
ELSEVIER Information Processing Letters 56 ( 1995) 237-243 

Information 
Processirg 
Letters 

A note on fine covers and iterable factors of VAS languages 

Hsu-Chun Yen ’ 
Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan, ROC 

Received 4 September 1995; revised I I October 1995 

Communicated by L. Boasson 

Keywords: Complexity; Finite automata; Petri net languages; Vector addition system languages 

1. Introduction 

Vector addition systems (VA%, for short), or 
equivalently, Petri nets, represent a formalism useful 
for modeling concurrent systems. Once modeled by 
a VAS, the behavior of a system can be character- 
ized by the set of all executable sequences, which in 
turn can be viewed as a language over an alphabet of 
symbols corresponding to the addition rules of the un- 
derlying VAS. It is known that all VAS languages are 
context-sensitive (assuming that a transition’s symbol 
cannot be A), and are incomparable with regular and 
context-free languages. 

A useful tool for analyzing VAS problems is based 
on the Karp-Miller coverability graph analysis [ 11. A 
coverability graph is a generalized reachability graph 
in which each potentially unbounded position of the 
VAS is represented by a special symbol “w”. It has 
been shown in [ 1 ] that for every VAS, its coverabil- 
ity graph is finite. As a result, a VAS is unbounded 
iff an w occurs in its coverability graph. Aside from 
their direct application to the analysis of VASs, Karp 
and Miller’s coverability graphs are also of interest to 
the language aspect of VASs. The finiteness of cov- 
erability graphs suggests a way to approximate VAS 

’ Email: yen@cc.ee.ntu.edu.tw. 

Elsevier Science B.V. 

SSDIOO20-0190(95)00168-9 

languages by finite automata. To be more precise, the 
coverability graph of a given VAS, say P, can be re- 
garded as a finite automaton which accepts a superset 
of the VAS language defined by P. Such an observa- 
tion gives rise to a natural question: how accurate is 
the above approximation? In an attempt to answer the 
above question, the notion of a fine cover was pro- 
posed by Schwer in [ 2,3] to formalize the concept of 
a good approximation of irregular languages by finite 
automata. The work of [ 21 involves, given a VAS P, 
modifying the coverability graph of P so as to yield 
a finite automaton whose language is a fine cover of 
the VAS language defined by P. The notion of an it- 
erable factor arises in the study of fine covers of VAS 
languages. For a language L (over an alphabet A) and 
a string w E At, w is said to be an iterablefactor (of 
L) iff ‘dn 2 0, A*w”A* fl L + 8. It has been shown 
in [ 2,3] that, given a VAS P and a string w, w is an 
iterable factor with respect to the language defined by 
P iff there exists a so-called “strong loop” labeled w 
in the coverability graph of P. 

The contributions of this paper include the follow- 
ing: 

(1) We provide a simpler and faster way of con- 
structing a fine cover, despite the fact that our con- 
struction may result in a fine cover which is bigger 
than the Schwer’s one. Instead of doing as in [ 21 (i.e., 



238 H.-S. Yenl Information Processing Letters 56 (1995) 237-243 

for each loop, verifying whether it is a strong loop, 
and if not, suppressing the loop by substituting it with 
a finite-length path), what we do here is adding what 
is missing in order to make the loop a strong loop. The 
simplicity of our approach comes from the fact that 
our construction can be done simultaneously with the 
execution of the Karp-Miller procedure. In contrast, 
the approach used in [ 21 requires that the Karp-Miller 
coverability graph be built first. 

(2) In this paper, we show the problem of, given 
a VAS P and a string w, determining whether w is 
an iterable factor of the language defined by P is 
EXPSPACE-complete. 

2. Definitions 

Let Z (N) denote the set of (nonnegative) integers, 
and Zk ( Nk) the set of vectors of k (nonnegative) in- 
tegers. In this paper, the definition of a vector is gen- 
eralized by allowing its components to bear a special 
symbol w, i.e., a vector is now an element in (ZU 
{w}) k (or (NJ {w}) k). Furthermore, the following 
rules are used for additions involving w: 

w+c=c+w=w, for all c E Z. 

