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In this paper, we develop a unified approach for deriving complexity results for 
a number of Petri net problems. We first define a class of formulas for paths in Petri 
nets. We then show that the satistiability problem for our formulas is EXPSPACE 
complete. Since a wide range -of Petri net problems can be reduced to the 
satistiability problem in a straightforward manner, our approach offers an umbrella 
under which many Petri net problems can be shown to be solvable in 
EXPSPACE. 10 1992 Academic Press, 1nc. 

1. INTRODUCTION 

Petri nets provide an elegant and useful tool for modeling concurrent 
systems. In many applications, however, modeling by itself is of little 
practical use if one cannot analyze the modeled system. Despite the efforts 
made by many researchers, many analytical questions concerning Petri n&s 
remain unanswered. In fact, the decidability of one of the most important 
questions concerning Petri nets, the reachability problem, was left unsolved 
for a long period of time until Mayr (1984) finally provided an affirmative 
answer to the question just a few years ago. (The precise complexity of the 
reachability problem, however, has not yet been established.) Due to the 
degree of difficulty involved in many of the Petri net problems, it is 
desirable to have unified and systematic approaches to reason about Petri 
nets. Developing such a mechanism is exactly the goal of this paper. 

We first define a class of formulas for paths in Petri nets. What makes 
this class of formulas useful is that it is powerful enough to express many 
Petri net properties. We also show that the satisfiability problem, i.e., the 
problem of determining whether there exists a path in a given Petri net 
satisfying a given formula, is complete for EXPSPACE. By reducing to the 
satisfiability problem, we are able to derive EXPSPACE upper bounds for 
a number of Petri net problems (some of which were previously unsolved) 
in a straightforward and unified manner. In what follows, we first review 
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some of the existing strategies known to be useful for examining the 
decidability and complexity of Petri net problems. 

A useful tool for showing the decidability of Petri net problems is based 
on KarpMiller coverability graph analysis (Karp and Miller, 1969). A 
coverability graph is a generalized reachability graph in which each poten- 
tially unbounded place is represented by a special symbol “w.” It has been 
shown by Karp and Miller (1969) that the coverability graph of any vector 
addition system (equivalently Petri net) is finite. As a result, a vector addi- 
tion system (Petri net) is unbounded iff an w occurs in its coverability 
graph. This technique has subsequently been used in a number of places for 
showing the decidability of Petri net problems. (See, e.g., Finkel, 1987; 
Ginzburg and Yoeli, 1980; Suzuki and Kasami, 1983; Valk and Jantzen, 
1985; Valk and VidallNaquet, 1982.) The key deficiency of the coverability 
graph approach lies in its inability to produce complexity bounds. This is 
because the size of the coverability graph of a Petri net, in general, 
is not primitive recursive. As a result, the whole strategy is based on an 
unbounded search. 

Semilinearity has played a crucial role in the analysis of Petri nets. It is 
a common belief that the difficulties involved in obtaining results for 
general Petri nets lie in the fact that the reachability sets for Petri nets of 
dimension six or more are not in general semilinear (Hopcroft and Pansiot, 
1979). However, there are restricted subclasses of Petri nets for which the 
reachability sets are semilinear. Utilizing results concerning semilinear sets 
and Presburger arithmetic, one can prove the decidability of the contain- 
ment, equivalence, and reachability problems for a restricted subclass of 
Petri nets by demonstrating that the subclass exhibits semilinearity. In fact, 
a large body of results appearing in the literature rely exactly upon this. 
These include the decidability proofs of the containment, equivalence, and 
reachability problems for conflict-free (Crespi-Reghizzi and Mandrioli, 
(1975), persistent (Landweber and Robertson, 1978; Mayr, 1981; Muller, 
1980) weakly persistent (Yamasaki, 1981) normal (Yamasaki, 1984), 
sinkless (Yamasaki, 1984) 3-dimensional (van Leeuwen, 1974) 5-dimen- 
sional (Hopcroft and Pansiot, 1979), symmetric (Araki and Kasami, 1977) 
and regular (Ginzburg and Yoeli, 1980; Valk and Vidal-Naquet, 1982) 
Petri nets. A drawback in using this approach is that the sizes of the semi- 
linear set representations for some of the above classes were not known. 
Hence, no complexity bounds could be derive for those classes as a result 
of their being semilinear. Recently, however, some efforts have been 
successfully made toward analyzing the size of the semilinear set represen- 
tation for some of the above subclasses of Petri nets, thus yielding com- 
plexities for equivalence, containment, and reachability. (See, e.g., Howell 
and Rosier, 1988; Howell, Rosier, and Yen, 1989; Howell, Rosier, Huynh, 
and Yen, 1986; Huynh, 1985.) A somewhat related approach, based on the 
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notion of “residue sets,” has been used by Valk and Jantzen (1985) to show 
the decidability of some Petri net problems. (See Valk and Jantzen (1985) 
for more details.) This approach, again, reveals no complexity bounds. 

An important cornerstone in the complexity analysis of Petri nets is the 
EXPSPACE’ upper bound of the boundedness problem shown by Rackoff 
(1978). This together with an earlier result by Lipton (1976) that the 
problem requires EXPSPACE, provides a near optimal solution for one of 
the most important Petri net problems. Rackoffs paper is significant not 
only because of the result itself, but also and perhaps more importantly 
because it provides a technique for deriving complexities for other Petri net 
related problems. Such applications include the proofs of the complexity of 
the equivalence problem for commutative semigroups and symmetric 
vector addition systems (Huynh, 1985), the equivalence between 2-way 
nondeterministic multihead finite automata and 2-way nondeterministic 
weak counter machines as well as a hierarchy theorem for 2-way nondeter- 
ministic weak counter machines (Chan, 1987), a detailed multiparameter 
analysis of the boundedness problem for vector addition systems (Rosier 
and Yen, 1986), and the complexity of the model checking problem for 
systems with many identical processes (Sistla and German, 1987). 

