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W e  examine both the model ing power  of normal and  sinkless Petri nets and  the computa-  
tional complexit ies of various classical decision problems with respect to these two classes. W e  
argue that a l though neither normal nor  sinkless Petri nets are strictly more powerful than 
persistent Petri nets, they nonetheless are both capable of model ing a  more interesting class 
of problems. On  the other hand,  we give strong evidence that normal and  sinkless Petri nets 
are easier to analyze than persistent Petri nets. In so  doing, we apply techniques originally 
developed for conflict-free Petri nets-a class def ined solely in terms of the structure of the 
net-to sinkless Petri nets-a class def ined in terms of the behavior of the net. As a  result, we 
give the first comprehensive complexity analysis of a  class of potentially unbounded  Petri nets 
det ined in terms of their behavior.  0 1993 Academic Press, Inc. 

1. INTRODUCTION 

Many aspects of the fundamental nature of computation are often studied via 
formal mode ls, such as Turing machines, finite-state machines, and  push-down 
automata (see, e.g., [HU79]). One  formalism that has been  used to mode l parallel 
computations is the Petri net (PN) [Pet81, Rei85-J. As a  means  of gaining a  better 
understanding of the PN mode l, the decidability and  computational complexity of 
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typical automata theoretic problems concerning PNs have been examined. These 
problems include boundedness, reachability, containment, and equivalence. Lipton 
[Lip761 and Rackoff [Rac78] have shown exponential space lower and upper 
bounds, respectively, for the boundedness problem. Also, Rabin [Bak73] and Hack 
[Hac76] have shown the containment and equivalence problems, respectively, to 
be undecidable. No tight bounds, however, have yet been established for the com- 
plexity of the reachability problem. The best lower bound known for this problem 
is exponential space [Lip76], but the only known algorithm is nonprimitive 
recursive [May84]. (See also [Kos82, Lam87].) Even the decidability of this 
problem was an open question for many years. 

Early efforts to show the reachability problem to be decidable included the study 
of various restricted subclasses of PNs [CLM76, CRM75, GY80, Gra80, HP79, 
LR78, May81, MM81, MM82, Mu181, VVN81]. The only classes for which 
completeness results have been given concerning all four of the problems men- 
tioned above are one-conservative PNs [JLL77], one-conservative free choice 
PNs [JLL77], symmetric PNs [CLM76, MM82, Huy85], and conflict-free PNs 
[JLL77, HRY87, HR88] (the proofs in [JLL77] also apply to one-bounded PNs 
and elementary nets). Of these classes only symmetric and conflict-free PNs are 
potentially unbounded, and both symmetric and conflict-free PNs are defined only 
in terms of their structure, not in terms of their behavior. Thus, until now there has 
been no class of potentially unbounded PNs defined in terms of their behavior for 
which a comprehensive complexity analysis has been given. 

Of all of the PN classes for which completeness results have been shown 
concerning all four of the problems mentioned above, the class for which the 
decision procedures are most efficient is that of conflict-free PNs. In particular, the 
boundedness problem is complete for polynomial time [HRY87], the reachability 
problem is NP-complete [JLL77, HR88], and the containment and equivalence 
problems are n,P-complete [HR88], where nc is the set of all languages whose 
complements are in the second level of the polynomial-time hierarchy [Sto77]. 
However, since conflict-free PNs comprise such a simple class, their modeling 
power is very limited. In particular, as we show in this paper, conflict-free PNs 
cannot model the producer/consumer problem if more than one consumer is 
involved and the actions of each consumer are to be modeled by separate 
transitions. Furthermore, the obvious generalization of conflict-free PNs to 
persistent PNs (see [LR78]) is not very helpful: not only is it impossible to model 
the above problem with persistent PNs, but the complexities of the various 
problems regarding persistent PNs appear to be worse than for conflict-free PNs. 
In particular, all four problems are PSPACE-hard [JLL77]. The known upper 
bounds are much worse: the best upper bound known for boundednes is 
exponential space [Rac78], and no primitive recursive algorithms are known for 
the other three problems, although they are known to be decidable [Gra80, May81, 
Mu181]. Even the problem of recognizing a persistent PN, although known to be 
decidable [Gra80, May81, Mu181 1, is not known to be primitive recursive, and is 
PSPACE-hard [JLL77]. 
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More recently, Yamasaki [Yam841 has defined two other generalizations of 
conflict-free PNs, normal PNs and sinkless PNs. The relationship of normal PNs 
to sinkless PNs is analogous to the relationship of conflict-free PNs to persistent 
PNs; i.e., normal PNs are those PNs that are sinkless for every initial marking 
[Yam84], just as conflict-free PNs are those PNs that are persistent for every initial 
marking [LR78]. In addition, normal PNs, like conflict-free PNs, are defined in 
terms of the structure of the net, whereas sinkless PNs, like persistent PNs, are 
defined in terms of the behavior of the net. However, both normal and sinkless PNs 
are incomparable to the class of peristent PNs; i.e., there are persistent PNs that are 
not sinkless, and normal PNs that are not persistent. In this paper, we examine 
both the modeling power of normal and sinkless PNs and the computational 
complexities of the four problems mentioned above with respect to these two 
classes. We show that both in terms of modeling power and ease of analysis, normal 
and sinkless PNs compare very favorably to conflict-free and persistent PNs. 

Concerning the modeling power, we first show that the producer/consumer 
problem mentioned above, which cannot be modeled by persistent PNs, can be 
modeled by normal PNs. We then examine the mutual exclusion problem. We show 
that although this problem cannot be modeled by sinkless PNs, a version in which 
a bounded number of exclusions takes place can be modeled by normal PNs 
(persistent PNs cannot even model one exclusion). We therefore conclude that 
although not all persistent PNs are sinkless, the class of problems that can be 
modeled by sinkless (or even normal) PNs is somewhat more interesting than that 
class modeled by persistent PNs. 

We then examine whether the more “useful” nature of sinkless PNs causes a 
corresponding increase in the complexities of the classical problems (as compared 
to persistent PNs). We show that this is not the case; i.e., we show that for both 
normal and sinkless PNs, the boundedness problem is co-NP-complete, the 
reachability problem is NP-complete, and the containment and equivalence 
problems are n:-complete. Note that with the exception of the boundedness 
problem, the complexities of these problems are identical to those for conflict-free 
PNs-an extremely simple class. In fact, the techniques used in deriving these 
results for normal and sinkless PNs are simply more sophisticated applications of 
the techniques developed in [HR88] for conflict-free PNs. Thus, techniques 
originally developed for analyzing problems involving conflict-free PNs-a class 
defined solely in terms of the structure of the net-have been generalized to apply 
not only to normal PNs, but also to sinkless PNs-a class defined in terms of the 
behavior of the net. Furthermore, these results represent the first comprehensive 
complexity analysis of the classical problems concerning a class of potentially 
unbounded PNs defined in terms of their behavior. 

We also examine the question of how much easier it is to recognize a normal PN 
than to recognize a sinkless PN. Recall that the problem of recognizing a persistent 
PN is not known to be primitive recursive, and is at least PSPACE-hard [JLL77], 
whereas a conflict-free PN can easily be recognized in polynomial time. The main 
problem in deciding persistence is that some sort of reachability analysis is 
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necessary due to the fact that persistence is a behavioral property. Since sinkless 
PNs are likewise defined in terms of their behavior, whereas normal PNs are 
defined solely in terms of their structure, one might suppose that normal PNs 
would be easier to recognize than sinkless PNs. However, in order to determine 
whether a PN is normal, a rather complex property of the graphical representation 
of the PN must be tested. The end result is that both the problem of determining 
whether a PN is normal and the problem of determining whether a PN is sinkless 
are co-NP-complete. We therefore conclude that in most applications, one might as 
well consider the entire class of sinkless PNs rather than the more restricted class 
of normal PNs. 

The remainder of the paper is organized as follows. In Section 2, we formally 
define the concepts used throughout the paper. In Section 3, we compare the 
modeling power of normal and sinkless PNs with that of persistent PNs. Finally, 
in Section 4, we examine the complexities of the various problems regarding normal 
and sinkless PNs. 

