /busy-waiting/;

if D = 0 A.f = 0 then “simulate q - q”‘;
if D = 0 A-f = 1 then “simulate q - q”“;

end
else

L,: “pick q - q’ or q - q” to simulate nondeterministically”
L,: case current configuration /now either q’ or q”/

accepting: got0 L2;
rejecting: TERM I NATE;
universal: EU-flag := 1;
existential: EU-flag := 0;

end case
end loop

L2: D:= I;
L3: if D = 0 then goto LI else goto L3;
end

Program Pr :
loop

wait: if D = 0 then goto wait;
begin /nondeterministic choice/

f:=O
q f:=I

end
D:= 0;

end loop
-._____-

It should be noted that a locally state fair computation of S need not be globally
state fair. The reason is that in order for existential moves to be simulated “correctly”

infinitely often, P, must be able to set f “correctly” each time. This may not be

possible if the computation is required to be globalky state fair.

No!v, we will show the upper bound with respect to (1) Q; a system S of n

concur-rent Boolean programs, the number of global states is 0(2’*“), for some fixed

constant c. Hence, in exponential time we can construct the corresponding global

state graph Gs. Recall that each node in C$ represents a global system state and

that each edge in Gs represents a transition of one of the Boolean programs. Recall

96 R. R. HoweCI, L. E. Rosier, H. Yen

also that S will have a locally state fair nonterminating computation iff Gs has a

reachable I-knot (Lemma 4.6). The following procedure can then be used to deter-

mine the existence of a reachable Z-knot in Gs :

Algorithm: Partition Gs into maximal strongly connected components (SCCs) Q =

{G ,,-..,GA
while Q # 0 do

pick one element from Q, say G, and let Q = Q -{G)
if G is reachable from so

them
if G is an I-knot,

then output “Gs has a reachable l-knot” and halt

else

(i) let G’ be the subgrapk obtained from G by removing all nodes and
associated edges that violate the definition of an I-knot

(ii) partition G’ into maximal SCCS Gi, . . . , G;
(iii) let Q=Qv(G’,,...,G;-)

end-while
output “Gc has no reachable l-knot”.

The basic idea of the algorithm is the following. An I-knot is a special type of

SCC. So to test whether an I-knot exists in Gs, we first decompose Gs into its set
of maximal SCCs. Then, an arbitrary SCC G is chosen to test whether it is an

I-knot. If it is, the procedure terminates; otherwise, the set Q is refined and the test

is repeated. The fact that the algorithm works should almost be clear from the

definitions. The only point that might need clarification is step (i). If G is not an

I-knot, then there must exist either:

0 a terminal node 9l in G, or
0 a node 91 in G, a node 9? outside of G, and a transition t (belongtng to a program,

say Pi) such that 9! 1, 9?. Furthermore, t does not label any edge in G emanating

from a node whose local state (with respect to Pi) is the same as that of 91.

(Note that by definition one of these items must exist.) Let G’ be the subgraph of

G resulting from the removal of 9l and its incident edges. Clearly G’# G. Now if

G contains an I-knot, the I-knot cannot contain 9,-hence it must be contained

within an SCC of G”. The fact that the algorithm works should now be obvious.

Now we are ready to analyze the algorithm’s complexity. First note that each of

the following two steps can be carried out in time polynomial in the size of Gs :

constructing the set of maximal WCs, and

determining whether a subgraph is an I-knot.

Therefore, the execution time required for the algorithm is polynomial in the size
of Gs. Since the size of Gs is bounded by 2”*” , this establishes the upper bound-and
thus completes our proof. q

5. Decidability results for general systems

In this section, we investigate decidability issues of the globally (locally) state

fair nontermination problems for general Petri nets and systems of concurrent

programs. We will show that both the globally and locally state fair nontermination

problems are undecidable for systems of concurrent programs. In particular, we

show that the locally state fair nontermination problem is complete for Z&the first
level of the analytical hierarchy (see, e.g., [35])-whereas the globally state fair

nontermination problem is complete for II, -the set of languages whose comple-
ments are accepted by Turing machines. With respect to Petri nets, the problem is

decidable for global state fairness, but still undecidable for local state fairness. In

particular, we show that the locally state fair nontermination problem for Petri nets

is complete for X, -the set of languages accepted by Turing machines. (The results

here with respect to Petri nets should be compared and contrasted with those of

[161 where each undecidable fair nontermination problem was X:-complete rather

than &-complete.) The disparity between concurrent systems and Petri nets is mainly

because Petri nets operate in a more asynchronous fashion due to the lack of zero

testing capabilities.