Since reachability and boundedness are known to be decidable, a natural 
way to show the decidability of an unknown problem is to reduce the 
unknown to reachability (or boundedness). In practice, however, this 
approach suffers from a drawback that many such reductions rely on 
rather complicated (and ad hoc) Petri net constructions which are hard to 
understand. This is perhaps because the notion of boundedness (or 
reachability), as a reduction tool, is too weak to “model” or “simulate” 
other properties of Petri nets. In an attempt to avoid using “brute force” 
reductions, a temporal logic for Petri nets was introduced by Howell, 
Rosier, and Yen (1991) for which the model checking problem has 
been shown to be equivalent to reachability. In addition, a number of 
fairness related problems (fair nontermination problems, more precisely) 
concerning Petri nets have been reduced to the model checking problem. 
As a result, temporal logic provides an “umbrella” under which certain fair 
nontermination problems can be shown to be decidable. (See (Jancar, 
1989) for a similar approach for showing the decidability of the non- 
termination problem with respect to finite-delay property.) In view of the 
above, the following question naturally arises: Is there a similar umbrella 
under which certain Petri net problems can be shown to be equivalent to 
boundedness? 

’ EXPSPACE = IJ ,,,NSPACE(Z”‘), where NSPACE(f(n)) is the class of languages 
accepted by nondeterministic Turing machines using at most f(n) space. 
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As an attempt to answer the above question, in this paper we first define 
a class of Petri net path formulas, each of which is of the form 

* @I > ..., Pk, Cl 3 ..., fJk)* 

meaning that marking pi can be reached from pi-, (1 6 i 6 k) through the 
firing of transition sequence cri and predicate F(pi, . . . . pLk, cri, . . . . dk) holds. 
What makes this class of formulas useful is that it is powerful enough to 
express many Petri net properties. For example, the unboundedness con- 
dition can be expressed as 3p1, pz 3a,, o,(p091, p, -% p2) A (pz>pl). 
By augmenting the proof of Rackoff (1978), we then show that if a formula 
is satisfiable, then there exists a short “witness” (path) whose length is 
bounded by 0(22‘*n*‘osn ), for some constant c. As a result, the satisliability 
problem can be solved in O(2” * ’ * log n ) space, for some constant d. Using 
this result, we are able to provide simple and unified proofs for many 
known results, including the complexities of the boundedness, covering, 
and some fair nontermination problems, which would otherwise require 
more complicated arguments. More importantly, it also allows us to show 
EXPSPACE upper bounds for many unsolved problems-the regularity 
detection problem (of Ginzburg and Yoeli (1980) and Valk and Vidall 
Naquet (1982)), for example. Another contribution of our result is that it 
explains why so many Petri net problems, even though bearing little 
similarity on the surface, possess the same complexity bound. 

The remainder of this paper is organized as follows. In Section 2, we give 
the basic definitions of Petri nets and a class of predicates for Petri nets. 
In Section 3, we show that the satistiability problem is solvable in 
w d*n * “‘gn) space, for some constant d. In Section 4, we show that many 
Petri net problems, some of which were previously unsolved, can be 
reduced to the satisliability problem. Thus, our main result may therefore 
be viewed as an umbrella under which the subsequent results in this paper 
are derived. 

2. A CLASS OF PREDICATES FOR PATHS IN PETRI NETS 

Let N (respectively, Z and R) be the set of nonnegative integers (respec- 
tively, integers and rational numbers), and let Nk (respectively, Zk) be the 
set of vectors of k nonnegative integers (respectively, integers). A Petri net 
is a tuple (P, T, cp, pO), where P is a finite set of places, T is a finite set of 
transitions, cp is a j7ow function cp : (P x T) v (T x P) + N, and p,, is the 
initial marking pO: P + N. A marking is a mapping p: P -+ N. By estab- 
lishing an order on P and T, i.e., P = { pl, . . . . pk ] and T = { t , , . . . . t,}, we 
can think of a marking p as a vector in Nk, where the ith component 
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represents p(pJ. (For convenience, p( pi) will be abbreviated as p(i).) We 
also define the transition uector of a transition t, denoted by i, to be a 
k-dimensional vector in Zk such that i(i) = cp( t, pi) - cp( pi, t), and the set 
of transition vectors, denoted by T, to be (7 1 t E T}. A transition t E T is 
enabled at a marking p iff for every p E P, cp( p, t) 6 p(p). A transition t 
may fire at a marking p if t is enabled at ,u. We then write p L ,u’, where 
p’(p) = p(p) - (p(p, t) + cp(t, p) for all p E P. A sequence of transitions 
fJ=t,... t,, n > 0, is a firing sequence from p0 iff p0 --% pr ---% . . -5 11, 
for some sequence of markings pl, . . . . pH. We also write p0 A p”. (We 
sometimes write ,uO -5 if pL, is not important.) A marking pn is said to be 
reachable from pO, denoted by p,, f p,,, iff p,, = p0 or 3 c such that 
PO”, CLn. We let R(P, T, cp, ,D,,) = {CL ) p0 5 cl} denote the set of all 
reachable markings. Let a.be a sequence of transitions. We define # D to be 
a mapping from T to N such that # ,(ti) = the number of occurrences of 
ti in G. # ~ can be viewed as a vector in N’ whose ith component is # ,( ti). 