For a k-dimensional vector u, let u[ i], Vl < i 6 k, 

denote the ith component of u. For a given value of 
k, let 0 denote the vector of k zeros (i.e., 0[ i] = 0, 
Vl < i < k). Given an alphabet A, we write A* to 
denote the set of all finite-length strings (including the 
empty string A) using symbols from A. We write A+ 

to denote A* - {A}. Given a string u, let u+ = {u” 1 

n> 1). 
A k-dimensional vector addition system ( k-VAS, for 

short) is a 3-tuple (T, 40, ue), where T is a finite set of 
symbols representing the addition rules of the VAS, 
40 : T -+ Zk is a mapping that associates each addition 
rule with a vector (called addition vector), and ue 
(E Nk) is the start vector. A string w = ul . . . Uj (for 
some j) in T* is said to be 1egaE in a vector u ( E Nk ) 
iff for every 1, 1 6 1 6 j, u + xi_, ~(zI;) 2 0. We 
denote by L( T, 9, ~9) the set of legal strings in uc. 
We write p(w) to denote C{,_, P(Q). We also write 
u A u + q(w) to denote that w is legal in u and the 
jring of w results in vector u + p(w). (The word 
“firing” is borrowed from the analogous definition in 
Petri nets.) The reachability set of VAS (T, 40, ug), 

denoted by R(T,cp,uo), is the set {u E Mk 1 3w E 
L(T, p, UO), u = uo + (p(w)}. Throughout the rest of 
this paper, k is reserved for the dimension of the VASs. 

Given a string w E T*, the following notations 
(adopted from [ 2,3] ) will be used throughout the rest 
of this paper: 
0 IIwII+ = {i ) 1 < i < k, 4p(w)[i] > 0) is the 

positive support of w. 
l IIwII- = {i I 1 6 i 6 k, (p(w)[i] < 0) is the 

negative support of w. 
For a language L (over an alphabet A ) and a string 

w E A+, w is said to be an iteruble factor (of L) 
iff ‘dn 3 0, A * w” A* n L # 0. For a pre$x-closed 

language L, w is an iterable factor (of L) iff Vn > 

0, A*w” n L # 8. (A language L is prefix-closed if 
u E L implies every prefix of u is also in L.) Given 
a language L, a rational (regular) language R is a 
rational cover of L if L C R. Suppose R is a rational 
cover of a language L, a rational language C is a 
refinement of R iff L C_ C C R. Consider a finite 
automaton M = (Q, J5,6,q9, F), where Q is a finite 
set of states, 2 is the input alphabet, 6 defines the 
transition function, qo ( E Q) is the initial state, and 
F ( C Q) is the set of final states. A 2-tuple (q, w), 

q E Q and w E St, is a loop iff q E S*(q,w) (S*, 

the reflexive and transitive closure of 8, is defined in 
the conventional sense). A loop (q, w) is said to be 
a strong loop related to a language L iff Vn E N, 

3u,u E X* such that 

W” 
90&q-q&q’, 

where q’ f F, and uw”u E L. Given a finite automaton 
M and a language L, M is said to define aJine cover 

of L iff L(M) (i.e., the language accepted by M) is 
a rational cover of L and every loop of M is a strong 
loop related to L. See [ 2,3] for more details regarding 
the above definitions. 

In [ 11, an effective algorithm known as the Kurp- 

Miller procedure was designed to construct from a 
VAS P the so-called coverability graph, denoted by 
CG(P), in which each node of CG(P) is labeled by 
an element in (N U {o} ) k, and each directed edge 
of CC(P) is labeled by an addition rule in T. It is 
well known that CG( P) is always finite [ 11. Given 
a coverability graph CG( P) of a VAS P = (T, 4p, ~9) 

and a loop (q, w), an iterating system of length p 
related to (q, w) is a path (in CG( P) with q9 the 



H.-S. Yen I Information Processing Letters 56 (I 995) 237-243 239 

Fig. I. Coverability graphs. (a) Karp-Miller coverability graph. 

(b) A modified coverability graph. 

initial state) 

where WI, ~2,. . . , wp+l,q ,u2,. . . ,up E T*, such 
that 
(1) w.:w2(+ ;... wpu,+w,+,wrlLp) + 0, 
(2) IIW II- = 0, 
(3) Ilaill- C IJl<j<i IIajll+, v2 < i < Pv and 

C4) IIwII- C Ul(j<p Ilajll+* 
Intuitively, the existence of an iterating system related 
to loop (4, w) ensures that Vn 3 0, w” can be fired in 
the end provided that sufficient numbers of gIs, UPS, 
. . ., and u,s are fired in the given order in advance. 
This, in turn, implies that w is an iterable factor with 
respect to L(P) . (See [ 2,3] for more about iterating 
systems and their related properties.) 