We first reproduce the following theorem, which we first showed in [16].

Theorem 5.1 (from [161). Tile globally state fair nontermination problem for Petri nets
is decidable.

Proof. Let % be an arbitrary Petri net. We first determine whether % is bounded.

(See [19,321 for boundedness algorithms.) If CG is unbounded, there is an infinite

firing sequence o which reaches each marking at most once. (T is clearly globally

state fair. On the other hand, if (T is bounded, we can construct the reachability

graph. Then there is an infinite state fair firing sequence ifi the reachability graph

contains a g-knot (i.e., a strongly connected component from which there is no

exit). Cl

In what follows, we show the locally state fair nontermination problem with

respect to Petri nets to be complete for & . The typical strategy for showing fair

nontermination problems (with respect to Petri nets) to be undecidable is to show

that the fairness constraint can be used to eventually force correct zero-testing in

the simulation of a counter machine (see, e.g., [3]). This strategy is used in showing

the following theorem.

Theorem 5.2. TIte locally state fair nontermination problem for Petri nets is &-hard.

Proof. We use a reduction from the halting problem for 2-counter machines, which

is known to be &-hard [26]. Let A4 be an arbitrary 2-counter machine of [26]. We

will construct a Petri net % and a partition .“/ of E’s transitions such that % has a

locally state fair nonterminating computation with respect to Y iff M accepts E (the

empty string). Without loss of generality, assume A4 is deterministic and has a

98 R. R. Howell, L. E. Rosier, H. Ytz

unique final state 4,. that can only be entered when both counters are 0. The strategy
is similar to that given by Carstensen [3]. First, an arbitrary natural number is
generated. This number is then used to bound the length of the simulation and the
size of the counters. Accepting computations are then repeatedly simulated so that
eventually all zero tests are correct.

The Petri net % is divided into two main parts, INIT and SIM. % as well as the
partition $ is portrayed in Fig. 5. The purpose of INIT is to generate an arbitrary
natural number. In any locally state fair computation, s2 must eventually fire,
permanently disabling sl . When s2 fires, SIM may begin simulating a computation
of M. At this point, the places clock, E, , C2 all contain some arbitrary integer n
generated by INIT. From this point on, airs (clock, clock), (c,, c^,), and (cZ, &)
are duals in the sense that clock + clock = c, 6 Z, = c2 + Cz = n. The transitions I,, . . . , I,

then simulate the moves of M by keeping token in the current state, updating cl
and c2 to store the contents of the counters, u ating 2, and & so that cl + 3, = c2 + & =
n, decrementing clock, and incrementing each move. Thus, any computation
of length n or less may be simulated. If this computation terminates in the accepting

ZERO i

query Y@S no

Partitions are denoted by shaded boxes.

Fig. 5. A Petri net for simulating a Z-counter machine.

state ql, a new computation ot length n or less may Le simulated. However, there
is no guarantee that SKM will always correctly simulate some computation of M.

In pcrticular, a move that can only be executed by M when some counter is zero

may be executed by SIM when that counter is positive. To overcome this problem,

SIM contains two subcomponeats, ZERO, and ZERO?. As SIM simulates M

entering any state in which a zero-test occurs on some counter, say c,, it places a

token on query in ZERO,, and waits for ZERO, to respond by placing a token on
either yes or no. If c, = 0, shs7 must be fired, so a token is piaced on yes. If c, f 0,
either .ss or s6 may be fried. If s5 fires, .s token is placed on no. On the other hand,

if s6 fires, s8 is enabled. Since cl never exceeds n, if sx is enabled infinitely many

times in any locally state fair computation, it must eventually fire, leaving nc

transitions enabled. Thus, in any locally state fair nonterminating computation, sh

will fire when c, Z 0 at most finitely many times. After the last of these times, SIM

correctly simulates moves of M. After this point, g, can only be entered when both

cl and c-, are zero. Thus, in any locally state fair nonterminating computation, %

must eventually simulate correctly an accepting computation of M.

Now suppose M ha3 an accepting computation u of length n. Let (T’ be the

computation of % in which INIT generates n and SIM repeatedly simulates U. We

will now show that u’ is locally state fair with respect to Y by considering each

T E 5 separately.