To deal with the complexity issue, it is necessary to define the size of a 
Petri net in a precise manner. Throughout this paper, each integer will be 
represented by its binary representation. The length of an integer is the 
number of bits of its binary representation. The size of a set (or vector) of 
integers is defined to be the sum of the lengths of the components. Consider 
a Petri net 8= (P, T, cp,~,,), where P= {pr, . . . . pk} and T= (t,, . . . . tr}. 
Each transition (p(pi, tj) = m (cp( tj, pi) = m) can be thought of as a four- 
tuple (0, i, j, m) ((1, j, i, m)). (The first component (0 or 1) is to indicate 
the flow direction (0: from a place to a transition; 1: from a transition to 
a place). In this way, cp can be treated as a set of four tuples. Now the size 
of Petri net 9 can be defined as rlog kl + rlog rl + the sum of the sizes of 
elements in cp + the size of p,,. Since the binary representation is used, the 
firing of a transition may result in removing (or adding) 2” tokens from 
(to) a place, where n is the size of the Petri net. 

In what follows, we present a class of Petri net path formulas. In Sec- 
tion 3, the satisliability problem is shown to be solvable in EXPSPACE. 
Let (P, T, cp, p,,) be a k-place r-transition Petri net. Each path formula 
consists of the following elements: 

1. Variables. There are two types of variables, namely, marking 
variables pl, ,uLz, . . . and variables for transition sequences o, , az, . . . . where 
each pi denotes a vector in Zk and each ai denotes a finite sequence of 
transitions, 

2. Terms. Terms are defined recursively as follows. 

(a) V constant CE Nk, c is a term. 
(b) Vj > i, ,uj - pi is a term, where pi and ,uj are marking variables. 
(c) T, + T, and T, - T, are terms if T, and T2 are terms. 
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3. Atomic Predicates. There are two types of atomic predicates, 
namely, transition predicates and marking predicates. 

(a) Transition predicates. 
l y0 #,< c, y 0 #,,= c and y 0 #,,> c are predicates, where 

i > 1, y (a constant) E z’, c E N, and 0 denotes the inner product (i.e., 
(aI, a2, . . . . ak) 0 (b,, h,, . . . . hk) = Ck=, a, * hi). It is worth mentioning that 
predicates of the form # .,( t,)/# ~, (t,) = a/b, where a, b E N (b # 0), i > 1 
and tj, tlE T, can be reduced to the predicates described above. To see this, 
let c = 0 and let y be a vector such that y(j) = b, y(1) = -a, y(p) = 0, 
VP$ {j, I>. -r-h en y 0 # n, = c iff b * # ,,(ti) - a * # a, ( tl) = 0, which is 
equivalent to # o, ( tj)/ # ~, (t,) = a/b. 

l #,,(?,)<c and #,,(t,)>c are predicates, where cEN and t,eT. 

(b) Marking predicates. 
l Type 1. p(i) > c and n(i) > c are predicates, where p is a marking 

variable and c(EZ) is a constant. 
l Type 2. T, (i) = Tz (j), T, (i) < T,(j), and T, (i) > T,(j) are 

predicates, where T,, T2 are terms and 1 < i, j< k, meaning that the ith 
component of T, is equal to, less than, and greater than the jth component 
of T2, respectively. 

F, v F2 and F, A F2 are predicates if F, and F2 are predicates. Let F be 
a predicate and D a set of positive integers. We define FCD1 to be the 
predicate resulting from removing type 1 atomic marking predicates of the 
form p(i) > c and p(i) > c from F, for all i 4 D. 

In this paper, we deal with formulas f of the following form (with respect 
to Petri net (P, T, rp, pO)): 

Given a Petri net 9 and a formula A we use 9’ + f to denote that f is true 
in 9. The satisfiability problem (for F(p,, . . . . pL,, cr,, . . . . 0,)) is the problem 
of determining, given a Petri net 9 and a formula h whether S k f: If 
p=p()-%p,qi-) “‘pm-, - p, is a path, such that F(p,, . . . . p,, 
gi, . . . . a,) is true in 9, we say p satisfies F. 

3. THE MAIN RESULT 

In this section, we show that the satisfiability problem is solvable in 
w d l n * log”) space in the size of the Petri net and the formula (i.e., n), for 
some constant d. We first show that, given a Petri net 9 and a formula A 
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the length of the shortest path satisfying F, if exists, is bounded by 
w 2c*” *log”), for some constant c. The upper bound then follows 
immediately from a nondeterministic search. In our proof, we generalize an 
induction strategy originated by Rackoff (1978). In order to do so, we need 
a few lemmas first. 

We begin by showing that our predicates satisfy the so-called 
“monotonic” property, which is essential in the proof of the main theorem. 

LEMMA 3.1. Let A (eZk) be a vector whose first i components are 
nonnegative (i.e., Vj, 1 < j 6 i, A(j) 2 0). For every predicate F, 
if F(pL1 ,..., pL,,ol ,..., 0,) = true, then Fc(1,2,-,i)1(p, + A ,..., p, + A, 
~7,) . . . . a,) = true. 