3. Fine cover of a VAS language 

The notion of ajne cover was defined by Schwer in 
[ 2,3] as a means for capturing the concept of “good” 
approximation of irregular VAS languages. The work 
of [ 21 involves, given a VAS P, altering CG( P) so 
as to yield a finite automaton defining a fine cover of 
L(P) . (Notice that in CG( P), all states are accepting 
states.) In this section, we provide an alternative con- 
struction which, we feel, is simpler and can be done 
simultaneously with the execution of the Karp-Miller 
procedure, as opposed to that of [ 21 in which the con- 
struction is done in a more complex fashion. Before 
proceeding, we require the following results from [ 21: 

Theorem 1 (from proposition 2.2.5 in [ 21) . Let P 
be a VAX If w is an iterable factor of L(P), then 
there is a strong loop (q, w) in CG( P) . 

Theorem 2 (from Proposition 3.5 in [ 21) . Let P 
be a VAS and CG(P) be its coverability graph 
(automaton). The following two are equivalent: 
( 1) (9, w) is a strong loop, 
(2) there exists an iterating system (of length less 

than or equal to k) related to (q, w) . 

Theorem 2, coupled with the fact that detecting 
whether an iterating system exists is decidable [ 21, 
yields the decidability result of checking a strong loop, 
which, in turn, facilitates the effective construction of 
the corresponding fine cover of a VAS. For more de- 
tails, the interested reader is referred to [ 21. In what 
follows, we provide an alternative to the construction 
of a fine cover. Instead of doing as in [2] (i.e., for 
each loop, verifying whether it is a strong loop, and 
if not, suppressing the loop by substituting it with a 
finite-length path), what we do here is adding what 
is missing in order to make the loop a strong loop, 
knowing that for every loop (4, w) there is a strong 
loop (9’, w) , for some state q’ (Lemma 2.2.4 in [ 21). 

We begin with a simple example using which the 
key idea behind our approach is illustrated. Consider 
a VAS 

P= ({a,b,c},{da) = C-1,1,0), 

qo(b)=(O,-1,1),~(~)=(1,1,-1)}, 

(1,&O)). 

Fig. 1 (a) shows the associated coverability graph of 
P. Clearly ( [ 0, w, w] , b) is not a strong loop. Notice 
that the second coordinate actually decreases as the re- 

sult of firing b in [O,w,w] A [O,w,w]. However, 
the conventional definition of the w arithmetic (in par- 
ticular, w - d = o, for any constant d) fails to report 
the phenomenon of such a decrease in token. The idea 
behind the use of w in the Karp-Miller procedure is 
to mark a potentially unbounded place. For instance, 

[l,O,O] I-% [O,l,O] I-% [O,O,l] +L [1,1,0] 

and [l,l,O] > [l,O,O] resultintheuseofanoin 
[ 1, o, 01. Clearly, transition sequence abc can be fired 
an arbitrary number of times in [ 1 , 1 , 0] to “blow up” 
the second place. In view of the above, it is safe to 



240 H.-S. Yenl Information Processing Letters 56 (1995) 237-243 

attach an arc label abc to [ 1, w, 0] without introduc- 
ing any infeasible sequence, for an arbitrary number 
of abcs can be fired in [ 1, w,O]. By doing so, the 
subsequent loop ( [ 0, w, 01, b) becomes a strong loop 
(see Fig. l(b)). ([l,w,O],abc) acts as a pump to 
supply necessary tokens for the subsequent transition 
sequence b” in [ 0, o, w] to fire, for any n E M. 

Based upon the above idea, we have the procedure in 
Fig. 2 for constructing a fine cover of a given VAS. Our 
design will relate each state in the resulting automaton 
to a vector (E (N U {w})~) of the original VAS. For 
convenience, we associate a labeling function 1 to such 
a mapping. 

Algorithm Cover is a slight modification of the orig- 
inal Karp-Miller procedure, the termination of Cover 

follows. Hence, we have 

Theorem 3. Algorithm Cover terminates. 

Given a VAS P, let CG( P), C(P), and Cover(P) 

be the finite automata generated by the Karp-Miller 
procedure, the procedure defined by Schwer in [ 21, 
and our Cover procedure, respectively. Then we have 

Theorem 4. 

L(P) c L(C(P)) C L(CG(P)) C L(Cover(P)). 

Proof. L(P) 2 L(C(P)) 2 L(CG(P)) follows 
from Proposition 4.2 in [ 21, whereas L( CG( P) ) C 
f( Cover( P) ) is trivial. 0 

According to Theorem 4, finite automaton 
Cover(P) defines a rational cover of VAS P. In what 
follows, we prove that Cover(P) is a fine cover. It 
suffices to prove the following theorem: 

Theorem 5. Given a VAS P, every loop in the au- 
tomaton constructed by algorithm Cover(P) is a 
strong loop. 