7;: = {s,}: s1 is enabled only finitely many times in G’,
T = {s,}: s2 is enabled only finitely many times in u’.

T = {s3}: s3 is fired every time it is enabled in (T’.

Q Ti = {ss}: Ti = {qo, q1 }, all markings reached in G’ at which s4 is enabled have

qo=O and q/ = 1, and s4 is fired infinitely often.

T = (ss}: s5 is fired every time it is enabled in (T’.
e Ti= {s6, s3}: Fj = {query, test, yes}, and all markings reached in (T’ at which sh is

enabled have query = 1, test = 0, and yes = 0. Since G ends with both counters
zero, we can assume without loss of generality that u contains at least one

successful zero-test; hence, sh is fired infinitely often in (J’. s7 is fired every time
it is enabled in CT’.

7;-=(t,,..., t,,l}: Since M is deterministic, each of these transitions is fired every
time it is enabled in 0’.

We can conclude that % has a locally state fair nonterminating computation with
respect to 3 iff M has an accepting computation on E. ill

The above proof shows how local state fairness can be used to force the generation

of arbitrary natural numbers and zero-testing. In [16], we showed how these

capabilities can typically be used to show fair nontermination problems for Petri

nets to be X:-complete. However, such is not the case with respect to local state

fairness, because each locally state fair compuration must be bounded in order for

zero-testing to be enforced. The next two kmmas and the subsequent theorem show

the locally state fair nontermination problem to be in &.

100 R. R. Howell, L. E. Rosier, l-l. Yen

Lemma 5.3. Let p be a place in a Petri net % = (P, T, (o, CL(,). If CT = bob, . . . is an

infinite computation in which p is unbounded, then u fires a sequence 0 such hat

PI s gi, pi < pj, pi(p) < pi(p), and if‘p’ is any place that is bounded in a; pi(p’) =

!%(P’)*

Prosf. Sinca p is unSounded, there is an infinite sequence I of natural numbers

i,@,< l . l such tnat IC,,,(p) i !A,,(p) < l l l . Furthermore, there must be an infinite

subsequence I’ sf 1, i,‘, < ii < l 9 l such that pi:, < ru;i < l 9 l . Clearly, there must exist

i, j E I’ such that i <j and for all places p’ that are bounded in a, pi(p’) = pj(p’). @

L,emma 5.4. Ls! ‘K = (f, T, p, ,u,,) be a Petri net, and let 3 be a partition of T. If there

is a locally state fai; nontermina ting computation of %’ with respect to 3, then there

exist jinite,firing sequences 0, and i& such that t.~() -11: I_C~ 2 fiL:! 2 p3 2 l l 9 is a locally

state jair computation of % wiih respect tc~ 9.

Proof. Let 0 be a locally state fair nonterminating computation of % with respect

to 9. Let U be the set of places unbounded in a, and let B be the set of places

bounded in U. Let ul = p. !?, gl be a finite prefix of u containing all markings /A

such that the submarking p(B) is reached only finitely many times in cr, and 3uch

that the submarking g,(B) is reached infinitely many times in ET. Let CT? be the

remainder of o. For each p E U, let ep be the firing sequence from nZ guaranteed

by Lemma 5.3. Let o3 = gl *, pZ be a finite prefix of Q? such that

(1) 8 contains all e,, such that p E U;

(2) if the transition t is fired from infinitely many markings in oZ containing the

submarking p(B), then t is fired from some marking $ in CT, such that

p(B) = r_l’(B) (since there are only finitely many distinct values of p(B) such

that p is in u?, this condition is satisfied by a finite prefix of u?); and

(3) pZ(B) - EL, (B) (since IL, (B) is reached infinitely many times in o, this condi-

tion can be satisfied).
e now construct e2 from e as follovs. Scanning 8 from left to right, when the

beginning of a loop ep is encountered, insert enough copies of t?,, to make t!le

displacement of p in the resulting firing sequence positive. Since the displacement

of each 8,, is positive, the resulting sequence & has a positive displacement.