2. DEFINITIONS 

Let N denote the set of nonnegative integers, R the set of rational numbers, Nk 
(Rk) the set of vectors of k nonnegative integers (rational numbers, respectively), 
and Nkxm (Rkxm) the set of k x m matrices of nonnegative integers (rational 
numbers, respectively). For a k-dimensional vector u, let o(i), 1 d i < k, denote the 
ith component of u. For a k x m matrix A, let A(i, j), 1 6 i < k, 1~ j < m, denote the 
element in the i th row and the j th column of A, and let uj denote the j th column 
of A. For a given value of k, let 0 denote the vector of k zeros (i.e., O(i) = 0 for 
i=l , . . . . k). Given k-dimensional vectors, U, u, and w, we say: 

l v=w iff u(i)=w(i) for i=l,...,k; 
l U~W iff u(i)aw(i) for i=l,...,k; 
l v>w iff v>w and v#w; and 
l u = u + w iff u(i) = o(i) + w(i) for i= 1, . . . . k. 

A Petri net (PN, for short) is a tuple (P, T, cp, p,,), where P is a finite set of 
places, T is a finite set of transitions, cp is a flow function cp : (P x T) v (T x P) -+ N, 
and p0 is the initial marking p,, : P -+ N (in this paper, we only consider PNs for 
which the range of cp is (0, 1 }). A marking is a mapping n : P + N. A transition 
t E T is enabled at a marking /J iff for every p E P, cp( p, t) < p(p). A transition t may 
fire at a marking p if t is enabled at ~1. We then write p -& $, where 
p’(p)=p(p)-cp(p, t)+cp(t, p) for all PEP. A sequence of transitions a=t,...t, 
is a firing sequence from no (or a firing sequence of (P, T, cp, pO)) iff 
po-fl*pl-is . . . --% pL, for some sequence of markings pi, . . . . pL,. We also write 
po-Sp,. For o,.o’~T*, ~Y=t,...t,,, let c - 0’ be inductively defined as follows: 
Let CY~ be C. If t, E oip i, let di be rr-~, with the last occurrence of tj deleted; 
otherwise, let cr, = cr- , . Finally, let CJ 2 CJ’ = on. 
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We only consider Petri nets (P, T, cp, pO) such that the range of cp is (0, 1 }; 
hence, we may view them from two different perspectives. The first perspective is 
graph-theoretical: Pu T forms the set of vertices of a directed graph, and (u, u) is 
an edge iff cp(u, u) = 1. Since cp is a function on (P x T) u (TX P), the graph 
representation of the PN is bipartite. This graph theoretic perspective yields a 
natural pictorial representation for PNs. In such pictures, we adopt the convention 
of denoting a place by a circle and a transition by a bar; the marking p is 
represented by p(p) dots (or tokens) in the circle denoting each place p. The other 
perspective is algebraic. Suppose P contains k elements and T contains m elements. 
By establishing an ordering on the elements of P and T (i.e., P = {p,, . . . . pk} and 
T= {t,, . . . . t,}), we define the k x m addition matrix T of (P, T, cp, pO) so that 
F(i, j) = cp(tj, pi) - cp( pi, tj). Thus, if we view a marking p as a k-dimensional 
column vector in which the i th component is p( pi), each column t; of T  is then a 
k-dimensional vector such that if p A p’, then ,u’= p + 4. (Note that by this 
convention, the notations p(pi) and p(i) are interchangeable.) For a given alphabet 
C, let Y : C* + (C -+ N) be the Parikh mapping so that for 0 EC*, aEC, Y(o)(a) 
is the number of occurrences of a in G . For .Z= T, we can view y(~l(a) as an 
m-dimensional column vector in which the j th component is Y(u(a)(tj). Then if 
,u,, -5 p, p0 + T. Y(o) = p (note that the converse does not necessarily hold). 

Let .9’= (P, T, cp, pO) be a PN. The reachability set of B is the set R(g) = 
{p 1 p. A p for some fr }. Let c = ul, u2, . . . . u,,, ui be a circuit in the graph of 9, 
and let p be a marking of 9. For convenience, we will always assume u1 is a place. 
Let PI(C)= {u,, u3, . . . . unPI } denote the set of places in c, and let tr(c) = u2uq . . . U, 
denote the sequence of transitions in c. We define p(c) = CP,Ep,(cJ p(i). We say c is 
token-free in p iff ,u(c) = 0. c is said to be minimal iff pi(c) does not properly include 
the set of places in any other circuit. (Note that the transitions in c are ignored 
in this definition.) c is said to have a sink iff for some PEER(S) and some (I 
and p’ such that ,U -5 p’, p(c) > 0, but p’(c) = 0. c is said to be sinkless iff it does 
not have a sink. 9 is said to be sinkless iff each minimal circuit of 9 is sinkless. 
9 is said to be normal iff for every minimal circuit c and each transition tj, 
CPiE PI(C) T(i, j) > 0; i.e., no transition can decrease the token count of a minimal 
circuit by tiring at any marking. We say Y is persistent if for every ,u E R(B), when 
any pair of distinct transitions t, and t2 are both enabled at p, t, t2 is a tiring 
sequence from p; i.e., no enabled transition can ever be disabled by firing some 
other transition. 9 is said to be conflict-free iff for every place p for which there are 
two or more transitions t such that q(p, t) = 1, for each such transition, cp(t, p) = 1. 
(This definition of conflict-freedom was given in [LR78] for PNs whose flow 
function has a range of (0, I}; see [CRM75, HRY87, HR88, HR89] for somewhat 
more general definitions.) As was shown in [Yam84], the relationship of normal 
PNs to sinkless PNs is analogous to the relationship of conflict-free PNs to 
persistent PNs: normal PNs are those PNs that are sinkless for every initial 
marking [Yam84], while conflict-free PNs are those PNs that are persistent for 
every initial marking [LR78]. 

Part of this paper is dedicated to comparing the modeling power of sinkless PNs 
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with that of other classes of PNs. In order to formalize the notion of a PN 
modeling a particular problem, such as the producer/consumer problem or the 
mutual exclusion problem, we adopt a language-theoretic approach (see also 
[Hac75]). A modeling problem Q is given by an action language L(Q) over a finite 
alphabet 25 of actions such that if tl E L(Q) and Z’ is a prefix of Q, then M’ E L(Q). 
Thus, the action language gives all possible finite sequences of actions to be 
modeled. Let ,Y1 and C, be two finite alphabets, and let h : CT + 2’:. If for any 
strings c(, /? E Z’j+, h(cwj) = h(a) h(b), then we say that h is a homomorphism. A labeled 
Petri net is a tuple (P, T, cp, ,u”, 2, h), where (P, T, cp, pO) is a PN, C is a finite 
alphabet, and h is a homomorphism h : T * + Z* such that for any t E T, the length 
of h(t) is at most 1; we call h the labeling ,function. We define the language of a 
labeled PN, L(P, T, cp, ,uO, C, h) = {h(o) / c is a firing sequence of (P, T, cp, p”)}. In 
order to formally define what it means for a PN to model a problem, we would like 
to identify the language of a labeled PN with the action language of the problem. 
However, we must also ensure that for any tiring sequence CJ that models a 
sequence of actions that can be extended, Q can also be extended in the same 
manner. Therefore, we say a PN 9 models a modeling problem Q with action 
alphabet Z iff there is a labeled PN 9 = (Y,Z, h) such that L(Y) = L(Q) and for 
any string c(,c(~E L(Q), if o1 is a firing sequence of 9 such that h(a,) = r,, then 
there is a firing sequence 01cr2 of B such that h(a,) = z2. 

