
Information Processing Letters 38 (1991) 71-76
North-Holland

26 April 1991

I-&u-Chun Yen
Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan, ROC

Communicated by T. Lengauer
Received 7 November 1990
Revised 24 January 1991

Abstract

Yen, H.-C., A polynomial time algorithm to decide
Information Processing Letters 38 (1991) 71-76.

pairwise concurrency of transitions for 1 -bounded conflict-free Petri nets.

We show that the problem of determining whether two transitions in a l-bounded conflict-free Petri net can become enabled

simultaneously is solvable in polynomial time, answering an open question posed by M. Tiusanen in (EATCS Bulletin, Vol. 36,

1988, pp. 152-160).

Kqvwords: Analysis of algorithms, comtirrency, conflict-free, Petri net

1. IntroQuction

In [8], l-bounded conflict-free Petri nets have
been proposed for modeling self-timed or self-syn-
chronized circuits. In the study of self-timed cir-
cuits, a fundamental issue is to identify the situa-
tion in which the raising of a signal by one circuit
element is in conflict with the lowering of the
same signal by another eiement. In the modeling
Petri net, this sort of conflict corresponds to the
situation in which two designated transitions (rep-
resenting the raising and lowering of a signal in
the modeled circuit) become enabled simulta-
neously. An open problem was mentioned in [S]
regarding the search for efficient algorithms to test
pairwise concurrency of transitions in a l-bounded
conflict-free Petri net. More precisely, we are in-
terested in determining, given a Petri net and two
transitions, whether there exists a reachable mark-

ing in which the two transitions are enabled
simultaneously. This problem will be referred to
as the concurrency problem throughout the re-
mainder of this paper.

For generai Petri nets, the concurrency problem
can be equated with the covering problem (of [7]);
thus, it is EXPSPACE-complete (exponential space
complete). Here, however, we are only interested
in a “restricted” class of Petri nets, namely the
class of l-bounded conflict-free Petri nets.

The class of conflict-free Petri nets has received
much attention from the viewpoint of computa-
tional complexity. Such efforts can be found in
[l-6]. In particular, the boundedness problem has
been shown to be PTIME-complete 143, the reach-
ability problem has been proved to be NP-corn-

plete [2], whereas the containment and equiv-
alence problems have been shown to be Z Zp (the
second level of the polynomial time hierarchy)

0020-0190/91/$03.50 0’) 1991 - Elsevier Science Publishers B.V. (North-Holland) 71

Volume 38. Number 2 INFORMATION PROCESSING LETTERS 26 April 1991

complete [2]. If we further restrict ourselves to
bounded conflict-free Petri ne?s. the upper bound
of reachability can be improved to PRIME [3]. In
view of the above, a natural approach to attack
the concurrency problem is to relate the problem
to those mentioned above. (For example, if we
could show the concurrency problem to be reduci-
ble to the reachability problem, a polynomial time
solution would follow immediately.) Unfor-
tunately, conventional reduction techniques for
general Petri nets do not seem to work for con-
flict-free Petri nets. This is mainly because of the
fact that, in many cases, adding a new transition
to a conflict-free Petri net could easily render the
new Petri net non-conflict-free.

In this paper, we will show the concurrency
problem for l-bounded conflict-free Petri nets to
be solvable in polynomial time. In solving the
problem, we adopt a novel technique which may
have other applications to the analysis of Petri
nets.

Let B (RJ) denote the set of (nonnegative) in-
tegers, and Bh (l’+l’) the set of vectors of k (non-
negative) integers. For a k-dimensional vector ~7,
let LJ(i). 1 < i < k, denote the ith component of o.

denote the vector of k

(P, T, +, po), where P is a finite set of places, T

is a finite set of transitions, $I is a j7or~ function,

and pO is the initial marking, ,uO : P * N. A mark-

ing is a m lpping j-4 : P -+ IV. A transition t E T is
enabled a: a marking p iff fo
+(p. t) <p(p). A transition t

marking p if t is enabled at p. We then write

CL +I I iv where P’(P)=P(P)-+(P; t)++(t. p)
for all p E P. A sequence of transitions o = t, . . . t,
is a firing sequence from pLo (or a firing sequence
of (P, T, +, PO)) iff PO +‘I p, jf2 - - - -4, p,, for
some sequence of markings pi, . . . , J~L,,. (We also
Write 66~o +O ~il,~“.) V$e write “pQ jfl ” to denote

72

that (I is enabled and can be fired from p,,, i.e.,

PO -3' iff there exists a arking 1~ such that

PO +O 1u-
Given a sequence of transitions CT, we define 4$

to be a mapping #o : T+ N such that ##)= the
number of oCO**rrPnC~ GwLo1 I~l.r~s of t in Q. Let E_L --)O p’. The
value of u, denoted by A(o), is defined to be
$-p (&@.