Furthermore, since each O,, has a zero displacement on all places in B, and since

t-c,(B) =pJB), & h as a zero displacement on all places in B. Hence, oniy sub-
markings wholly contain4

*I H,
in B are repeated infinitely often in

tt- 07
po--,pI-_,p~~~+b”‘. Thus, from condition (2) above, 8, and & satisfy the
lemma. El

5.5. The locally state fair nontermination problem for Petri nets is in & l

Let ~7 = (B, T, cp, p,,) be an arbitrary Petri net, and let Y be an arbitrary

on of T. We now describe a TM Ikl that accepts (%, E/I) iff 95’ has a locally
state fair nonterminating computation with respect to T. (Note that A4 is not required

to halt on ail inputs.) M fi-st guesses 8, and & given by Lemma 5.4, and verifies

that ~~~~~,~~~ such that
-87

p: 6 pL. M then verifies that Q=
ti, fj7

p~,1)1*p,ip+p~i”’ is locally state fair with respect to Y. This verification

is done in the following manner. Let B = {p 1 p,(p) = p2(p)}, and let U = {pi pl(p) <

p2(p)}. Clearly, if z contains a place in U, there will be only finitely many markings

p in O- such that p(z) = ru_‘(i’;) for any given cc’, Hence, M only needs to consider

those elements r E 3 such that T, G B. M therefore verifies that for all p in pl 2 pZ,
. .

if transition t E Ti such that T, G B is enabled at p, then t is fired at some & in
pi .% pZ such that p(Ti) = p’(Ti). Qnce this is verified, M accepts. From Lemma

5.4, M accepts iff %’ has a locally state fair nonterminating computation with respect

LO 3. cl

The following result follows immediately from Theorems 5.2 and 5.5.

Corollary 5.6. The locally state fair rxontermination problem for Petri nets is I:,-

complete.

As mentioned above, local state fairness with respect to Tetri nets cannot be used

to enforce arbitrary use of both zero-testing and the generation of arbitrary natural

numbers. However, concurrent programs can perform zero-testing without relying

on a fairness constraint. Therefore, we can use local state fairness with concurrent

programs to generate arbitrary natural numbers at will. This capability allows us to
show that the locally state fair nontermination problem for concurrent programs is

XI-complete. In order to characterize the class Z$, we introduce the notion of

infinite-branching programs. An infinite-branching program is simply a program with

the added ability to nondeterministically generate an arbitrary natural number. We

now give the following lemma from [5], which gives a characterization of 2;.

Lemma 5.7 (from [S]). The set of all infinite-branching programs that contain an

infinite computation is E !-complete.

We can now show the following theorem.

Theorem 5.8. The locally state fair nontermination problem for concurrent programs

is X !-complete.

Proof. We will show this problem to be equivalent to determining whether an

infinite-branching program contains an infinite computation. Let P be an infinite-

branching program. We will show how to construct a system (P,, P2) of programs

(without infinite-branching) that has a locally state fair nonterminating computation

iff P has an infinite computation. First, consider Table 4. Suppose Program Pz is

compiete!y deterministic. (Note that the portion shown is.) Since both P, and P2

are deterministic, any nonterminating computation in which both programs execute

transitions infinitely often is locally state fair. Furthermore, it is easily verified that

any nonterminating computation in which P, executes transitions only finitely many

R. R. Howell, I_.. E. Rosier. H. Yen

Table 4
Simulation of infinitehanching.

PC-- _-p-

Program P, Program P2
~~________~ -_-

I, : if true then x := 1 got0 I, - . .
VI, : if true then n := 0; x := 0 goto m,
nt, : if r = 1 then goto m,

cl
if .Y = 0 then II := II + I goto no,

n1q: . . .

times is not locally state fair. Thus, in a ioca!iy state fair computation, n may be

incremented to an arbitrary value, as long as the resulting computation is nonter-

minating, but the loop at m2 must always terminate. Since this technique can be

used to simulate bounded nondeterminism as well as infinite branching, we can
construct a deterministic program & such that (Pi, R) has a locally state fair

nonterminating computation iff P has an infinite computation.

NowietS=(P,,..., Pk) be an arbitrary system of k concurrent programs (without

infinite branching). We will construct a program P with infinite-branching that has

an infinite computation iff S has a locally state fair nonterminating com:>utation. P
simulates S by nondeterministicaily selecting transitions to simulate. As the simuia-

tion progresses, P maintains a table containing ail local states reached by each Pi.
When 9 new local state 9 is reached by some Pi, P guesses for each transition t c.7

Pi enabled at 9 how many times 4 will be in state 9 before t is executed. P then

stores this value as q,, . Each time pI is in state 9, P decrements q,,. Each time t

is executed from state 9, P guesses a new II,,,. If, after a new n,,, is generated, some
n,;,;. is zero_ P halts. Clearly, P has an infinite computation iff S has a locally state

fair nonterminating computation. Cl

As our last result, we show that the globally state fair nontermination problem
for concurrent programs is II,-complete. In order to show this, we must describe a

TM that can verify that there is no globally state fair nonterminating computation

in a given system. The main reason we are able to do this is given in the following
lemma.