Aside from examining the modeling power of various classes of PNs, we also 
examine the computational complexities of a number of problems concerning 
normal and sinkless PNs. Given a marking p of a given PN 9, the reachability 
problem (RP) is to determine whether ALE R(Y). The boundedness problem (BP) is 
to determine whether R(Y) is finite. The sink-detection problem is the problem of 
determining whether there is a minimal circuit of 9 with a sink. Given two PNs 9 
and Y”, the containment and equivalence problems (CP and EP, respectively) are 
to determine whether R(Y) c R(9’) and whether R(9) = R(Y), respectively. In 
examining the latter two problems, we use concepts from linear algebra and the 
theory of semilinear sets. For any vector VIE Nk and any finite set 
V= {vl, . . . . v,) G Nk, the set Y(v,, V) = (x 1 3c,, . . . . c, E N such that 
x=u~+~~~=l c, vi} is called the linear set with base v0 over the set of periods V. 
A finite union of linear sets is called a semilinear .set (SLS for short). If 
x =x7= 1 ai. ui for some a,, . . . . a, E R, then x is a linear combination of the vectors 
in V. If a,>0 for all i, then x is a nonnegative linear combination of the vectors in 
V. If in addition for some i, ai> 0, then x is a positive linear combination of the 
vectors in V. 

3. MODELING POWER 

In this section, we examine the modeling power of normal and sinkless PNs, 
comparing it with that of conflict-free and persistent PNs. It has already been 
shown that the class of conflict-free PNs is properly contained in both the classes 
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FIG. 3.1. A persistent PN that is not sinkless. 

of persistent PNs [LR78] and sinkless PNs [Yam84]. Furthermore, it is clear from 
the definitions that the class of sinkless PNs properly includes the class of normal 
PNs (see also [Yam84]). On the other hand, it is not hard to see that the class of 
persistent PNs is incomparable to both the class of normal PNs and the class of 
sinkless PNs; i.e., there is a persistent PN that is not sinkless (Fig. 3.1), and there 
is a normal PN that is not persistent (Fig. 3.2; see also [Yam84]). These 
relationships are summarized by the Venn diagram in Fig. 3.3. 

One of the shortcomings of conflict-free and persistent PNs is that their modeling 
power is severely limited. By the definition of persistence, only a very limited type 
of nondeterminism is allowed: if more than one transition is enabled, the next 
transition to fire may be nondeterministically chosen, but the firing of this transition 

FIG. 3.2. A normal PN that is not persistent. 
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PNs PNs 

I 

FIG. 3.3. Relationships between Petri net classes. 

cannot disable any others. Although there are modeling problems, such as a simple 
version of the producer/consumer problem, that can be modeled by conflict-free 
PNs, the severely restricted version of nondeterminism prohibits even persistent PNs 
from modeling many “interesting” problems. In particular, we show that neither a 
more general producer/consumer problem nor the mutual exclusion problem can be 
modeled by persistent PNs. Given these limitations of persistent PNs and the fact 
that there are normal PNs that are not persistent, it is natural to ask whether 
normal PNs can model some of the classical modeling problems that persistent PNs 
cannot. In this section, we show that although the mutual exclusion problem 
cannot be modeled even by sinkless PNs, the generalized producer/consumer 
problem and a version of the mutual exclusion problem in which the total number 
of exclusions in any computation is bounded by a fixed constant both can be 
modeled by normal PNs (and, hence, by sinkless PNs). On the other hand, we 
show that persistent PNs cannot even model one exclusion. In the next section, we 
will present evidence that sinkles PNs may be significantly easier to analyze than 
persistent PNs, but not significantly more difficult to analyze than normal PNs. 
These results suggest that sinkless PNs may be a more useful class of PNs than 
many of the classes that have been studied in the past. 

We first introduce a simple version of the well-known producer/consumer 
problem PC,, 1. Informally, the problem involves two processes, the producer and 
the consumer, and an unbounded buffer. The producer iterates a loop consisting of 
a sequence of two actions, produce (denoted p) followed by send (denoted s). Thus, 
in any computation, the number of produces is never less than the number sends 
and never exceeds the number of sends by more than one. Meanwhile, the consumer 
iterates a loop consisting of a sequence of two actions, receive (denoted r) followed 
by consume (denoted c). Finally, the number of receives can never exceed the 
number of sends. Thus, the action alphabet of PC,, 1 is C,, 1 = { p,s, r, c}. Recalling 
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that Y(a)(a) denotes the number of occurrences of a in a, we then define L(PC1,1) 
as the set of all strings in Zf,, such that for any prefix CI, 

l Y(a)(s) < Y(a)(p) 6  Y(a)(s) + 1; 

l Y(U)(C) d Y(U)(~) d Y(a)(c) + 1; and 
l Y(a)(r) < Y(a)(s). 

The PN shown in Fig. 3.4 is easily seen to model PC,,, and to be conflict-free. 
Suppose we wish to generalize the above problem to m  producers and n 

consumers. In order to be able to differentiate between actions of individual 
producers and individual consumers, we must define the action alphabet as C, n = 

s r [l$ i3 1’ cj ) 1 Q i < m, 1 <j< n}. We then define L(PC,,.) as the set of all strings 
* m ,n such that for any prefix a, 

l Y(a)(s,) < Y(a)(p,) 6 Y(a)(s,) + 1, for 1 < id m; 
l Y(a)(c,) < Y(a)(r,) Q Y(a)(cj) + 1, for 1 <j< n; and 
l CJn= I Va)(rj) G CL I Y(@)(Si). 

We will now show that there is no persistent PN that models PC,,,. We first 
reproduce the following easily shown lemma from [LR78]. 

LEMMA 3.1 (from [LR78]). Zf o and I+ are firing sequences of some persistent 
PN, then a(o’ 2 a) is also a firing sequence of that PN. 

THEOREM 3.1. There is no persistent PN that models PC,,,. 

Proof Suppose some persistent PN 9 models PC,,, with labeling function h. 
Since p,s,r, and pIsIr, are both in L(PC,,,), there must be firing sequences oa, 
and aaZ of 9 such that h(a) = pIsI, h(a,) = rl, and h(a2) = r2. Since 9 is persistent, 
from Lemma 3.1, aa (a2 2 a,) must also be a tiring sequence of 9. Since there 
is no transition labeled r2 in al, h(aal (a2 1- a,)) = pIs1rIr2, which is not in 
L(PC,,,)-a contradiction. 1 

<s> <r> 

<P> 

FIG. 3.4. A conflict-free PN to model PC,,, 
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The above theorem clearly demonstrates the limitations of persistent PNs as 
modeling tools. We will now show that these limitations are, at least in part, 
eliminated by normal PNs. Consider the PN in Fig. 3.5. It is not hard to see that 
this PN models PC,,,.. Furthermore, it is obvious by inspection of the graph that 
no transition can decrease the token count of any minimal circuit, so the PN must 
be normal. We therefore have the following theorem. 

THEOREM 3.2. For each positive m and n, there is a normal PN to model PC,,.. 

We have therefore seen an example of a well-known modeling problem that can 
be modeled by a normal PN, but not by a persistent PN. One of the fundamental 
building blocks for many modeling problems (e.g., readers/writers, dining 
philosophers) is the mutual exclusion problem. We will now examine the question 
of whether normal or sinkless PNs can model mutual exclusion. Informally, the 
n-process mutual exclusion problem ME, consists of n processes, each of which has 
a critical region. Each process P, iterates a loop consisting of a sequence of two 
actions: entering its critical region (denoted en,) followed by exiting its critical 
region (denoted ex,). Furthermore, no two processes may be in their respective 

<Pm > ‘Cn > 

FIG. 3.5. A normal PN to model PC,,. 
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critical regions simultaneously. Thus, the action alphabet of ME,, is C, = 
(en,, ex, 1 16 i< n}. We then define L(ME,) to be the set of all strings in C,* such 
that for any prefix a, 

l Y(U(a)(ex,) d Y(~)(en,) ,< Y(V(cc)(exi) + 1, for 1 d i < n; and 
l Cy=, (Y(@.)(Wi) - Y(a)(ex,)) d  1. 

Figure 3.6 shows a PN that models ME, for any n > 2. It can be shown that this 
PN is neither persistent nor sinkless. In fact, the following theorem can be shown 
in a manner similar to Theorem 3.1. 

THEOREM 3.3. There is no persistent PN that models ME,. 

We now show that there is also no sinkless PN to model ME,. We first 
reproduce the following lemma from [Yam84]. 

LEMMA 3.2 (from [Yam84]). Let 9 = (P, T, cp, p,,) be a PN with k places and m  
transitions. For each w E N”‘, there is some firing sequence rs of 9 with Y(a) = w if 

1. po+ T.waO, and 
2. for each firing sequence a’ of 9’ and each circuit c, if Y(a’ tr(c)) d w, then 

p(c) > 0, where ,a,, -5 p. 