Proof: Clearly, it is sufficient to consider only marking predicates. It 
should also be noted that FC1x 2*..., i1 does not contain type 1 marking 
predicates of the form p(j) > c and p(j) > c, for j> i. Hence, adding A 
(whose first i components are nonnegative) has no effect on any type 1 
marking predicate in FC’. 2,...’ i1. Also note that each type 2 marking 
predicate is built from terms of the form pi - pj or constants. As a result, 
adding A to all marking variables has no effect on any term. Thus, 
F(P, , . . . . pm, ol, . . . . om) * Fcfll ‘,.... i}‘(pl + A, . . . . ,a, + A, g,, . . . . a,). 1 

The following lemma indicates that in deciding satisfiability, it is 
sufficient to consider formulas consisting of marking predicates only. 

LEMMA 3.2. Given a Petri net Y = (P, T, cp, eO) and a formula f, we can 
construct, in polynomial time, a Petri net 9” = (P’, T’, cp’, &) and a formula 
f’ containing no transition predicates such that 9 k f iff 9' + f '. 

Proof: In what follows, we show how each transition predicate can 
be transformed into a marking predicate, while the same satistiability 
status is maintained. Let pLo % p, -% . . . p,+ 1 -% p,,, be a path in 9 
satisfying F. 

1. yQ #,,<(=, >)c, where i> 1. 9’ is constructed from ?? in the 
following way. Let 9’ contain all transitions and places of 9. In addition, 
two new places s+ and sP are added to 9’ such that cp(t,, S+ ) = y(j) if 
y(j) > 0 and cp(tj, SK) = -y(j) if y(j) < 0. Initially, s + and s- are empty. 
Now consider & “I, ,uL; --% . . . p; ~ 1 2 & in 9’. It is reasonably 
easy to see that yo #,,<(=, >)ciff (~LI--~_,)(s+)-(~~-~L:_I)(s~)< 
(=, >)c. 

2. # (r, ( tj) > ( < )c. The “a” part can easily be shown by adding a 
new place sj such that cp( t,, sj) = 1 and ,&(sj) = 0. Clearly, # ~, (t,) > c iff 
$i (sj) > c. The # b, (t,) 6 c case is a bit involved. 9” is constructed from 9 
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in a way described in Fig. 1. In o;, tj is used to simulate tj. Initially, sj and 
s,!‘, and $’ contain c, 1, and 0 tokens, respectively. Note that t,! is controlled 
by sj and sj, while tj is controlled by s,!‘. Since o1 consists of at most c 
occurrences of tj, this can be simulated by t; in 9’. (sj assures that tl will 
fire at most c times.) Now consider &, 2 $i s . ..pA-. -3 ,L& in 9”. 
(a; is obtained from c1 by replacing each occurrence of tj by a tj.) (Note 
that after the completion of a’,, a token is moved from sJI to s,!‘.) It is not 
hard to see that #,,(t,)<c in 9 iff pL;(sJ))> 1 in p’. 

In view of the above, transition predicates can always be “simulated” by 
marking predicates. This completes the proof. 1 

In what follows, we show that given a Petri net 9 = (P, T, cp, ,u~) and a 
formula f, the length of the shortest path satisfying F, if exists, is bounded 
by W 2d’n”ogn), for some constant d. Without loss of generality, we assume 
that F contains only marking predicates (Lemma 3.2). Furthermore, 
because F, v F, is satisfiable iff F, is satisfiable or F2 is satisfiable we can 
assume that F is of the normal form F = F1 A F2, where F, = hl A . . . A h, 
and F2 = g, A . . A g, and hi and gi are atomic predicates of types 1 and 
2, respectively. Before going into details, we require some definitions. Most 
of them are the same as in (Rackoff, 1978) (see also (Rosier and Yen, 
1986). A generalized marking is a mapping p: P + 2. A generalized firing 
sequence is any sequence of transitions. A finite sequence of vectors 
WI, w*, . . . . w, E Zk is said to be a path (of length m - 1) in P if w, = p. and 
wi+1- wi E T (the set of transition vectors), for all i, 1 d i < m. (We some- 
times use w,L wz...* u’,, where fi=wi+, - wi, to represent a 
path if the associated (generalized) firing sequence is important.) Let w E Zk 
and 0 < i 6 k. The vector u’ is i hounded if w(j) > 0 for 1 < j 6 i. If r E N+ 
is such that 0 <w(j) < r for 1 6j6 i, the h’ is called i-r bounded. Let 
p = WI, w2, . . . . M’, be a sequence of vectors, we say p is i bounded (i-r 

c tokens 

FIG. 1. A Petri net for simulating # ~, (I,) < c. 
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bounded) if every member in p is i bounded (i-r bounded). p is called an 
i loop if in the first i places w, = w, and wil # wj2 for all 1 < j, < j, 6 m; i.e., 
p is a path such that the start and end vectors have their first i components 
identical and no other intermediate points have this property. The loop 
value of p is defined to be w, - w, . Given a predicate F(pl, p2, . . . . cl,), an 
i bounded (i-r bounded) path wl, M’~, . . . . w, is called an i bounded (i-r 
bounded) F-path if 31 <j, < j?.< ... <j,<m such that Fcf’.2.....i)1(w,,, 
wj*, ...3 wi,) is true. Let m’(i, p, F) be the length of the shortest i bounded 
F-path whose initial generalized marking is p. (If no such path exists, then 
m’(i, p, F) = 0.) Let g(i, F) = max{m’(i, p, F) 1 p E Zk $. In what follows, we 
argue that g(i, F) E N. First note that function m’ is monotonic with respect 
to p in the sense that if an i bounded path p satisfying F exists for a 
marking p, then p is guaranteed to satisfy F for the marking p + A, for any 
A > 0 (Lemma 3.1). This implies m’(i, p + A, F) 6 m’(i, p, F), for any A 2 0. 
As a result, if we let S(i, F)= {p 1 m’(i, p, F)>O} (i.e., the set of all 
markings from which i bounded paths satisfying F exist), then S(i, F) is 
right-closed. (A set M c Nk is right-closed iff v E Ma Vv’ > v, v’ E M. See 
(Valk and Jantzen, 1985) for more about basic properties of right-closed 
sets.) It is well-known that given a right-closed set, its set of minimal 
elements is finite. Let S’(i, F) be the set of minimal elements of S(i, F). 
Then g(i, F)=max{m’(i,p, F) I PEE’} =max{m’(i,p, F) 1 p~S’(i, F)}, 
which is finite. (Recall that m’(i, ,U + A, F) 6 m’(i, p, F), for any A 2 0.) It is 
worth mentioning here that g(i, F) does not depend on the starting 
marking. 

