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Abstract 

Yen, H.-C., A polynomial time algorithm to decide 
Information Processing Letters 38 (1991) 71-76. 

pairwise concurrency of transitions for 1 -bounded conflict-free Petri nets. 

We show that the problem of determining whether two transitions in a l-bounded conflict-free Petri net can become enabled 

simultaneously is solvable in polynomial time, answering an open question posed by M. Tiusanen in (EATCS Bulletin, Vol. 36, 

1988, pp. 152-160). 
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1. IntroQuction 

In [8], l-bounded conflict-free Petri nets have 
been proposed for modeling self-timed or self-syn- 
chronized circuits. In the study of self-timed cir- 
cuits, a fundamental issue is to identify the situa- 
tion in which the raising of a signal by one circuit 
element is in conflict with the lowering of the 
same signal by another eiement. In the modeling 
Petri net, this sort of conflict corresponds to the 
situation in which two designated transitions (rep- 
resenting the raising and lowering of a signal in 
the modeled circuit) become enabled simulta- 
neously. An open problem was mentioned in [S] 
regarding the search for efficient algorithms to test 
pairwise concurrency of transitions in a l-bounded 
conflict-free Petri net. More precisely, we are in- 
terested in determining, given a Petri net and two 
transitions, whether there exists a reachable mark- 

ing in which the two transitions are enabled 
simultaneously. This problem will be referred to 
as the concurrency problem throughout the re- 
mainder of this paper. 

For generai Petri nets, the concurrency problem 
can be equated with the covering problem (of [7]); 
thus, it is EXPSPACE-complete (exponential space 
complete). Here, however, we are only interested 
in a “restricted” class of Petri nets, namely the 
class of l-bounded conflict-free Petri nets. 

The class of conflict-free Petri nets has received 
much attention from the viewpoint of computa- 
tional complexity. Such efforts can be found in 
[l-6]. In particular, the boundedness problem has 
been shown to be PTIME-complete 143, the reach- 
ability problem has been proved to be NP-corn- 

plete [2], whereas the containment and equiv- 
alence problems have been shown to be Z Zp (the 
second level of the polynomial time hierarchy) 
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complete [2]. If we further restrict ourselves to 
bounded conflict-free Petri ne?s. the upper bound 
of reachability can be improved to PRIME [3]. In 
view of the above, a natural approach to attack 
the concurrency problem is to relate the problem 
to those mentioned above. (For example, if we 
could show the concurrency problem to be reduci- 
ble to the reachability problem, a polynomial time 
solution would follow immediately.) Unfor- 
tunately, conventional reduction techniques for 
general Petri nets do not seem to work for con- 
flict-free Petri nets. This is mainly because of the 
fact that, in many cases, adding a new transition 
to a conflict-free Petri net could easily render the 
new Petri net non-conflict-free. 

In this paper, we will show the concurrency 
problem for l-bounded conflict-free Petri nets to 
be solvable in polynomial time. In solving the 
problem, we adopt a novel technique which may 
have other applications to the analysis of Petri 
nets. 

Let B (RJ) denote the set of (nonnegative) in- 
tegers, and Bh (l’+l’ ) the set of vectors of k (non- 
negative) integers. For a k-dimensional vector ~7, 
let LJ( i ). 1 < i < k, denote the ith component of o. 

denote the vector of k 

(P, T, +, po), where P is a finite set of places, T 

is a finite set of transitions, $I is a j7or~ function, 

and pO is the initial marking, ,uO : P * N. A mark- 

ing is a m lpping j-4 : P -+ IV. A transition t E T is 
enabled a: a marking p iff fo 
+(p. t) <p( p). A transition t 

marking p if t is enabled at p. We then write 

CL +I I iv where P’(P)=P(P)-+(P; t)++(t. p) 
for all p E P. A sequence of transitions o = t, . . . t, 
is a firing sequence from pLo (or a firing sequence 
of (P, T, +, PO)) iff PO +‘I p, jf2 - - - -4, p,, for 
some sequence of markings pi, . . . , J~L,,. (We also 
Write 66~o +O ~il,~“.) V$e write “pQ jfl ” to denote 
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that (I is enabled and can be fired from p,,, i.e., 

PO -3' iff there exists a arking 1~ such that 

PO +O 1u- 
Given a sequence of transitions CT, we define 4$ 

to be a mapping #o : T+ N such that ##)= the 
number of oCO**rrPnC~ GwLo1 I~l.r~s of t in Q. Let E_L --)O p’. The 
value of u, denoted by A(o), is defined to be 
$-p (&@. 