THEOREM 3.4. There is no sinkless PN that models ME2. 

ProojI Let .!? = (P, T, cp, pO) be any PN that models ME, with labeling function 
h. Since (enI exl)* G L(ME,), for each positive k there must exist a ek such that 
h(a,)=en,ex, and o1 ... (TV is a firing sequence of 9. Consider the infinite sequence 
of markings pi, p2, . . . . where ,u~-, -% pLk. As was shown in [KM69], it follows 
from Kdnig’s infinity lemma [Kon36] that there exist positive i and j such that 
i-=zj and pLi<pji. Let z,=(T~.‘.(T~, ~~=cr~+~ . . . aj, and w = Y(T~). Then T. w > 0. 
Since (en,ex,)Jen, E L(ME,), there must be a r3 such that h(z,)=en* and 
PO z /I’ for some $. Since h(z,T,z,)E (en, ex,)*en, and h(r2)E (en,ex,)+, there 
is no 0 firable at p’ such that Y(a) = w. Therefore, either condition (1) or condition 

FIG. 3.6. A  PN to model ME, 
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(2) of Lemma 3.2 must fail for (P, T, cp, $) and w. Since T. w > 0, condition (1) 
must hold. Thus, there must be a 0’ and a circuit c such that Y(o’ tr(c)) < w and 
p(c) = 0, where p’ -% p. Consider the firing sequence r = r i r2r3c’ of 9. Clearly, 
p0 i p. Since p(c) = 0, some subset of pi(c) is the set of places on a minimal circuit 
with a token count of 0 in ,u. However, since Vl(tr(c)) 6 w = Y(r,), and since t2 has 
already fired in r, each of the places in pi(c) must have had a positive token count 
at one time in t. Thus, r decreases the token count of some minimal circuit to 0, 
and 9” is not sinkless. 1 

We conclude this section by noting that by using a proof similar to that of 
Theorem 3.1, it can be shown that there is no persistent PN to model the problem 
whose action language is all prefixes of eniex, and en,ex,. In contrast, there is a 
normal PN to model this problem. In fact, Fig. 3.7 shows a normal PN to model 
the problem ME:, for any positive k and n, defined so that L(MEt) = 
{R 1 c1 E L(ME,) and x1=, Y(ct)(eni) < k}. Th us, normal PNs can be used to model 
mutual exclusion if the total number of exclusions is bounded by a fixed constant. 
We therefore have the following theorems, 

<exl > . 

,::( 

<ex, > 

. 

<eT > . 

61 

<es > 

<ext > . 

v 

<es > 

FIG. 3.7. A normal PN to model ME:. 
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TABLE I 
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Problem 
Modeled by Modeled by 
persistent? normal/sinkIess? 

PC,,* No 
fen,” No 
ME2 No 
MEi No 
ME; No 

Yes 
Yes 
No 
Yes 
Yes 

THEOREM 3.5. There is no persistent PN to model ME:. 

THEOREM 3.6. For each positive k and n, there is a normal PN to model MEf:. 

The results of this section, summarized in Table I serve to demonstrate that even 
though the modeling power of sinkless PNs is still quite limited, even normal PNs 
provide a more usable version of nondeterminism than persistent PNs. 

4. COMPLEXITY RESULTS 

In this section, we examine the complexities of various problems involving 
normal and sinkless PNs. In [HR88], we developed several techniques for 
analyzing conflict-free PNs. These techniques relied heavily upon the structural 
property of conflict-freedom. In this section, we show that these same techniques 
also apply, albeit in a more sophisticated manner, to sinkless PNs, a class defined 
not in terms of structure, but in terms of behavior. 

We begin by developing an important lemma (Lemma 4.3) which will be used in 
deriving most of the upper bounds in this section. In [HR88], we showed that for 
any conflict-free PN B and any marking p of 8, there is an instance of integer 
linear programming that has a solution iff ~1 is reachable in 9. Furthermore, we 
showed that this instance of integer linear programming can be guessed in polyno- 
mial time. It therefore followed that the reachability problem for conflict-free PNs 
is in NP. We will show in Lemma 4.3 that a similar fact holds for sinkles PNs. In 
so doing, we make use of the following lemma which follows immediately from 
Lemma 3.2 and was first stated in [Yam84]. 

LEMMA 4.1 (from [Yam84]). Zf a PN8= (P, T, rp, pO) has no token-free 
circuits in every reachable marking, then R(B) = {p 1 ,a = p0 + T. x B 0 for some 
XE N”}, where m is the number of transitions in T. 

The above lemma gives an instance of integer linear programming whose solution 
set gives the reachability set of a PN. The only requirement is that no reachable 
marking can have a token-free circuit. In order to enable us to work with PNs 
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whose reachability sets contain no markings with token-free circuits, we give the 
following lemma. 

LEMMA 4.2. Let 9 = (P, T, cp, uO) be a sinkless PN, and let 9’ = (P, T’, cp’, u) be 
such that u,, --% u in 9 for some 0, T’ c T such that each t E T’ is enabled at some 
point in the firing of o from uO, and cp’ is the restriction of cp to (P x T’) v (T’ x P). 
Then 9’ has no token-free circuits in every reachable marking. 

Proof Suppose 9” has some reachable marking p’ with a token-free circuit c’. 
Since $ is reachable in Y’, it must also be reachable from p in Y. Let 00’ be a firing 
sequence of 9 such that pLg 4-, p bl p’. Also, since c’ is a circuit in Y’, it must also 
be a circuit in 9. Thus, there must be a minimal circuit c of 9 such that 
pi(c) E pl(c’). Clearly, p’(c) = 0. Let p be any place in c, and let t be the transition 
following p in c’. Since t E T’, t must have been enabled at some marking p” 
reached in the firing of 0 from p0 in Y. Thus, p”(p) > 0, so u”(c) > 0. Since p’(c) = 0 
and p’ is reachable from p”, c has a sink-a contradiction. 1 

Given the above two lemmas, we can now outline our strategy for showing the 
RP to be in NP, and the BP to be in co-NP. This strategy will then be the basis 
for most of the other upper bounds shown in this paper. Let 9 = (P, T, cp, uO) 
be a sinkless PN, and consider the sequence 9,) . . . . gn, where each Y,‘, = 
(P, T,,, (P,,, php,) such that T,= fa, and for 1 d h<n, 

l T,=T,_,u(t,,} for some t,,,$Th-, enabled at pLhp,, for l<h<n; 
l (Pi is the restriction of cp to (P x Th) u (T, x P), for 0 6 h < n; and 

’ ph-I auh for some ~,-,ET,*, l<h<n. 

From Lemma 4.2, no & Contains a token-free circuit for any marking in R(ph). 
Thus, from Lemma 4.1, there is an instance of integer linear programming Sh whose 
solution set describes the reachability set of ph. Furthermore, Sh can clearly be 
constructed from Yh in polynomial time. Also note that the initial marking of gh is 
given by a solution to Sh ~, . Thus, a portion of R(B) can be given by the solution 
set of a system S of linear inequalities over the integers, where S is constructed in 
polynomial time from P and a sequence of distinct transitions of 9. To formalize 
these ideas, let P= (pl, . . . . pk}, T= {tl, . . . . t,}, and let r = tj, ... tjn be any sequence 
of distinct transitions from T. We define the characteristic system of inequalities for 
B and f as S(Y,r)=&u ... US,,, where SO=(xO=pO}, Sh=(xhml(i)3 
cp(p,, t,,), xh=xh-I+Ah’y,, / l<ibk}, and Ah is the kxh matrix whose COhmnS 

are i- I,, . . . . ijh for 1 < h d n. The variables in S are the components of the k-dimen- 
sional column vectors x0, . . . . x, and the h-dimensional column vectors yh, 1 f h d n. 
We will now show that for any marking p, PER(Y) iff there is a sequence of 
distinct transitions t = tj, . . tin such that S(Y, T) has a nonnegative integer solution 
in which x, = ~1. It is precisely this fact that allows us to apply the techniques of 
[HR88], developed specifically for the structurally defined conflict-free PNs, to the 
behaviorally defined sinkless PNs. 
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LEMMA 4.3, Let 9 = (P, T, cp, puo) be a sinkless PN, and let ,u be any marking of 
9’. Then there is some CJ E T* such that pO 4 p iff there is some sequence T = tj, . . . tjn 
of distinct transitions in T  such that $9, z) has a nonnegative integer solution in 
which x, = p. Furthermore, o and z can be chosen such that o = a, . . . o,,, where 
pO=x04$ x,2 ...a x,=p, ti, is enabled at xh-,, o,,E It,,,..., tJh>*, and y,,(h’) 
gives the number of times tj,,, occurs in oh, for 1 d h’ < h 6 n. 