Given a vector y, we let II yll be the maximum absolute value of y’s com- 
ponents. To prove our upper bound result, we need the following lemma 
concerning the bounds of solutions of linear equations. The lemma is from 
(Rackoff, 1978). (The proof is essentially from (Borosh and Treybis, 1976).) 

LEMMA 3.3. Let d,, d2 E N+, let B be a d, x d2 integer matrix, and let b 
be a d, x 1 matrix. Let d 3 d2 be an upper bound on the absolute values of 
the integers in B and d. If there exists a vector v E Nd2 which is a solution to 
Bv > 6, then for some constant c independent of d, d,, d,, there exists a 
vector v E Nd2 such that Bv > b and v(i) < d‘ * ‘I for all i, 1 6 i < d,. 

We are now in a position to show that, given a Petri net 9 and a 
formula F, if there is a path satisfying formula F, then there must exist a 
short “witness” whose length is bounded by 0(22d’ * * log”). The proof closely 
parallels the induction strategy used by Rackoff (1978). 

LEMMA 3.4. Let ,u~,~, j> i, denote p, -,ui. Then each type 2 atomic 
marking predicate can be expressed as n,p,, 1 (i) + n,,u,.r (i) + . . + 

643’96’1.9 
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n,~m,,~~(i)+n;~2,1(j)+n;~3.2(j)+ ... +4d~.,-~(~)<(=~ >k for 
some constants n2, . . . . n,, n;, . . . . nL, c (~2) whose absolute values are d 2O(“’ 
(n is the combined size of the Petri net and the formula). 

Proof: In what follows, we only consider the “<” case; the other two 
cases are analogous. First note that each type 2 marking predicate of the 
form T, (i) < T, (j), by definition, can be expressed as 

f e,(~,,,~-~ll,,,~)+e (A, 1=1 
where p(l)>q(l), r(t) >s(t), 06 f, g<n, and d, d,, . . . . rif, e, e,, . . . . eg are 
constants (each of which has its absolute value <20(“) since binary 
representation is used for integers). When each occurrence of pLi- pi is 
replaced by its equivalence ~,,,~,+p~~i,~~~+ ... +P;+,,~, for j>i, the 
above inequality can further be simplified as 

where n2, . . . . n,, n;, . . . . nL, c are (possibly negative) constants whose 
absolute values are < 2O’“). This completes the proof. 1 

LEMMA 3.5. If there is an i-r bounded F-path in Petri net (P, T, cp, ,u), 
then there is an i-r bounded F-path of length <r”“, for some constant c 
independent of r and n. 

Proof The proof is similar to (but more involved than) the corre- 
sponding one in (Rackoff, 1978). Let p “L, pi -% ... c(,,-, -% p, be an 
i-r bounded F-path. First note that p “I, pi need not be longer than rk; 
otherwise, there must exist an i loop which can be removed without 
affecting the validity of F. (Such a loop can conceptually be removed by 
adding -A (A = loop value) to pi, . . . . pm. According to Lemma 3.1, the 
validity of F remains intact.) 

Now consider pr 3 ...p,+, 2 pm. In segment 6,,: pLhPl 5 p,,, 
2 <h <m, suppose Q is an i loop in marking q (i.e., starting in q and 
ending in q). We have the following important property: 

l the new path resulting from repeating Q t times, for an arbitrary 
t 2 0, in q is still an i-r bounded path satisfying F 1 t{‘, *. ...’ i)1. (Recall that F, 
consists of only type 1 predicates.) Note that “t = 0” corresponds to the 
removal of i loop Q from marking q. 

The above property ensures that i loops can be removed or repeated 
(an arbitrary number of times) in any marking without affecting the 
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sat&lability status. In what follows, we will show how to remove, 
duplicate, and rearrange existing i loops so as to shorten the existing path, 
while preserving the validity of I;:{‘, *. ...’ i}1. 

We decompose 8,, into a path s,, and some i loops such that 

l the length of sh is 6 (r“ + 1 )2, 

l the length of each loop is <rk, 

l each place of a loop value is ,<2” * rk, and 

l the total number of distinct loop values is Q (2 * (2” * rk) + 1 )k, 

(The reason that such a decomposition exists can be found in (Rackoff, 
1978). (See also (Rosier and Yen, 1986).)) 

Let Z:, . . . . li,, (2 G h dm, ph d (2 * (2” * r“) + l)k) be the distinct loop 
values in segment 6,. Note that ph - ph _ 1 = ( [sh] + atlt + + . . + aihl:J, for 
some a:, . . . . ai* (EN), and [s,,] (eZk) is the difference of the end and start 
points of the path sh. Now according to Lemma 3.4, each atomic predicate 
of type 2 can be represented as 

n,*([s,]+afl:+ ... +aizfz2)(i)+ ... 