”
where k is the number of places in

the Petri nel). We let S(a) denote the set of
transitions occurring in 6, i.e.,

S(a)= (tp T, #,(t) >O>.

Let 9= (P, T, +, jl~~) be a PN. The reachabil-

ity set of 5a is the set

R(9)= (j~]p~+~j.4 for some a).

9 is said to be k-bounded (for some k E NJ) iff
VP E R(9), Vp E P, p(p) G k. Given a place s,
we let

s-= (tlcp(s, t) = 1, tE 7-l

and

“.s= (tl+(t, s)=l, ET).

A place s and a transition t are on a self-loop iff
t E s’ and t E ‘3, i.e., s is both an input and
output place of t. 9 is said to be conflict-free iff
for every place s, either

(1) Is”] <l, or
(2) W.t E 9, t and s are on a self-loop.
In words, a Petri net is conflict-free if every

place which is an input of more than one transi-
t ion is on a self-loop with each such transition
[5,6]. In a conflict-free Petri net, once a transition
becomes enabled, the only way to disable the
transition is to fire the transition itself. (That is,
Vt, t’ E T, t # t ‘, ,u +‘p‘ and p +” implies p’
+I’ .) Notice that marked graphs are conflict-free,
although the converse need not be true.

The concurrency problem for Petri nets is that
of, given a Petri net 9= (P, T, +, ,uo) and two
transitions u and u, determining whether there
exists a reachable marking p (i.e., p E R(9)) such
that both u and u are enabled in p.

In the following section, we will show the prob-
lem to be solvable in polynomial time.

Volume 38. Number 2 INFORMATION PROCESSING LEITF”C 26 April 1991

3.

We first show that, given two transitions u and
u, if a path simultaneously enabling u and u
exists, then there must exist a short “witness”
which can be partitioned into “segments”. We
then use a lemma from [4] to construct those
segments one by one in polynomial time to answer
the concurrency problem. First, we present some
lemmas to set the stage for our polynomial time .
algorithm.

a 3.1. Let p. --+O p be a computation enabling
ions u and u simultaneous!y. Then there exist

CJ, and u2 such that

(1) % = #a,+
(2) p() +O’+ j-&

(3) S&) c S(q), and
(4) tfr, q,(r)< 1.

In words, ~,a, is a rearrangement of CI such that if a
transition occurs in (J, it can also be found in a,; in
addition, no transition in 0, appears more than one
time in 0,.

f. First, we claim that if p. +‘1’2’~’ (where
8,, 6, are sequences of transitions and t is a
transition) and V transitions r. S(6,) c S(8,). 0 G
#&,(r’) G 1, and t 4 S(6,), then p. -+‘I”~ CL’.

To prove the above claim, assume that t is not
enabled in p”, where p. -+‘l y”. This implies one
of t’s input places, say p, must be empty in p“.
However, t is enabled in p I”, where p. +61sz p “‘,
indicating the existence of a transition, say t’ in
iS,, which deposits a token to p. Since S(8,) G
S(a,), t ’ must be in 8,. Since the Petri net is
conflict-free and t 4 S(6,). p”(p) # O-a con-
tradiction. So t must be enabled in p”. Since the
Petri net is conflict-free and t 4 S(8,) (because
S(8,) G S(6,) and t E S(S,)), the firing of t in p”
will not affect the enabledness of the subsequent
transition sequence Sz. This completes the proof
of the claim. 0

Tile next lemma indicates that if u and L’ ~a11

beco:ne enabled simultaneously, then there exists
a short witness satisfying certain properties. More
precisely, we have:

mma 3.2. If pO 4 p is the shortest (or one of the
rtest) computation enabling transitions u a& (‘

simuhaneousl’, then CT cau be rearranged into op2
* - - CF~ such that

(1) PO -jvJ1..~ 01. p-C,

(2) Vl < i < k, V transitions r. %, (r) < 1,
(3) Vl <i Q X - 1, W,,,) c S(q), and
(4) k < n and 1 CT 1 < t12, where n is the number

of transitions of the Petri net.

r~f. Conditions (l)-(3) can be derived easily by
repeatedly applying Lemma 3.1. In what follows,
we prove (4).

We first show that k < n. Suppose this is not
the case. Then there must exist a j. 1 <j < k - 1
such that S(o,) = S(a,+,) (since S(a,).
%o,),..., S(ux-) forms a “shrinking” sequence of
nonempty sets (i.e., S(6,) 2 S(u2) 2 - - - 2
S(a&)); furthermore. there are at most n transi-
tions in the Petri net). Consider the following
three cases:

(1) A(a,) contains a negative component: Since
the Petri net is l-bounded and conflict-free a,+ 1
could never be fired.