Proof: (+) Let ,u E R(9). Then for some D E T *, p,, 4 p. Let 0 = 6, . . . (I,, such 
that for 1 <h <n, IJ~ begins with some transition t, that does not occur in 
01 “.tr,,-,, and G,, contains only transitions from the set (t,,, . . . . t,,}. Let 
T  = tj, . . . tjn, By letting y, (h’) be the number of times tjh, occurs in oh, 1 6 h’ 6 h d n, 
it is easily seen that S(P, r) has a nonnegative integer solution for which 
p(yxgL x1 3 . . .a x, = p. 

(e) We will show by induction on n that for any sequence ~~ = tj, ... tjn of n 
distinct transitions from T and any marking p, if S(P’, 7,) has a nonnegative 
integer solution for which x, = p, then p0 = x0 3 x, -J% . .a x, = p such that tjh 
is enabled at xh-, , rr,, E { tj,, . . . . t,*}*, and tjhs occurs y,(h’) times in ch for 
1 d h’ 6 h 6 n. The lemma will then follow. 

Base. Let n = 0. Then S(9, zO) = { x0 = pO}. Clearly, the only solution to S is ,u~, 
and ,n,, A pO. 

Induction hypothesis. Let n be some positive integer, and assume that for any 
sequence of distinct transitions z, _, = tj, . . . t,.-, from T and any marking p, if 
S(P, rnP ,) has a nonnegative integer solution in which x,- I = ,u, then ,u~ = 
x02x,& . ..m  xnpl = ,u such that tjh is enabled at xhP,, ch E { tji, . . . . t,,} *, 
and tjh8 occurs y,(h’) times in c,, for 1 < h’ 6 h d n - 1. 

Induction step. Let z,, = tj, .. tjn be a sequence of distinct transitions in T, ,u 
be any marking of 9, z,-, = tj, ... tjn-,, and T’ = ( tj,, . . . . tjn}. Then S(9, T,) = 
S(~,T,-~)U{X,-~(i)~~(Pi,tj~),Xn=Xn~~+T’.ynI l<i<k}. SuppOseS(~‘,~,) 
has a nonnegative integer solution in which the value of x, is /A. Since any solution 
to S(P?, 7,) is clearly a solution to S(9, r,- ,), from the induction hypothesis, 
pLg=xg~ x1 02 . . .01;1 x, ~ I such that tin is enabled at xh- r, ah E { tj,, . . . . tjh} *, 
and tjh, occurs yh(h’) times in a,, for 1 dh’,<h<n- 1. Let a’=a,...a,pl. Since 
x,- I (i) 2 (p(pi, tjJ for 1 6 id k, tjn is enabled at x, _, . Thus, each t E T’ is enabled 
at some point in the firing of a’ from pO, so from Lemma 4.2, (P, T’, cp’, x, ~ 1 ) has 
no token-free circuits in every reachable marking, where rp’ is the restriction of cp 
to (PxT’)u(T’xP). Since ,~=x,=x,_r+T’.y, for some yn~N”, from 
Lemma 3.2, x, _ I 2 x, = p for some an E T’* containing y,(h’) occurrences of t,*, 
for 1 <h’<n. Thus, p,,=xO-% x,2 . . .A x, = p such that tj,, is enabled at xh ~ 1, 
ahE {tj,, ...> tj*}*, and tjh, occurs y, (h’) times in ah for 1 d h’ < h < n. 1 

The following corollary follows from Lemmas 4.1 and 4.2 and the proof of 
Lemma 4.3. 
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COROLLARY 4.1. Let 9 = (P, T, rp, pO) be a sinkless PN, f be a sequence of n 
distinct transitions from T, T’ be the set of transitions in 5, cp’ be the restriction of 
‘p to (P x T’) u (T’ x P), and u be any marking of 9 such that for some nonnegative 
integer solution of S(S, z), x, = u. Then R(P, T’, cp’, p) = {u’ ) u’ = u + T’ x for 
some xEN”). 

Lemma 4.3 can now be coupled with the fact that integer linear programming 
is in NP [BT76] to show that the RP for sinkless PNs is in NP. Since the RP is 
NP-hard for conflict-free PNs [JLL77], it will then follow that the RP for sinkless 
(normal) PNs is NP-complete. We therefore have the following theorem. 

THEOREM 4.1. The RP for sinkless (normal) PNs is NP-complete. 

Proof From [JLL77], the RP for conflict-free PNs is NP-hard. Since any 
conflict-free PN is normal [Yam84], it follows that the RP for normal PNs is 
NP-hard. Since any normal PN is sinkless, we need only show that the RP for 
sinkless PNs is in NP. We use the following nondeterministic algorithm to decide 
the RP for any given PN B = (P, T, cp, ,D~) and any marking p of 9. First, guess a 
sequence r of n distinct transitions from T. Then construct S(y’, t) in polynomial 
time. Next, construct S = S(g, r) u {x,, = p}. Since integer linear programming is in 
NP [BT76], we can guess a solution to S and verify it in polynomial time. Clearly, 
S has a nonnegative integer solution iff S(g’, r) has a nonnegative integer solution 
in which x, = p. From Lemma 4.3, there is a r such that S(p”, z) has a nonnegative 
integer solution in which x, = p iff p E R(9). Therefore, the RP for sinkless 
(normal) PNs is NP-complete. m 

In [HRY87], we showed the BP to be PTIME-complete for conflict-free PNs. 
However, we will now show the problem to be co-NP-complete for both normal 
and sinkless PNs. 

THEOREM 4.2. The BP for sinkless (normal) PNs is co-NP-complete. 

Proof We first show the BP for sinkless PNs to be in co-NP. We use the 
following nondeterministic algorithm to decide, for any given PN B = (P, T, cp, u,,), 
whether 9 is unbounded. First, guess a sequence t of n distinct transitions from T. 
Then construct S(g, r) in polynomial time. Next, construct S= S(B, z) u 
{T’ .z >O}, where T’ is the set of rules in t. As in Theorem 4.1, we can guess a 
solution to S and verify it in polynomial time. Suppose S has a nonnegative integer 
solution, and let p be the value of x, and 1+5 be the value of z in that solution. From 
Lemma 4.3, p E R(9), and from Corollary 4.1, p + T’ .$ is reachable from p. 
Thus, since T’ $ > 0, 9 must be unbounded. On the other hand, suppose 9 is 
unbounded. From [KM69], there is a firing sequence (~0’ of ?? such that 
T. Y(o’) > 0. Let pL, 3 p. From Lemma 4.3, there is a choice of r for which there 
is a nonnegative integer solution of S(y’, r) in which x, has the value p, and for 
which all transitions in cel. appear in z. Thus, we can clearly set z to a value that 
gives us a nonnegative integer solution to S. Therefore, there is a choice of r for 
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which S has a nonnegative solution iff ?? is unbounded. It follows that the BP is 
in co-NP. 