+n,* ([s,]+a;lZ;l+ ... +a,mmlpmm)(i) 

+n; * ([s2] +aflf+ ... +ai,lfJ(j)+ . . . 

+n& * ([s,]+ayZy+ ... +armlTm)(j)<(=, >)e, 

wheree,n,,nj,<2”, II[s,]l/, (11~116d*2”*(rk+1)2,ph<(2*(2”*rk)+l)k 
(2 <h < m), and d is a constant. Consequently, F${‘,‘.” ‘)I can be expressed 
as (no more than) n such (un)equations. To find a shorter path satisfying 
F5{‘~.~~*‘)1, it s&ices to solve the associated system of (un)equations (with 
respect to variables at, . . . . a:,, 
letting dl = n and d = r3n2 

26h<m, p,<(2*(2”*rk)+l)k). By 
and using Lemma 3.3, we are able to find 

solutions whose values are <r”‘, for some constant c’. As a result, there 
exists a “short” i-r bounded F-path whose length is no more than rnC, for 
some constant c independent of r and n. 1 

In what follows, we derive g(i, I;) recursively. 

LEMMA 3.6. g(0, F) d 2”‘, for some constant c independent of n. 

ProoJ: Let p oL!+p,,z+... A ,u, be a O-bounded path satisfying F. 
Clearly, it is sufficient to consider F,. Suppose F, = fi A f2 A . . . A fz. Let 
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T= (u,, . . . . u,} be the set of transition vectors in the Petri net. According 
to Lemma 3.4, each f,, 1 < r < -?, can be represented as 

(1) n;p2.1(i)+n;p3,2(i)+ ... +nkpm,,-,(i)<(=, >)er, for some 
constants n;, . . . . n;, e’ whose absolute values are ~2”. Furthermore, 

(2) pLI.IpI = p:u, + p:++ ... +p:v,, for some p’,, . . . . ,$,E N. 

Substituting each P~,(-, in (1) by (2) will yield a linear equation with 
respect to variables pi, . . . . p:, Q 1 d Id m. As a result, -F, can be expressed 
as a system of at most n such equations. Choose d, = n and d= 2’ * ‘. Using 
Lemma 3.4, we can find a solution with each JJJ d 2”‘~, for some constant L.“. 
Clearly then the lemma follows. 1 

LEMMA 3.7. g(i+ 1, F) d (2’*( g(i, F) + I))“” for all i< k, where c is a 
constant independent of n. 

Proof: Case 1. If there is an (i + 1) - (2”( g(i, F) + 1)) bounded F 
path, then from Lemma 3.5, there exists a short one with length 
<(2”(g(i, F)+ 1))“‘. 

Case 2. Otherwise, let u, , . . . . umO, u,~+, , . . . . II, be the path such that 
u is the first one not (i+ 1)-2”(g(i, F) + 1) bounded. Without loss of 
generality, we assume that u,,(i+ 1) > 2”( g(i, F) + 1). Note that no two of 
01 7 ‘.., urn0 can agree on the first i + 1 positions; otherwise, the path could be 
made even shorter. Therefore, m,< (2”( g(i, F) + l))i+l. Let p be the 
shortest i bounded F path in Petri net (P, T, cp, u,J. Clearly, the length of 
p is 6 g( i, I;). Since v,,( i + 1) > 2”( g( i, F) + 1) and each place of each 
transition vector in the Petri net is at most 2” in absolute value, p 
must also be (i + 1) bounded and the (i + I) position will never fall below 
2” in p (so that type 1 marking predicates of the form ~(i + 1) >, e and 
~(i + 1) > e will still hold in p). As a result, the sequence u1 , . . . . u,+ , , p 
is an (i + 1) bounded F path of length (2’7 g(i, F) + l))i’ ’ + g(i, F) < 
VY g(i, F) + 1 )I”‘. I 

THEOREM 3.8. The satisfiability problem can be decided in 0(2d*nr’ogn) 
space, for some constant d independent of n. 

Proof By recursive application of Lemmas 3.3 and 3.4, it is fairly 
easy to see that g(k, F) < 2”d’n, for some constant d. This means that if 
a formula F is satisfiable, then there must exist a path of length 
< g(k, F) < 2”“‘” satisfying F. A nondeterministic search procedure will 
yield an 0(2d*“*‘og” ) space upper bound. [ 
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It is known that the boundedness problem for Petri nets is EXPSPACE- 
hard (Lipton, 1976). Since unboundedness can be expressed using our path 
formulas, the following result follows: 

COROLLARY 3.9. The satisfiability problem is EXPSPACE complete. 

4. SOME APPLICATIONS 

In this section, we demonstrate the usefulness of Theorem 3.8 by first 
showing that many known complexity results concerning Petri nets follow 
immediately from our main result. We then derive some new results. Let 
9 = (P, T, 50, pug) be a k:place r-transition Petri net. 

1. Boundedness Problem. The boundedness problem is the problem of 
determining whether R(P, T, rp, pO) is finite. This problem has been shown 
to be solvable in EXPSPACE in (Rackoff, 1978). (See also (Rosier and 
Yen, 1986) for a detailed multiparameter analysis.) Clearly, unboundedness 
can be formulated as 3~,, p2 3a,, g2((pOA p, 3 p2) A (/12>,u1)). 

2. Coverability Problem. The coverability problem is to determine, 
given a vector u E Nk, whether there exists a reachable marking p such that 
p b v. This problem has also been shown to be solvable in EXPSPACE 
in (Rackoff, 1978). Clearly, coverability can be formulated as 
3% 3a, ((PO 61, PI) A (h 2 VI). 