Any system S of concurrent programs having an injinite set of reachuble
states has a globnl!by state fair nonterminating computation.

roof. Consider the reachability tree T of S defined as follows. Let the initial state
of S be the root of T. For each nonterminali state 9 in T, the children of 9 are ail

states reachable from 9 by one move of S, except those states that are ancestors of

9 (vkre 9 is considered an ancestor of itself). Since the set of reachable states is

infinite, T must be infinite. Since T has a bounded branching factor, T must have

infinite depth. Therefore, there is an infinite path in T representing a nonterminating

computation in which no state is entered more than once. This nonterminating
computation is globally state fair. 3

Theorem 5.10. 7114 globally statejih- nontec mination problem for concurrent programs
IS II, -complete.

Given an arbitrary deterministic TM M, we can clearly construct a determinis-

tic program P that terminates iff A4 haltp J in E. Since the only computation of a
single deterministic program is always globally state fair, P has a globally state fair
nonterminating computation iff M does not halt. The problem is therefore I&-hard.

Let S be a system of concurrent programs. We -&vi11 describe a TM M that accepts
s iff S has no globally state fair nonterr linating computation. M first begins to
construct Gs. If this graph is infinite 12 s q.411 never accept S, but from Lemmc 5.9
there is a globally state fair nonterminating computation. If the graph is finite, when
M completes the graph it then searches the graph for a g-knot, accepting iff one
does not exist. From Lemma 4.3, IbI accepts S iff S has no globally state fair
nonterminsting computation. Therefore, the problem is &complete. 0

Acknowledgment

We would like to thank the referee for suggestions which improved the content
as well as the presentation of our results.

References

[I] E. Best, Fairness and conspiracies, br$orr,l. Process. f err. 18 (1984) 215-220; Addendum, ibidem 19

(1984) 162.
[2] G. Bochmann and C. Sunshine, Formal methods in communication protocol design, IEEE Trans.

Commun. (1980) 624-63 1.

[?] H. Carstensen, Decidability questions for fairness in Petri nets, in: Pruc. 4th Am‘. Symp. on nteoretical

Aspects of Compurer Science, Lecture Notes in Computer Science 247 (Springer, Berlin, 1987)
396-407.

[4] H. Carstensen and R. Valk, Infinite behaviour and fairness in Petri nets, in: Advances VI Perri Ne:A

1984, Lecture Notes in Computer Science 188 (Spr,nger, Berlin, 1385) 83-100.
[5] A. Chandra, Computable nondeterministic functions, in: fruc. 19th IEEE Symp. on Foundariws of

Compufer Science (1978) 127- 13 1.
[6] A. Chandra, D. Kozen and I . Stockmeyer, Aiternation, J. ACM 28 (1) (1981) 114-133.
[7] E. Clarke and E. Emerson, Design and synthesis of synchronization skeletons using branching time

temporal logic, in: Workshop on Logics of Programs, Lecture Notes in Computer Science 131
(Springer, Berlin, 1981) 52-71.

[8] E. Emerson and C. Lei, Modalities for model checking: branching time logic strikes back, Sci.

Compuf. Programming 8 (1987) 275-306.

[9] R. Fagin, 3. Halpern and M. Vardi, A model-theoretical analysis cf knokvledge, in: froc. 2Sil- rEEE

Symp. on Foundations @‘Computer Science (1984) 268-278
[lo] M. Gouda and C. Chang, Proving iiveness for networks of communicating finite state machines,

ACM Trans. on Programming Languages and systems 8 (1) i 1986) 154- 182.
[l l] M. Hack, Analysis of producilon schemata by Petri nets, MAC TR-94, Project MAC, MIT,

Cambridge, MA, 1972.
[12] J. Halpern and Y. Moses, Knowledge and common knowledge in a distributed environment, in:

Proc. 3rd ACM Symp. on Principles qf’ Distributed Computing (1984) 50-61.