We now show that the BP for normal PNs is co-NP-hard. We show this by 
reducing 3SAT to the complement of BP. Let C = (C, , . . . . C, } be the set of clauses 
and V= (xi, . . . . x,} be the set of variables in an arbitrary instance of 3SAT, where 
C;= {ail, cli2, ai3} and C~~E {x, X 1 XE V} for 1 di<m, 1 <j<3. We construct a 
normal PN B = (P, T, cp, p,,) (shown in Fig. 4.1) such that 9 is unbounded iff C is 
satisfiable (i.e., if there is an assignment of truth values to V such that AyE, V;=, tlii 
is true). For each variable xj, let uj be a place for which ~~(a,) = 1. We then define 
transitions tj and fi for 1 <j < n. tj and fj both have aj as an input place; thus, since 
uj will not be the output place of any transition, tj and f, cannot both fire in any 
firing sequence. For each clause Cj, let ci be a place such that p,,(ci) = 0. For 
1~ i < m and 1 < j d n, tj will have ci as an output place iff xj E Ci, and fi will have 
cj as an output place iff Xj~ Ci. Since no ci will be an output place for any other 
transitions, all of the cis can become simultaneously positive iff C is satisfiable. 
Finally, we define the transitions s1 and s2 and the places pi and p2 as shown in 
Fig. 4.1. The resulting PN is clearly normal, and is unbounded iff C is satisfiable. 
Therefore, the BP is co-NP-complete for sinkless (normal) PNs. 1 

We can also use Lemma 4.3 to show the sink detection problem for PNs to be 
NP-complete. 

FIG. 4.1. The lower bound for BP. 
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THEOREM 4.3. The sink detection problem ,for PNs is NP-complete. 

Proof Our nondeterministic algorithm for this problem is similar to those for 
the RP and the BP. Given 9 = (P, T, cp, pO), we guess z = t,, . . . tjn and a minimal 
circuit c. We can clearly verify in polynomial time that c is a circuit. Furthermore, 
we can verify that c is minimal by verifying for each pair of places p and p’ in pi(c) 
and each transition t in T that cp( p, t) = cp(t, p’) = 1 only if p, t, p’ is a segment of 
c; this verification can clearly be done in polynomial time. We then guess an integer 
m, 1 d m < n, and a marking p such that p(c) = 1 and p(p) = 0 for all p ef pi(c). We 
then construct S=S(B,r)u{x,(c)=O, ydy,,x,~,+A,.y>,~}), where A,,, is 
the matrix whose columns are t,,, . . . . i,m. We claim that there is some choice of 
z, c, m, and ,n for which S has a nonnegative integer solution iff 9 has a sink. 

First, suppose that for some choice of z, c, m, and p, S has a nonnegative integer 
solution. In order to derive a contradiction, assume 9 is sinkless. From Lemma 4.3, 
there is a nonnegative integer solution of S such that pLo = x,, 2 x, 3 . . -% x,, 
and each t,, is enabled at x,,, for some g1 . on E T*. Consider 9’ = 
(P, T’, (p’,x,,-,), where T’= {ti,, . . . . tjm} and cp’ is the restriction of cp to (P x T’) u 
(T’ x P). Since each transition in T’ is enabled at some point in the firing of 
01 .“O,-1 from pO, from Lemma 4.2, 9’ has no token-free circuits in every 
reachable marking. Thus, from Lemma 4.1, there is some g E T’* such that 

0 x, ~ , -+ x, ~ 1 + T’ . y = p’ for some p’. Since T’ = A,, p’ > p, and hence, p’(c) > 0. 
Since y d y,, Lemma 4.2 also guarantees that there is some CJ’ E T’* such that 
p’ql’+ T’.(y,- y)=xm. Thus, 6,...rTm-,” 

PO- P’ 
“‘Urn+, .‘cT” 

+ X”, where 
x,(c) = 0. Thus, 9 has a sink-a contradiction. Therefore, if there is some choice 
of z, c, m, and p such that S has a nonnegative solution, 9’ must have a sink. 

Now suppose 9 has a sink. Then there exist ~1’ and p” and a minimal circuit c 
such that p’(c) > 0, p”(c) =O, and p0 -% 11’s p” for some CJ~’ E T*. From 
Lemma 4.3, there is a z, of m transitions, m > 0, such that S(9, zI) has a 
nonnegative integer solution in which x, = $. We may assume without loss of 
generality that m 2 1, since at least one transition t must be enabled at p0 (because 
$#$‘). Since $(c)>O, x,(c) 3~ for some p such that p(c)= 1 and p(p)=0 
for all p 4 pi(c). By proceeding as in Lemma 4.3, it is not hard to see that there is 
a z2 of n -m transitions, n >, 1, such that S(Y’, z, r2) has a nonnegative solution in 
which x, = $’ and x,~ , + A,,, y = p’, where A, is the addition matrix formed 
from the transitions in z1 and y< y,. Thus, S=S(Y,t,r,)u (x,(c)=O, y<y,, 
x,-,+A; y>, p} has a nonnegative integer solution. Therefore, there is some 
choice of z, c, m, and p for which S has a nonnegative integer solution iff 9 has a sink. 

We will now show the sink detection problem to be NP-hard. We again use 
a reduction from 3SAT. Let C = (C,, . . . . C,} be the set of clauses and 
v= (x1, . ..) x,} be the set of variables in an arbitrary instance of 3 SAT. Consider 
again the PN 9 constructed in the proof of Theorem 4.2 (Fig. 4.1). We construct 9’ 
from 9 by adding a transition s3 with input place p, and no output places. Thus 
9” has a sink iff p1 can become positive iff C is satisfiable. Therefore, the sink 
detection problem is NP-hard. 1 
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THEOREM 4.4. The problem of determining whether a PN is normal is co-NP- 
complete. 

ProoJ: In order to show that a given PN .Y = (P, T, cp, p,,) is not normal, we 
need to find a m inimal circuit c and a transition tj such that CP,E p,(cj T(i, j) < 0. The 
proof of Theorem 4.3 shows how we can guess a m inimal circuit c and verify that 
it is m inimal in polynomial time. Clearly, we can also guess a transition t, and 
verify that C,, E pl(c) T(i, j) < 0 in polynomial time. Thus, the problem is in co-NP. 

We will now show the problem to be co-NP-hard. We do this via a reduction 
from 3 UNSAT (the complement of 3 SAT). Let C = {C,, . . . . C,} be the set of 
clauses and V= (x,, . . . . x,} be the set of variables in an arbitrary instance of 
3 UNSAT, where Ci= {cli,, aiz, ai3} and aijE {x,X 1 XE V) for 1 Gidm, 1 <j<3. 
We construct a PN 9 = (P, T, q, pO) (shown in Fig. 4.2) that is normal iff C is not 

FIG. 4.2. The lower bound for Theorem 4.4. 
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satisfiable. In considering whether a PN is normal or not, it is convenient to view 
the PN as simply a directed bipartite graph; places and transitions are differentiated 
only in connection with their respective roles regarding minimal circuits. The initial 
marking is therefore irrelevant and will be chosen to be the zero marking. The 
graph will contain a special place z such that 9 will be normal iff z is not on a 
minimal circuit. Our objective will then be to show that z is on a minimal circuit 
iff C is satisfiable. The graph will consist of three components Q, R, and S, each of 
which will be acyclic. Furthermore, the three components will be interconnected in 
such a manner that any cycle in the graph must contain vertices from each of 
the three components. We will first describe each of the three components, then 
describe how they are interconnected. 

Q  is the simplest of the three components, consisting of only a single transition 
si. Component R is defined in terms of the set V. For each xj E V, R contains the 
places pj, p!, ?f , and qf, and the transitions XI, XT, and yj. These places and 
transitions are mterconnected as shown in Fig. 4.2 so that R is acyclic, and any 
path within R contains at most one of the two transitions xi and .x; for each j. 
Component S is defined in terms of the set C. For each C, E C, S contams the places 
a,!, a;, and a:, plus the transition c,. In addition, S contains the place z and the 
transition s2. The places and transitions are interconnected as shown in Fig. 4.2 so 
that S is acyclic, and any path within S contains at most one of the places a,l, uf, 
and a;’ for each i. 

We now add edges to the graph to interconnect the three components. We first 
add the edges (sl, P:), (sly P{), (Y,, z), (a;, sl), (ai, sl), and (ai, sl). These edges 
have the effect of creating a number of circuits, each of which contains s, , z, exactly 
one of xj or xi for each variable xj, and exactly one of at, uf , or UT for each clause 
Ci. Next, we add additional edges from R to S, each of which “short-circuits” some 
of the previously created circuits. For each literal aik in each clause in C, we add 
the edge (xf, UC) if aik =xj, or the edge (xj, ur) if aik = Xi. Thus, none of these 
newly created circuits contains z, but all contain s, . 