(2) 3(a,) > 0: In this case, “pumping” a, in-
finitely many times will render the Petri net un-
bounded-a contradiction.

(3) A(uJ) = 0: In this case, a, can be removed
without affecting the simultaneous enabledness of
u and o. This contradicts the assumption that u
be the shortest.

1 u 1 < n’ follows immediately from k < n and
the fact that a,, Vi, does not contain any transi-
tion more than once. CI

Even though Lemma 3.2 allows us to put a
polynomial upper bound on the length of the
shortest path enabling u and L’, a polynomial time
algorithm for the concurrency problem does not
follow immediately. owever, we can use the
“ may imum” sequence of transitions enabled in
the starting marking of that segment, rather than
the exact u, stated in Lemma 3.2. It is then
possible to construct a path (even though it may
no longer be the shortest; it is still polynomial in
length) in polynomial time to enable u an
any such path exists.

73

Volume 38. Number 2 INFORMATION PROCESSING LETTERS 26 April 1991

mma 3.3. Let p, *d102 p be a computation en-

abling tranxitions u and v simultaneous&. l,f there

exists a sequence O(such that

(1) /Jo -+“{ ,
(2) V transitions r.

(3) S(az) E WI)?
(4) ic, u~S(a,‘)-

then pO -+a;az p’, for

enabled in p’.

S(q h
some p’* and u and v are

oaf. According to conditions (2) and (3) S(o,‘)
- S(a,) does not contain any transition belonging
to oz. This, in conjunction with the conflict-free-
dom property, ensures that no transition in a, will
become disabled as a result of firing transitions in
S(u;> - S(u,). Mence, cl0 -+O;+ r_l’, for some p’. In
addition, (4) implies that u and v are enabled in
$. cl

The following lemma indicates the existence of
a polynomial time algorithm to construct the max-
imum sequence of transitions in a given marking.
In addition, the sequence consists of each of the
enabled transitions exactly once.

mma 3.4 [4]. Given a conflict-free Petri net 9-

(P, T, Cp, pEco), we can construct in polynomial time

a path u enabled in p. in which no transition in u is

used more than once, such that if some transition t

is not used in u, then there is no path (emanating

from CL(,) in which t is used.

Lemma 3.5. Given a I-bounded conflict-free Petri

net 9= (P, T, +, pO), let p(, -+Ol”‘“’ ah p, 1 < k <

n, be the shortest computation guaranteed by Lemma

3.2. Let T, be T - ({ u, v } - S(a,)), and +, be the
restriction of $ on ;$. Suppose u;ui - - - u; is a

sequence of transitions defined recursively as fol-

lows: VI < i < k, u,’ is the sequence of transitions

guaranteed b, Lemma 3.4 with respect to
(P, T m ,,, T,r p,_ i 1; kthere p, +“; ... Oi‘ ’ p,_ 1. Then plj
,o;f12...0; ; .

p IS a compurarion enabling u and v

simultaneous& (i.e., u and v are enabled in p’).

roof. First consider 0;. It is easy to see the
follo%~ing:

(1) vr, eO, (r) G #$; (rj f I.
#,,(r)< 1 and #,;(r)< 1 are due to Lemmas

3.2 and 3.4, respectively. (That is, no transition
occurs more than once in cr, and a,‘.) According to
Lemma 3.4. if a transition is not in a;, then there
is no path in which the transition is used. I-Ience,

tlr, #,,(r)< #,;(rj.
(2) S(a, - - - uk) c S(u,)-Lemma 3.2.
(3) u, v 4 S(u,‘) - S(u,).
Recall that T, = T- ({ u, v} - S(u,)) and ui’ is

with respect to (P, T,, $I,, pO). Hence, if u (v) is
not in u,, then it is not in c,’ either.

Using Lemma 3.3, we immediately have that

PO .-#J; PI
402 ... Oh /-C

for some p”, and u and -7 are enabled in ~1”.
Starting in r_~r and repeatedly applying the above
argument, we can easily show that pO * C;G; ‘.. $’
is a computation enabling u and v simulta-
neously. Cl

The above lemma suggests an iterative way of
constructing a path to enable u and v simulta-
neously, if such a path exists. In each stage, we
construct a sequence of maximum length which is
enabled in the resulting marking of the previous
stage. The only problem with this approach is that
for each i, the presence or absence of u (or v) in
a,‘. 1 < i < k, must coincide with that in u,. Since
we have no knowledge of the transitions used in
a,, how do we know whether we should include or
exclude CI and v in constructing the maximum
sequence? At first glance, it seems that nonde-
terministic steps (for guessing the presence or ab-.
sence of u and v in all k, 1 < k Q n, segments)
were inevitable. A careful examination, however,
reveals that such nondeterminism can be avoided
by taking advantage of the “shrinking property”
of the sequence ut, uz, . . . , uk mentioned in Lemma
3.2. More precisely, if zl (or v) does not appear in,
say a,, then u (or u) will never occur in subse-
quent segments a,+ 1,. . . , uk. This is exactly the
l.__. -*nnnrt\r

-..