” 
where k is the number of places in 

the Petri nel). We let S(a) denote the set of 
transitions occurring in 6, i.e., 

S(a)= (tp T, #,(t) >O>. 

Let 9= (P, T, +, jl~~) be a PN. The reachabil- 

ity set of 5a is the set 

R(9)= (j~]p~+~j.4 for some a). 

9 is said to be k-bounded (for some k E NJ) iff 
VP E R(9), Vp E P, p( p) G k. Given a place s, 
we let 

s-= (tlcp(s, t) = 1, tE 7-l 

and 

“.s= (tl+(t, s)=l, ET). 

A place s and a transition t are on a self-loop iff 
t E s’ and t E ‘3, i.e., s is both an input and 
output place of t. 9 is said to be conflict-free iff 
for every place s, either 

(1) Is”] <l, or 
(2) W.t E 9, t and s are on a self-loop. 
In words, a Petri net is conflict-free if every 

place which is an input of more than one transi- 
t ion is on a self-loop with each such transition 
[5,6]. In a conflict-free Petri net, once a transition 
becomes enabled, the only way to disable the 
transition is to fire the transition itself. (That is, 
Vt, t’ E T, t # t ‘, ,u +‘p‘ and p +” implies p’ 
+I’ .) Notice that marked graphs are conflict-free, 
although the converse need not be true. 

The concurrency problem for Petri nets is that 
of, given a Petri net 9= (P, T, +, ,uo) and two 
transitions u and u, determining whether there 
exists a reachable marking p (i.e., p E R(9)) such 
that both u and u are enabled in p. 

In the following section, we will show the prob- 
lem to be solvable in polynomial time. 
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3. 

We first show that, given two transitions u and 
u, if a path simultaneously enabling u and u 
exists, then there must exist a short “witness” 
which can be partitioned into “segments”. We 
then use a lemma from [4] to construct those 
segments one by one in polynomial time to answer 
the concurrency problem. First, we present some 
lemmas to set the stage for our polynomial time . 
algorithm. 

a 3.1. Let p. --+O p be a computation enabling 
ions u and u simultaneous!y. Then there exist 

CJ, and u2 such that 

(1) % = #a,+ 
(2) p() +O’+ j-& 

(3) S&) c S(q), and 
(4) tfr, q,(r)< 1. 

In words, ~,a, is a rearrangement of CI such that if a 
transition occurs in (J, it can also be found in a,; in 
addition, no transition in 0, appears more than one 
time in 0,. 

f. First, we claim that if p. +‘1’2’~’ (where 
8,, 6, are sequences of transitions and t is a 
transition) and V transitions r. S( 6,) c S( 8, ). 0 G 
#&,(r’) G 1, and t 4 S( 6, ), then p. -+‘I”~ CL’. 

To prove the above claim, assume that t is not 
enabled in p”, where p. -+‘l y”. This implies one 
of t’s input places, say p, must be empty in p“. 
However, t is enabled in p I”, where p. +61sz p “‘, 
indicating the existence of a transition, say t’ in 
iS,, which deposits a token to p. Since S(8,) G 
S( a,), t ’ must be in 8,. Since the Petri net is 
conflict-free and t 4 S( 6, ). p”( p) # O-a con- 
tradiction. So t must be enabled in p”. Since the 
Petri net is conflict-free and t 4 S(8,) (because 
S( 8,) G S(6,) and t E S( S,)), the firing of t in p” 
will not affect the enabledness of the subsequent 
transition sequence Sz. This completes the proof 
of the claim. 0 

Tile next lemma indicates that if u and L’ ~a11 

beco:ne enabled simultaneously, then there exists 
a short witness satisfying certain properties. More 
precisely, we have: 

mma 3.2. If pO 4 p is the shortest (or one of the 
rtest ) computation enabling transitions u a& (‘ 

simuhaneousl’, then CT cau be rearranged into op2 
* - - CF~ such that 

(1) PO -jvJ1..~ 01. p-C, 

(2) Vl < i < k, V transitions r. %, ( r ) < 1, 
(3) Vl <i Q X - 1, W,,,) c S(q), and 
(4) k < n and 1 CT 1 < t12, where n is the number 

of transitions of the Petri net. 

r~f. Conditions (l)-(3) can be derived easily by 
repeatedly applying Lemma 3.1. In what follows, 
we prove (4). 