3. (Strict) Self-Coverability Problem. In (Huynh, 1985), the notions of 
self-coverability and strict self-coverability were introduced for solving the 
equivalence problem of commutative semigroups and symmetric vector 
addition systems. It was observed in (Huynh, 1985) that the problem is 
solvable in EXPSPACE. Given a set of places I (c P), a path 
PO s PI s cl2 is I-self-covering if V’se Z, ~~(3) > p1 (s), and V’s’$ Z, 
~~(3’) =p, (s’). It is strict if “a” in the above definition is replaced by “>.” 
The (strict) self-coverability problem is to determine, given an I, whether 
there is a (strict) I-self-covering path. It is easy to see that the existence of 
an I-self-covering path can be expressed as ZIP,, p230,, or((po 2% p, 2 p2) 
A (bL I p2(s) 3 Pi) * (h+ i~~W) = pI (s’)))). (For strict self- 
coverability, simply replace “ > ” by “ > .” 

4. u-Self-Coverability Problem. This problem was also defined and 
solved by Huynh (1985). Given a UE Nk, a path p. 5 p, 5 p2 is u-self- 
covering if pL2 - /*, = u. The u-self-coverability problem is to determine, given 
a u, whether a u-self-covering path exists. This property can be expressed 
as ~~~~~~~~~~~~~~~~~ pIA p2) A @2-p1 =u)). 

5. Final-State Self-Coverability Problem. This problem was defined 
and solved by Sistla and German (1987) to study the complexity of the 
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model checking problem for a special type of systems with many identical 
processes. It was originally defined in the context of vector addition 
systems with states. Here we consider an equivalent version of the problem 
in the context of Petri nets. Let F be a set of places (corresponding to the 
set of final states in a vector addition system with states). A final-state 
self-covering path (with respect to F) is p0 5 p, f pFcr 5 CL, where p3 3 ,u, 
and 3s E F, p2 (s) > 0. The final-state self-coverability problem is to 
determine whether a such path exists. This problem can easily be for- 
mulated as 3pl, p2, p3 gal, g2, a,((~~ a pl 2 p2 3 p3) A (b3 2 14 ) A 
W,.FP2(S)>O))). 

6. Fair Nontermination Problems. Let ~4 be a finite set of nonempty 
subsets of transitions. Given an infinite sequence of transitions CJ = t, , t,, . . . . 
let infT(a) be the set of transitions occurring infinitely often in CJ. In 
(Howell, Rosier, and Yen, 1991) the following 6 types of fairness were 
defined: IS is said to be 

l Tl-fair iff 3A EJZZ, 3i> 1, t,E A. 
l Tl’-fair iff RAE&, Vi3 1, tiEA. 

l T2-fair iff 3A cd, inf’(,) n A # @. 
l T2’-fair iff 3 A E ~32, infT(a) c A. 
l T3-fair iff 3 A E d, infT(a) = A. 
l T3’-fair iff 3 A E &, A s infT(cr). 

The fair nontermination problem with respect to Tl (Tl’, T2, T2’, T3, T3’, 
respectively) fairness is the problem of determining whether a given Petri 
net has an infinite type Tl- (Tl’-, T2-, T2’-, T3-, T3’-, respectively) fair 
computation. In (Howell, Rosier, and Yen, 1991) the nontermination 
problem was shown to be equivalent to the boundedness problem (and 
hence, solvable in exponential space) for all six types of fairness. In what 
follows, we show how to formulate the fair nontermination problem for all 
six notions of fairness. This will immediately yield the upper bounds. Given 
a subset of transitions A, let v,~ be a vector in N’ such that vA(i) = l(0) iff 
tin (4) A. In what follows, let CJ # n denote the predicate V,, T #.(t) > 0, 
meaning that c contains at least one transition. A Petri net is X-fair non- 
terminating iff 

. X=Tl 
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. X=T3’ 

In the remainder of this section, we show how to use Theorem 3.8 to 
derive new results. By reduction to the satisliability problem, each of the 
following problems will be shown to be solvable in EXPSPACE. 
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1. Regularity Detection Problem. In (Ginzburg and Yoeli, 1980; Valk 
and Vidal-Naquet, 1982), a subclass of Petri nets called regular Petri nets 
was defined. A Petri net is regular iff the set of all (finite) fireable sequences 
of transitions defines a regular language (over T). An algorithm was given 
by Ginzburg and Yoeli (1980), and Valk and Vidal-Naquet (1982) to deter- 
mine whether a given Petri net is regular. A Petri net is not regular iff there 
exist markings p r, p2, ,u3, pLq such that pi, 1 6 i 6 4, is reachable from p, ~, 
and the following conditions are met (see (Valk and Vidal-Naquet, 1982, 
p. 314): 

(4 pL1 <p2 and pl fp2, 

(W VPEP, (,~(P)~P~(P))=+~(P)~P~(P))~ and 

(c) 3PEP,h(P)>cl4(P). 

However, no complexity analysis was given regarding that particular algo- 
rithm. Using our path formulas, we have that a k-place Petri net is not 
regular iff~c11,~2~~3,~43~l~~2,~3,~4(~oqf-’~l~~2~~3~~4) 
and 

(a) (~~2~1~) A UC=, ~2(i)>cLI(i)), 
(b) /If=, h (9 < ~~(4) v bdd 6 PUG)), and 
(cl VL P3(i)>P4(i). 

As a result, the regularity detection problem is solvable in exponential 
space. 