We will now show that the PN 9 constructed above is normal iff z is not on a 
minimal circuit. If 9 is normal, z clearly must not be on any minimal circuit c, since 
transition s2 would then have an input place in pi(c) but no output place in pi(c). 
On the other hand, suppose z is not on a minimal circuit. In order to derive a 
contradiction, assume there is some minimal circuit c and some transition t such 
that t has an input place in pi(c) but no output place in pi(c). Notice that z is the 
only place in 9 that is an input place to more than one transition. Since z 4 pi(c), 
this implies that t is in the circuit c. Therefore, t must have an output place in 
pl(cta contradiction. Thus, 9 is normal iff z is not on a minimal circuit. 

We conclude the proof by showing that z is on a minimal circuit iff C is 
satisfiable; it will then follow that 9 is normal iff C is not satisfiable. First suppose 
z is on a minimal circuit c. Since any circuit containing z must contain exactly one 
of xf or i;i’ for each variable xj, consider the truth assignment such that xj is true 
iff x; is m c. Let ci be an arbitrary clause in C. Since any circuit containing z 
contains exactly one of ~1, at, or a:, let a: be on c. Suppose uik = xi (the case in 
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which aik =3j is symmetric). Then there is an edge from xjf to a:. Since c is a 
minimal circuit, xJ must be on c, so aik has been assigned a value of true. Thus, 
each clause evaluates to true, so C is satisfiable. Conversely, suppose C is satisfiable. 
Then for any satisfying assignment, there must be some circuit containing xi if xj 
is true in that assignment, xif if xj is false in that assignment, some place at such 
that aik is true with that assignment for each clause C;, and the place z. In order 
to derive a contradiction, assume c is not minimal. Then there must be some edge 
from a transition in R, say (without loss of generality) xi, to some place in S, say 
a:, such that pf (and hence xJ) and u: are both on c. Since x,’ and a; are both on 
c, xi and ai must both evaluate to true. However, since there is an edge from xi to 
a:, ai = Zj-a contradiction. Therefore, z is on a minimal circuit iff C is satisfiable, 
and hence, 9’ is normal iff C is not satisfiable. 1 

We conclude this section by showing the CP and EP for normal and sinkless 
PNs to be ZZl-complete, where n: is the class of languages whose complements are 
in the second level of the polynomial-time hierarchy (see, e.g, [Sto77]). The 
strategy we use is again similar to that developed in [HR88] (see also [HRHY86, 
Huy863). Recall that sinkless PNs have effectively computable semilinear reachability 
sets [Yam84]. We use Lemma 4.3 to give an upper bound on the size of the SLS 
representation of the reachability set of a given sinkless PN. Although the CP and 
EP for SLSs are known to be Z7:-complete [Huy82], the bound on the size of the 
SLS representation of the reachability set must be at least exponential in the sizes 
of the PNs even for conflict-free PNs (see [HR88]). However, as is the case with 
conflict-free PNs [HR88], we can show that for sinkless PNs the SLS representa- 
tion can be chosen to have a high degree of symmetry. Proceeding as in [HR88], 
we use this symmetry to show the CP (and, hence, the EP) to be in n:. Since the 
EP is known to be Z7;-hard for conflict-free PNs [HR88], the CP and EP will have 
then been shown to be Z7:-complete for sinkless and normal PNs. The following 
lemma gives an SLS representation of the reachability set of a sinkless PN. The 
strategy follows that developed in [HR88]. 

LEMMA 4.4. Let 9 = (P, T, cp, p,,) be a sinkless PN with k places and m transi- 
tions such that no component of p,, is larger than n > 1. Then there exist constants 
cl, c2, dI, and d,, independent of k, m, and n, such that R(Y)= UrGB 8(p, p,), 
where /I is the set of all reachable markings with no component larger than 
(c, .k.m.n)“z’k.“‘, and pp is the set of all 6 E Nk such that: 

1. forsome JET*, pAp+o; 
2. 6 has no component larger than (d, . k .rn .n)d2’k’m; 
3. ifp(i)=O, then 6(i)=O, for 1 <i<k; and 

4. 6 # 0. 

Proof: Clearly, lJMEB 9(~, p,) c R(B). We therefore only need to show that 
NW z UpsB Y(,u, p,). Let p be an arbitrary marking in R(9). We define p’ so 
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that p’(i) = 0 if p(i) = 0, ~‘(1’) = 1 otherwise. From Lemma 4.3, there is some 
sequence T of m’ <m distinct transitions from T such that S(9, r) has a solution in 
which x,, = p. Let 22 denote this solution, and let T’ be the set of transitions in 2. 
Clearly, the system S = S(9, r) u {x m, 2 @} must have .jZ in its solution set. Let pL1 
be the value of x,, in some minimal solution j 6 i. Also, let d E T’* be the firing 
sequence given by 2 according to Lemma 4.3, and let co E T’* be the firing sequence 
likewise given by 9. Thus, p0 -% p, d p, each transition in T’ is enabled at some 
point in co, and Y(cr,,) < Y(o) (in this proof, Y is defined in terms of T’, not T). 
Furthermore, since p’ f pi 6 p, pi(i) = 0 iff ~(1’) = 0, 1 d i d k. From results in 
[Huy82, VzGS78] involving integer linear programming, there exist constants c, 
and c2 such that no component of 11, is larger than (c, . k. rn. .)cz-k ‘m. Note that 
since n > 1, c, and c2 are independent of p’, and hence of p. If we now assign the 
values of ci and c2 to the constants (of the same name) in the definition of p given 
in the statement of the lemma, then p, E 8. 

We will now show that p E D%(p, , pfl,); i.e., we will exhibit a series of vectors 
6,) . . . . 6, such that each 6i~ pp, and ,u, + Cj=, 6, = p. Since each 6, E pr,, there will 
be some firing sequence ci from ~1, such that T’ Y(a,) = 6,. Furthermore, since 
each 6, > 0, it will be the case that cl0 2 p, 41, .. .a p,+ , = p. We already have 
that p,, -% ~1 and CL,, -% p,, where Y(o,) < Y(a) and pi <p. It will therefore be 
sufficient to show that for any i 2 1, if cl,, 2 pi -% ..A pu, < ,u, where pu, d pi 
and xi;; Y(oh) < Y(Q), then there is a 6;~ pr, and a ei in T’* such that 
piA pLi+6i=pi+, fp and Ck=, Y(a,) 6 Y(U). We use the fact that every 
transition in T’ is enabled at some point in the firing of e0 from pO; thus, 
from Lemma 4.2, no marking reached from 11, via transitions from T’ has a 
token-free circuit whose transitions all belong to T’. Let pi be such that 
p()sp,3... a pi<pL, where ~1~ <pj and CL=; Y(a,) < Y(e); i.e., ,u, is 
reached from 11, via transitions in T’. It therefore follows from Lemma 4.2 that no 
marking reachable from p, via transitions in T’ has a token-free circuit whose 
transitions all belong to T’. Since P==~~+ T’. Y(o) and pr=pO+ T’. 
(Cl=\ Y(a,)), ,D = pi + r’ . (Y(a) - CL=‘, (Y(a,))). Hence, from Lemma 3.2, 
p, A p, where Y(a’) = Y(o) - Cj,=‘, (Y(o,)). Since p > pi, T’ Y(a’) > 0. Thus, 
s’= (x = Y(o’), y = p - p,) is a nonnegative integer solution to the system 
s’ = { 7’ .x = y, y > 0). Let i’ < i be some minimal solution to S’, and let iji be the 
value of x and hi be the value of y in i’. From [Huy82, VzGS78], no component 
of ai exceeds (d, .k.m.n)“‘k’” for some constants d, 5nd d, independent of k, m, 
and n. Let d, and d2 be the values of the constants (of the same name) in the delini- 
tion of p, given in the lemma. From Lemma 3.2, there exist (T, and p,+, 
such that pi 2 pi+, = p, + 6, d p, and Y(a,) = $, < Y(a’) = Y(o) -xi:‘, Y(cJ,). 
Thus, XL=, Y(o,)< Y(a), and since p, <pi, 6;~p,,. It therefore follows that 
PEaPI? Pfl,). I 

The property of conflict-free PN reachability sets that allowed the CP to be 
shown to be in UC in [HR88] is that their SLS representations have a certain 
symmetry. In particular, for any two markings p and p’ of a conflict-free 
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PN 9 = (P, T, cp, p,,) such that p(i) = 0 iff p’(i) = 0, if p A p + v for some 0 E T* 
and some u 2 0, then there is some 6’ E T* such that ,u’ 2 p’ + u. The following 
lemma shows that a similar symmetry extends to sinkless PNs. 