We first show that k < n. Suppose this is not 
the case. Then there must exist a j. 1 <j < k - 1 
such that S(o,) = S(a,+,) (since S(a,). 
%o,),..., S( ux- ) forms a “shrinking” sequence of 
nonempty sets (i.e., S( 6, ) 2 S( u2 ) 2 - - - 2 
S( a&)); furthermore. there are at most n transi- 
tions in the Petri net). Consider the following 
three cases: 

(1) A( a, ) contains a negative component: Since 
the Petri net is l-bounded and conflict-free a,+ 1 
could never be fired. 

(2) 3( a, ) > 0: In this case, “pumping” a, in- 
finitely many times will render the Petri net un- 
bounded-a contradiction. 

(3) A( uJ ) = 0: In this case, a, can be removed 
without affecting the simultaneous enabledness of 
u and o. This contradicts the assumption that u 
be the shortest. 

1 u 1 < n’ follows immediately from k < n and 
the fact that a,, Vi, does not contain any transi- 
tion more than once. CI 

Even though Lemma 3.2 allows us to put a 
polynomial upper bound on the length of the 
shortest path enabling u and L’, a polynomial time 
algorithm for the concurrency problem does not 
follow immediately. owever, we can use the 
“ may imum” sequence of transitions enabled in 
the starting marking of that segment, rather than 
the exact u, stated in Lemma 3.2. It is then 
possible to construct a path (even though it may 
no longer be the shortest; it is still polynomial in 
length) in polynomial time to enable u an 
any such path exists. 
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mma 3.3. Let p, *d102 p be a computation en- 

abling tranxitions u and v simultaneous&. l,f there 

exists a sequence O( such that 

(1) /Jo -+“{ , 
(2) V transitions r. 

(3) S(az) E WI)? 
(4) ic, u~S(a,‘)- 

then pO -+a;az p’, for 

enabled in p’. 

S( q h 
some p’* and u and v are 

oaf. According to conditions (2) and (3) S(o,‘) 
- S( a,) does not contain any transition belonging 
to oz. This, in conjunction with the conflict-free- 
dom property, ensures that no transition in a, will 
become disabled as a result of firing transitions in 
S( u;> - S( u, ). Mence, cl0 -+O;+ r_l’, for some p’. In 
addition, (4) implies that u and v are enabled in 
$. cl 

The following lemma indicates the existence of 
a polynomial time algorithm to construct the max- 
imum sequence of transitions in a given marking. 
In addition, the sequence consists of each of the 
enabled transitions exactly once. 

mma 3.4 [4]. Given a conflict-free Petri net 9- 

( P, T, Cp, pEco), we can construct in polynomial time 

a path u enabled in p. in which no transition in u is 

used more than once, such that if some transition t 

is not used in u, then there is no path (emanating 

from CL(,) in which t is used. 

Lemma 3.5. Given a I-bounded conflict-free Petri 

net 9= ( P, T, +, pO), let p(, -+Ol”‘“’ ah p, 1 < k < 

n, be the shortest computation guaranteed by Lemma 

3.2. Let T, be T - ({ u, v } - S( a, )), and +, be the 
restriction of $ on ;$. Suppose u;ui - - - u; is a 

sequence of transitions defined recursively as fol- 

lows: VI < i < k, u,’ is the sequence of transitions 

guaranteed b, Lemma 3.4 with respect to 
(P, T m ,,, T,r p,_ i 1; kthere p, +“; ... Oi‘ ’ p,_ 1. Then plj 
,o;f12...0; ; . 

p IS a compurarion enabling u and v 

simultaneous& (i.e., u and v are enabled in p’ ). 

roof. First consider 0;. It is easy to see the 
follo%~ing: 

(1) vr, eO, (r) G #$; (rj f I. 
#,,(r)< 1 and #,;(r)< 1 are due to Lemmas 

3.2 and 3.4, respectively. (That is, no transition 
occurs more than once in cr, and a,‘.) According to 
Lemma 3.4. if a transition is not in a;, then there 
is no path in which the transition is used. I-Ience, 

tlr, #,,(r)< #,;(rj. 
(2) S(a, - - - uk) c S( u,)-Lemma 3.2. 
(3) u, v 4 S(u,‘) - S(u,). 
Recall that T, = T- ({ u, v} - S(u,)) and ui’ is 

with respect to (P, T,, $I,, pO). Hence, if u (v) is 
not in u,, then it is not in c,’ either. 