104 R. R. Howeli, L. E. Rosier, H. Yen

[131 S. Hart, M. Sharir and A. Pnueli, Termination of probabilistic concurrent programs, ACM Trans.

on Programming Languages and Systems 5 (3) (1983 1 356-380.
[ld] C..A.R. Hoare, Communicating sequential processes, Comm. ACM 21 (1978) 666-677.
[15] R. Howell and L. Rosier, Problems concerning fairness and temporal logic for conflict-free Petri

nets, Theoret. Comput. Sci. 64 (1989) 305-329.
[16] R. Howell, L. Rosier and H. Yen, A taxonomy of fairness and temporal logic problems for Petri

nets, to appear in Theoret. Comput. Sci.

[171 N. Jones, L. Landweber and E. Lien, Complexity of some problems in Petri nets, Theoret. cornput.

Sci. 4 (1977) 277-299.

[l8] p. Kanellakis and S. Smolka, On the analysis of cooperation and antagonism in networks of
communicating processes, in: Proc. 4th ACM Symp. on Principles of Distributed Computing (1985)

23-38.

[19] R. Karp and R. Miller, Parallel program schemata, J. Comput. System Sci. 3 (1969) 167-195.

[20] R. Ladner, The complexity of problems in systems of communicating sequential processes, J.

Comput. System Sci. 21 (1980) 179- 194.

[21] D. Lehmann, Knowledge, common knowledge and related puzzles, in: Proc. 3rd ACM Symp. on

Principles 9.f Distributed Computing (1984) 62-67.

[22] D. Lehmann and M. Rabin, On the advantages of free choice: a symmetric and fully distributed
solution to the dining philosophers problem, in: Proc. 10th ACM Symp. on Principles qf Programming

Languages (1981) 133-138.

[23] D. Lehmann, A. Pnueli and J. Stavi, Impartiality, justice and fairness: the ethics of concurrent
termination, in: Proc. 8th Internat. C‘oll. on Autonlara, Larlguagcs and Programming, Lecture Notes
in Computer Science 1 IS (Springer, Berlin, 1981) 264-277.

[241 R. Lipton, The reachability problem requires exponential space, Tech. Rept. 62, Dept. of computer
Science, Yale University, 1976.

[25] Z. Manna and A. Pnueli, How to cook a temporal proof system for your pet language, in: Proc.
10th Ann. ACM Symp. on Principles of‘ Progrrrmming Languages (1983) 141- 154.

1261 M. Minsky, Computation: Finite and hjinite Machines (Prentice Hall, Englewood Cliffs, NJ, 1967).
[271 J. Peterson, Petri Net Tl;eor_vand the Modeling ofSystems (Prentice Hail, Englewood Cliffs, NJ, 1981).
[28] A. Pnueli, On the extremely fair treatment of probabilistic algorithms, in: Proc. 15th Ann. ACM

Synp. on Theoy yf’ Compzhng (1983) 278-290.

[29] J. Queille and J. Sifakis, Fairness and related properties in transition systems-a temporal logic to
deal with fairness, Acta fnfbrm. 19 (1983) 195-220,

[30] M. Rabin, The choice coordination problem, Acta Infbrm. 17 (1982) 121-134.
[31] M. Rabin, N-process synchronization by 4 * log, n-valued shared variable, in: Proc. 21st Ann. Symp.

on Foundations oj’ Computer Science (1980) 407-4 IO.
[32] C. Rackoff, The covering and boundedness problems for Vector Addition Systems, Theoret. Comput.

Sci. 6 (1978) 223-231.

[33] J. Reif, Universal games of incomplete information, in: Proc. I ltll ACM Symp. on Theory of

Compurfng (1979) 288-308.

[34] W. Reisig. Petri Nets -An Introduction (Springer, Berlin, 1985).
1351 H. Rogers, TIleor\? qt’ Recursive Functions tind l$ecti~e Computability (The MIT Press, Cambridge,

MA, 1987).

[36] L. Rosier and H. Yen, On the complexity of deciding fair termination of probabilistic concurrent
finite-state programs, Theoret. Chmput. Sci. 58 (1988) X3-324.

1371 .A. Sistla and S. German. Reascaing with many processes, in: Proc. /EEE Symp. 011 Logic in Computer
Science (1987) 138-152.

[381 A. Sistla and E. Clarke, The complexity of propositional linear temporal logic, J. ACM 32 (1985)
733-749.

[39] M. Vardi, Automatic verification of probabilistic concurrent finite-state programs, in: Proc. 26th

Ann. S_vmp. ou Foundations of’ Computer Science (1985) 327-338.