Proof. We let w(x) be the set of w places of a vector 
x. Consider a loop u emanating from a state with label 
u (which is a vector in (NU {w})~). Let 

v&%0, z&l*.. +T!Q$!$, 

be a computation path such that UI, ~2.. . . , v, mark 
the labels of those states at which some coordinates 

become o for the first time along the path. A care- 
ful examination of procedure Cover reveals that there 
exist loops gI, ~72,. . . , corn attached to ui, ~2,. . . , u,, 
respectively, such that 

IIUI II+ = W(Q), 

11~1 II- = 0, 

Ila211- c @CO) ( = ll~lllfL 

Il~jll- C w(uj-l) ( = IJ ll~ill+) 

I <i<j- I 

Ilull- C W(u) (= U ll~ill+). 

I (i<m 

(See lines lo-15 of procedure Cover.) Hence, we 
have an iterating system. Clearly, u is a strong 
loop. 0 

In view of the above, we have: 

Corollary 6. Given a VAS P, algorithm Cover(P) 

generates a jine cover of P. 

In comparison with Schwer’s procedure [2], our 
Algorithm Cover provides a simpler and faster way 
of constructing a fine cover, despite the fact that our 
construction may result in a fine cover which is bigger 
than Schwer’s one (Theorem 4). 

4. Complexity of deciding iterable factors 

Recall that for a prefix-closed language f. (over an 
alphabet A), a string w is said to be an iteruble factor 
(of f.) iff Vn > 0, A*w” f? L # 8. Intuitively, w is 
an iterable factor if it can be “pumped” an arbitrary 
number of times, provided that an appropriate prefix 
computation is executed. As mentioned in the previ- 
ous section, the concept of an iterable factor plays an 
important role in the study of fine covers of VAS lan- 
guages. Now consider the following problem: 
l Input instance: A VAS P and a string w. 
l Question: Is w an iterable factor of L(P)? 
In what follows, we show the above problem to be 
EXPSPACE-complete. Our analysis takes advantage 



H.-S. Yenllnformation Processing Letters 56 (1995) 237-243 

Procedure Cover( (T, (p, 00) ) 
{The procedure is to construct a finite automaton M, in which all states are accepting} 
1. begin 
2. mark the initial state qe (I(9o) - uc) as “active” 

3. while M contains some active node, say p, do 

4. for every t E T 
5. which is enabled in I(p), and 

241 

6. 
7. 
8. 
9. 
IO. 
I I. 
12. 
13. 
14. 
15. 
16. 
17. 
18. 
19. 
20. 

no edge emanating from p is labeled by t 
do 

if there is a node 9’ from 90 to p with label I(p) + (p(t) 
then add transition p &+ q’ to M 
else if there is a node q” from qo to p such that I(9”) < f(p) + Cp(t) 

then do 
add an active state 4 with the following label and a transition p d+ q 

(a) i( = W, if I( < (i(P) + P(t))i 

(b) I(q); - I(q otherwise 
add a cycle (loop) in q with the same edge sequence from q” to q 
od 

else add an active state ~7 (I(q) -I(p) + q(t)) and transition p A q to M 
fi 

fi 

od 
21. mark p as inactive 

end procedure. 

Fig. 2. 

of the connection between strong loops and iterating 
systems for the coverability automata of VAS lan- 
guages [ 21, as well as an algorithm derived in [ 41 for 
testing the existence of certain paths in Petri nets (or 
equivalently, VASs). 

It has been shown in [ 21 that given a VAS P, if w 
is an iterable factor of L(P), then there is a strong 
loop (q, w) in the coverability automaton of P (see 
Theorem 1) . The converse trivially holds as well. Also 
shown in [ 21 is that (q, w) is a strong loop with re- 
spect to the coverability automaton of a VAS P iff 
there exists an iterating system related to (9, w) (see 
Theorem 2). The connection between iterable factors 
and iterating systems is interesting; however, such a 
result is useful for checking iterable factors only if 
the associated coverability automaton of the consid- 
ered VAS is in presence (for iterating systems are de- 
fined on coverability automata, rather than on VASs 
directly). The following theorem, describing neces- 
sary and sufficient conditions for a string to be an iter- 
able factor, allows us to bypass coverability automata 
in the process of checking iterable factors. 