Using Lemma 3.3, we immediately have that 

PO .-#J; PI 
402 ... Oh /-C 

for some p”, and u and -7 are enabled in ~1”. 
Starting in r_~r and repeatedly applying the above 
argument, we can easily show that pO * C;G; ‘.. $’ 
is a computation enabling u and v simulta- 
neously. Cl 

The above lemma suggests an iterative way of 
constructing a path to enable u and v simulta- 
neously, if such a path exists. In each stage, we 
construct a sequence of maximum length which is 
enabled in the resulting marking of the previous 
stage. The only problem with this approach is that 
for each i, the presence or absence of u (or v ) in 
a,‘. 1 < i < k, must coincide with that in u,. Since 
we have no knowledge of the transitions used in 
a,, how do we know whether we should include or 
exclude CI and v in constructing the maximum 
sequence? At first glance, it seems that nonde- 
terministic steps (for guessing the presence or ab-. 
sence of u and v in all k, 1 < k Q n, segments) 
were inevitable. A careful examination, however, 
reveals that such nondeterminism can be avoided 
by taking advantage of the “shrinking property” 
of the sequence ut, uz, . . . , uk mentioned in Lemma 
3.2. More precisely, if zl (or v) does not appear in, 
say a,, then u (or u) will never occur in subse- 
quent segments a,+ 1,. . . , uk. This is exactly the 
l.__. -*nnnrt\r 

-.. 

KC)’ PI uyw bJ upnn whrch our ~~~~~~~~~~~~~ c..l__ -l-.-nwn;~l timp 

algorithm relies. 

eorem 3.6. The concurrency problem “for I- 

bounded conJflr’ct-free Petri nets is solvab!e in poly- 

nomial time. 
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We let Fin&A#ax-Se& P, T, $, pO) (where 
+, p,) is a conflict-free Petri net) be a 

procedure that outputs a sequence of transitions u 
in which no transition in o is used more than 
once, and if some transition t is not used in u, 
then there is no path in (P, T, +, pug) in which t is 
used. The existence of such a procedure is 
guaranteed by Lemma 3.4. 

We construct the sequence CJ,‘U~ - - - CT; stated in 
Lemma 3.5. In our procedure, we use two vari- 
ables, namely i and j, to represent the indices of 
the segments in which u and U, respectively, are 
not used for the first time. (More precisely, u (0) 
isassumedtobeusedinu,‘,l</<i-l(u,’,l<I 
<j - l), but not in u,.‘, i,<r<k (a,.‘, j<r<k).) 

Since we do not know in advance the exact values 
of i and j in the path enabling u and u, we 
consider all possibilities of i and j, each of which 
ranges from 1 to n + 1. (For example, i = 1 indi- 
cates that u was never used; i = n + 1 indicates 
that u is used in every segment.) The algorithm is 
as follows. 

ocedure Concurrent-Pair( P, T, +, p9, 24, u) 

/ * u, u E T, This procedure is to determine 
whether transitions u and u can become en- 
abled simultaneously in a l-bounded conflict- 
free Petri net (P, T, +, po). * / 

for i := 1 to n + 1 do 
for j := 1 to n + 1 do 

begin 
T’:= T; 

p := p(); 
for I := 1 to n do 

begin 
if i=l then T’:= T’- {u}; 

if j=l then T’:= T’- {ul\; 

u := Find-Max-Seq( P, T ‘, +‘, p); 

let p’ be the marking such !hat 

!J +o /J’; 

if pi and II are enabled in p’ 
n EMT and return “ YES” 

p := p’ 

en 

re 

The procedure should be quite easy to under- 
stand. We thus have a polynomial time algorithm 
for the concurrency problem. TV 

. Conclusion 

it was mentioned as an open problem in [81 
whether? given a l-bounded conflict-free Petri rlet, 
the concurrency problem can be solved etiictently. 
In this article, we have answered the above ques- 
tion in an affirmative way by demonstrating a 
polynomial time algorithm for the problem. Since 
l-bounded conflict-free Petri nets are known to be 
useful for modeling self-timed circuits, our result 
might have applications with respect to the verifi- 
cation of self-timed circuits. 

Theoretically, it is of interest to know whether 
our polynomial time result can be extended to 
(bounded) conflict-free Petri nets. We must point 
out that our technique in this paper relies heavily 
on the fact that the Petri net is l-bounded. 
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