KC)’ PI uyw bJ upnn whrch our ~~~~~~~~~~~~~ c..l__ -l-.-nwn;~l timp

algorithm relies.

eorem 3.6. The concurrency problem “for I-

bounded conJflr’ct-free Petri nets is solvab!e in poly-

nomial time.

74

Volume 38. Number 2 INFORMATION PROCESSING LETTERS 26 April 1991

We let Fin&A#ax-Se& P, T, $, pO) (where
+, p,) is a conflict-free Petri net) be a

procedure that outputs a sequence of transitions u
in which no transition in o is used more than
once, and if some transition t is not used in u,
then there is no path in (P, T, +, pug) in which t is
used. The existence of such a procedure is
guaranteed by Lemma 3.4.

We construct the sequence CJ,‘U~ - - - CT; stated in
Lemma 3.5. In our procedure, we use two vari-
ables, namely i and j, to represent the indices of
the segments in which u and U, respectively, are
not used for the first time. (More precisely, u (0)
isassumedtobeusedinu,‘,l</<i-l(u,’,l<I
<j - l), but not in u,.‘, i,<r<k (a,.‘, j<r<k).)

Since we do not know in advance the exact values
of i and j in the path enabling u and u, we
consider all possibilities of i and j, each of which
ranges from 1 to n + 1. (For example, i = 1 indi-
cates that u was never used; i = n + 1 indicates
that u is used in every segment.) The algorithm is
as follows.

ocedure Concurrent-Pair(P, T, +, p9, 24, u)

/ * u, u E T, This procedure is to determine
whether transitions u and u can become en-
abled simultaneously in a l-bounded conflict-
free Petri net (P, T, +, po). * /

for i := 1 to n + 1 do
for j := 1 to n + 1 do

begin
T’:= T;

p := p();
for I := 1 to n do

begin
if i=l then T’:= T’- {u};

if j=l then T’:= T’- {ul\;

u := Find-Max-Seq(P, T ‘, +‘, p);

let p’ be the marking such !hat

!J +o /J’;

if pi and II are enabled in p’
n EMT and return “ YES”

p := p’

en

re

The procedure should be quite easy to under-
stand. We thus have a polynomial time algorithm
for the concurrency problem. TV

. Conclusion

it was mentioned as an open problem in [81
whether? given a l-bounded conflict-free Petri rlet,
the concurrency problem can be solved etiictently.
In this article, we have answered the above ques-
tion in an affirmative way by demonstrating a
polynomial time algorithm for the problem. Since
l-bounded conflict-free Petri nets are known to be
useful for modeling self-timed circuits, our result
might have applications with respect to the verifi-
cation of self-timed circuits.

Theoretically, it is of interest to know whether
our polynomial time result can be extended to
(bounded) conflict-free Petri nets. We must point
out that our technique in this paper relies heavily
on the fact that the Petri net is l-bounded.

Acknowledgment

The author would like to thank the ancnymous
referees for suggestions that improved the presen-
tation of this paper.

eferences

[l] S. Crespi-Reghizzi and D. Mandrioli. A decidability theo-

rem for a class of vector addition systems, Inform. Process.

Left. 3 (3) (1975) 78-80.

[2] R. Howell and L. Rosier, Completeness results for

conflict-free vector replacement systems. J. Compur. Sj,s-

tern SCI. 37 (1988) 349-366.

[3] R. Howell and L. Rosier, On questions of fairness and

temporal logic for conflict-free Petri nets. in: G. Rozen-

berg, ed.. Adrvmces in Petri Nets 1988. Lecture Notes in

Computer Science 340 (Springer, Berlin. 1988) 200-226.

[4] R. Hz\LIP!!, L Rosier and H. Yen. An O(.’ 5, algorithm to

decide boundedness for conflict-, free vector repiacrrurnt

systems, Inform. Process. Lert. 25 (1987) 27-33.

[5] N. Jones, L. Landweber and Y. Lien. Complexity of some

problems in Petri nets. Theoret. Comput. Ser. 4 (1977)

277-299.

75

Volume 38. Number 2 INFORMATION PROCESSING LEWERS 26 April 1991

[6] L. Landweber and E. Robertson, Properties of conflict-free

and persistent Petri nets, J. A CM 25 (3) (1978) 352-364

[7] C. Rackoff, The covering and boundedness problems for

vector addition systems. Theoret. Comput. Sci. 6 (1978)

223-231.

[8] M. Tiusanen, Some unsolved problems in modeling self-
timed circuits using Petri nets, EATCS Bulletin (1988)
152-160.