LEMMA 4.5. Let p and p’ be reachable markings of a sinkless PN B = 
(P, T, cp, pO) with k places such that p(i) = 0 iff p’(i) = 0. For any vector v E Nk such 
that v(i) = 0 if ,u(i) = 0, if there is a CJ E T* such that ,u -% p + v, then there is a 
CT’ E T* such that p’ -% p’ + u. 

Proof: Suppose there is a (T E T* such that ,u -% p + u, but no c’ E T * such that 
p’ z p’ + v. From Lemma 3.2, there is a IS” E T* and a circuit c in 9 such that 
Y(g)’ tr(c)) < Y(u(a) and p”(c) = 0, where p’s ,u”, Let c’ be a minimal circuit of 9 
such that pl(c’) ~pl(c), and let pi~pl(c’). Since p”(c’)=O and S is sinkless, 
,u’(c’) =O, and hence, p(c))=0 and (,u + u)(c’) =O. Since each transition in tr(c’) 
occurs in 0, pi must have been nonzero at some point in the firing of (T from p. At 
this point,, c’ is not token free. Therefore, 9 has a sink-a contradiction. 1 

Now that we have given a convenient SLS representation of the reachability set 
of a sinkless PN and shown the symmetry therein, we can outline our strategy for 
showing the CP and EP to be in Z7:. Again, this strategy was first developed for 
the structurally defined conflict-free PNs in [HR88], borrowing some techniques 
from [Huy86];. we will use Lemmas 4.4 and 4.5 to show that this strategy also 
applies to the behaviorally defined sinkless PNs. Let SL, = (JllEP, Y(,u, p:) and 
%  = UPE/?2 Z(p, p:) be the SLS representations given by Lemma 4.4 for the 
sinkless PNs Yr and 9, respectively. In order to show that R(Y1) & R(pl), our 
algorithm will prove the existence of a p E SL, - SL,. (Note that since the SLS 
representations are exponential in the sizes of the PN representations, the SLS 
representations cannot be generated by the algorithm.) Let ALE SL,. Then 
p E 9(p,, pi,) for some p, E /I,. If, in addition, p E SL,, then p E Z(pLz, p$) for 
some p1 E/I~. Note from the definition of the SLS representations in Lemma 4.4 
that for any place pi, p, (i) = 0 iff p(i) = 0 iff p2 (i) = 0. Furthermore, we may 
assume without loss of generality that p, E R(Y1); otherwise, we will have found a 
witness to the fact that R(Y1) @  R(p2). Thus, from Lemma 4.5, p:, = pi,, where p:, 
is as defined in Lemma 4.4. So to show the existence of a p E SL, - SL,, it is 
sufficient to show the existence of a ,U E Z(p,, p:,) - lJrztPi Y(pZ, ~2,) for some 
p, E /?, , where 8; = (p’ E /j2 1 p’(i) = 0 iff p, (i) = 0). Note that once p, is chosen, we 
are only concerned with two period sets, p:, and p:,. 

Consider two sets 9?( p,, p 1 ) and u ~2 E B Y(p2, pz). In order to show the existence 
of a ~~~~~~~~~~~~~~~~ Z(p,, pZ), we will consider two cases. First, suppose 
that every vector in p, is a positive linear combination of the vectors in p2. In 
[HRB], we showed that in this case there must be a PE JZ’(p,, p,) - 
U C12EP 9’(pLz, pZ) whose size is polynomial in the sizes of the elements of pr, p2, 8, 
and pr and exponential in the dimension of these vectors; i.e., the witness is small 
enough to be written down in space polynomial in the sizes of the representations 
of the PNs from which the SLSs are derived. On the other hand, suppose some 
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vector in p1 is not a linear combination of the vectors in pZ. We also showed in 
[HR88] that in this case, Y(pl, p,) cannot be contained in U,,2EB Y(pL2, p2). We 
now reproduce the relevant lemmas from [HR88]. 

LEMMA 4.6 (from [HR88]). Let p,, p2, and fl be finite subsets of Nk, p, E Nk, 
and n E N such that no integer in pI, pz, fl, or u, exceeds n. If every vector in p I is 
a positive linear combination of vectors in p2 and p E 9(p1, p,) - Urzeli Y(p2, pz), 
then there is a ,u’ with no component larger than k(n + 1)2k+ ’ + n such that 
P'EaPl, PII-U,,.$%b P2). 

LEMMA 4.7 (from [HR88]). Let 6, ,u, E Nk such that 6 #O, and let p and b he 
finite subsets of Nk. Zf 6 is not a positive linear combination of the vectors in p, then 
thereisannENsuch that~L1+n6~U,.B$P(~,p). 

We are now ready to show the CP and EP for sinkless and normal PNs to be 
ZZC-complete. 

THEOREM 4.5. The CP and EP for sinkless (normal) PNs are II;-complete. 

Proof Since these problems for conflict-free PNs are known to be I7:-hard, we 
need only show the problems for sinkless PNs to be in nc. Recall that Z7; is the 
set of all complements of languages that can be recognized by a polynomial-time- 
bounded nondeterministic Turing machine with an NP oracle (see [Sto77]). We 
will now briefly describe an algorithm for noncontainment; a similar algorithm 
works for inequivalence. The algorithm we describe is exactly that given in [HR88] 
for conflict-free PNs; the fact that it works for sinkless PNs, as we will now show, 
follows from Lemmas 4.447. 

Let 9, and g2 be two given sinkless PNs, each having k places, and let 
=I = Up,cB, ~(cL~, P:,) and Sb= UpzGBz 9(pLz, pz,) be their respective SLS 
representations given by Lemma 4.4. We wish to establish whether there is a 
~~SL,-SL,.Considerany~~SL,;i.e.,thereisa~~~B,suchthat~~~(~*,,p:,). 
Let fl;={pI ALE* and p(i)=0 iff pL(i)=O}. Since for any s~p:,,6(i)=O if 
p2 (i) = 0, if p E SL2, p must be in U 112 E ,<; 9&, ~2,). Likewise, we can conclude that 
PI(i) = 0 iff p(i) = 0 iff p*(i) = 0 for any ,u2 E /?;. Without loss of generality, assume 
p, E SL, (otherwise, we have pL1 E SL, - SL,). From Lemma 4.5, for any pLZ~p;, 
pE2 = p:,. Thus, in order to show that p 4 SL,, it suffices to show that 
P4 Up*Ep, =!w*, P:J. 

Our algorithm for noncontainment therefore operates as follows. We first 
nondeterministically choose one of two cases. In the first case, we guess a vector p 
subject to the size constraints given by Lemmas 4.4 and 4.6. Since the RP is in NP, 
we can verify that p E R(9r)). Using an NP oracle, we can then verify that p $ R(9*). 
In the other c,ase, we guess p, and 6 subject to the size constraints given in 
Lemma 4.4. Again, we can verify that p, E R(pl)). Using the techniques of 
Theorems 4.1 and 4.2, it is easily seen that membership in p:, is in NP; hence, we 
can verify that 6 E pi,. From Caratheodory’s theorem for cones (see, e.g., [SW70]), 
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if 6 is a positive linear combination of vectors in pi,, then it is a positive linear 
combination of at most k linearly independent vectors from p:,. The question of 
whether 6 is a positive linear combination of vectors in .$, is therefore in NP. 
Hence, we use an NP oracle to verify that 6 is not a posmve linear combination 
of vectors in p:,. From Lemmas 4.6 and 4.7, this algorithm has an accepting 
computation iff R(gI) 5Z R(Y*). 1 
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