2. (Potential) Determinism Detection Problem. In (Howell and Rosier, 
1989), a subclass of Petri nets called deterministic’ Petri nets was defined. 
A Petri net is deterministic iff for any reachable marking p, there is at most 
one enabled transition in p. It has also been shown by Howell and Rosier 
(1989) that the boundedness, reachability, containment, and equivalence 
problems can all be solved in EXPSPACE. Let u, be the minimum vector 
for which transition t is enabled. Clearly, a Petri net is not deterministic iff 
3Pl 3ot(h++ Pt) A (V,.,,,,#,,(P 1 au,) A (p, >u,,))). A Petri net is 
potentially deterministic iff there does not exist an infinite path along which 
two or more transitions are enabled in infinitely many markings. (I.e., the 
Petri net can only be nondeterministic for a finite period of time.) It is 
fairly easy to see that a Petri net is not potentially deterministic iff 
3Pt, Pz 3~,,02((Po~ PI -% P2) * (o/t,1,,tzl~ (PI 2 0,) A (PI au,.)) A 
(pLz z p,))). Consequently, the (potential) determinism detection problem 
can be solved in EXPSPACE. 

’ The reader should notice that the definition in (Howell and Rosier, 1989) differs from the 
original definition of deterministic Petri nets given in (Ramchandani, 1974). 
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3. Frozen Token Detection Problem. The concept of frozen token was 
first introduced by Best and Merceron (1985) as a way to study the 
behavior of a concurrent system modeled by a Petri net. A Petri net 
has a frozen token iff there exist an infinite computation 
~0~;i&~L2*~L3...and a place s such that Vial, pi(s)> 
1 + cp(s, t,,). (I.e., there exists a token that will never be removed from a 
place.) To detect a frozen token, we first modify the Petri net as follows. 
Let P be the set of places. Let p be a new place. For every q E P, we 
introduce a transition t, such that (p(q, ty) = cp(t,, p) = 1. Let P&(P) = 0, 
and let PL: be the extension of pi by taking place p into consideration. 
Then we claim that the new Petri net has a frozen token 
iff ~~~,~~3a;,o;((~~~~L;‘~1~;)A(~;(p)>OA11;~~;)A((r;#ii)). 
To see this, suppose the above formula is satisfiable. Then there exists a 
path & “i p’, --% pi satisfying (1) PL; (p) > 0 (2) PL; 3 PL; and (3) 0; # /i. 
(2) and (3) guarantee that a; can be repeated an arbitrary number of 
times. (1) ensures that at least one token has been deposited in p when 
reaching pi. Since p is a sink, once reaching p a token cannot contribute 
to further computation. As a result, one can think of any token in p as a 
frozen token in the original Petri net. Let D,, (T? be the resulting sequences 
of transitions by removing all added transitions (i.e., transitions of the 
form tY) from cr;, cr;, respectively. It is reasonably easy to see that 
p0 3 p, --% pZ 2 ... is an infinite path with at least one token frozen. 
The other direction (i.e., every Petri net with a frozen token can be 
converted into a Petri net satisfying the conditions described above) is 
similar. Again, p can be thought of as a sink for storing those frozen 
tokens. Condition (1) ensures that we may freeze at least one token during 
the course of an infinite computation of a Petri net. In view of the above, 
the frozen token detection problem is solvable in EXPSPACE. 

4. (Strong) Promptness Detection. The concept of (strong) promptness 
was introduced by Valk and Jantzen (1985) as a way to deal with systems 
communicating with the environment. Let T, and TE be two disjoint sets 
of transitions such that TI u T, = T. (T, and T, can be viewed as the sets 
of internal and external transitions, respectively.) A Petri net (P, T, cp, p,,) 
is said to be 

(a) Strongly prompt (with respect to (T,, T, )) iff 3 k E N, 
VP E R(P, T, cp, pO), VW E T,* : p L * IwI < k, meaning that for every 
reachable marking p(, the longest sequence of internal transitions Iirable in 
,u is of length <k, for some k. 

(b) Prompt (with respect to (T,, TE)) iff VP E R(P, T, cp, p,,), 3 k E N, 
VW E TI* : p 4 =S 1~1 < k, meaning that for every reachable marking p, 
there is no infinite sequence of internal transitions firable in p. 
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It is not hard to see that a Petri net is not prompt (strongly prompt) iff 
~~I,~2~~1,~2((~,~~l~~2)*((~,~T,#o~(t)~O) A (/b>&)A 
((T* #A))). As a result, the (strong) promptness detection problem is solv- 
able in exponential space. 

5. y-Synchronization Problem. In (Suzuki and Kasami, 1983) the 
notion of y-distance was introduced. Given a Petri net 9 and a y E Z’, let 
WY', Y)=SuP,+ (1 Y 0 # DI ). 9 is said to be y-synchronized if D(,!Y, y) is 
finite. The y-synchronization problem is that of determining, given a Petri 
net 9 and a y, whether 9 is y-synchronized. This problem has been shown 
to be decidable and EXPSPACE-hard by Suzuki and Kasami (1983). 
However, the precise complexity was left unanswered there. Now, we show 
that the problem is in fact EXPSPACE-complete. As mentioned by Suzuki 
and Kasami (1983) D(Y, y) is finite iff for every path j&!+ p, 3 h2, 
if ,u22p,,, then (y Q #OzI =O. Using our path formulas, 9 is not 
y-synchronized iff 3~,l,~3a,,az((~Lg~~11~*)~(((yO#az)> 
0 v (~0 #c,l<O)) A (~22~11))). A s a consequence, the y-synchronization 
problem can be solved in EXPSPACE. 
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