Theorem 7. In a VAS P = (Z p, UO), a string w 
is an iterable factor of L(P) ia there exists a VAS 

computation 

61 62 ug Cz U] - /I; 2% Q H u; . . . 
WP 4 - up - u; 2 u IA u’, 

forsomep 6 k, WI,W~ ,..., w~+I,&,& ,..., S,, E 
T*,u ,,..., up,u; ,..., 

(i) 114 II- = 0, 
ub, u, u’ E Nk such that 

(ii) Ilhll- L lJ]<j<i 116jll+,V2 < id Pp and 

Ciii) IIwII- G Ul<jap Ilsjll+. 
(In words, w is an iterable factor @it is a rightfactor 
of an iterating system.) 

Proof. We first show the only if part. Let 

be the iterating system guaranteed by Theorems 1 and 
2. According to Condition ( 1) of the definition of 
iterating systems (i.e., wI a: w2al . . . wpai wp+, w n 
L(P) # 0), there must exist S; ( E ai+), 1 < i 6 
p,andui ,..., q,,u;,.. . , u;, u, u’ E Nk satisfying the 
statement of the theorem. Conditions (i), (ii), and 
(iii) follow immediately from Conditions (2), (3), 



242 H.-S. Yenllnformarion Processing Letters 56 (1995) 237-243 

and (4). respectively, of the definition of iterating sys- termsandl<i,j<k. 
tems. (Notice that [[Sill- = [[aill-, for all i.) F, V F2 and F, A F2 are predicates if F, and F2 are 

The ifpart is obvious. 0 predicates. 

In [ 41, a class of path formulas for general Petri 
nets (equivalently, VASs) has been defined for which 
the satisfiability problem has been shown to be solv- 
able in EXPSPACE. As it turns out, testing Conditions 
(i), (ii), and (iii) of Theorem 7 can be expressed 
as a formula allowed in [ 41. Hence, the EXPSPACE 
upper bound for testing iterable factors follows. For 
the sake of completeness, we now briefly define the 
class of path formulas discussed in [ 41. (Notice that 
in [ 41, the definition is given in the context of Petri 
nets.) Let (T, p, m) be a k-dimensional VAS with m 
addition rules. Each path formula consists of the fol- 
lowing elements: 

In [ 41, the satis$abilityproblem (i.e., the problem 
of determining whether there exists a path satisfying 
the given formula) for the following class of formulas 
has been shown to be solvable in EXPSPACE: 

&1,...,& 3~Ir...,~m 

((cc0 U’ +---+/.&I a.../!&, ++Lm) 

A F(LQ,. ..9PrnruI9...9 am)) 

Theorem 8. Given a VAS P = (T, (o, vg) and a string 
w, determining whether w is an iterable factor of 

L(P) is EXPSPACE-complete. 

( 1) Variables: There are two types of variables, 
namely, marking variables ~1, ,u2, . . . and variables 
for transition sequences ~1, ~2, . . ., where each pi 
denotes a vector in Nk and each ci denotes a finite 
sequence of addition rules. 

(2) Terms: Terms are defined recursively as fol- 
lows. 
(a) V constant c E Nk, c is a term. 
(b) V j > i, ,ui - pi is a term, where pi and pj are 

marking variables. 

Proof. We first consider the upper bound. Suppose 
w = t1t2** . t,, ti E T, Vl < i < n. According to 
Theorem 7, string w is an iterable factor of P iff there 
exists a computation 

(c) T, + T2 and T, - T2 are terms if TI and T2 are 
terms. 

(3) Atomic predicates: Let 0 denote the inner 
product operator of vectors, and #rr be a mapping 
from T to N such that #,( t) represents the number of 
occurrences of addition rule t in sequence u. (#, can 
be viewed as a vector in Nm.) There are two types of 
atomic predicates, namely, transition predicates and 
marking predicates. 
(a) Transition predicates: 

l y~#~,<c,y~#~;-candyO#, >care 
predicates, where i > 1, y (a constant) E Z”, 
c E N. 

8 62 “0 & “1 H v; I-% “2 - v; . . . 
4 I3 up I----+ v; .wp+! ” A “‘, 

for somep < k, wl,w2 ,..., wp+l,&,& ,..., 4, E 
T*, v ,,..., vp,v; ,... , v;, u, u’ E Nk, satisfying Con- 
ditions (i), (ii), and (iii) of the statement of Theo- 
rem 7. 

Our algorithm begins with guessing p ( < k) and 
sets A; (G {l,..., k}, for 2 < i < p) to capture 
IlSill- so that Conditions (i), (ii), and (iii) are met. 
Then w is an iterable factor iff the following path 
formula is satisfiable: 

l #,, (tj ) < c and #,, ( tj ) 2 c are predicates, 
where c E N and tj E T. 

(b) Marking predicates: 
l Qpe 1: p(i) 2 cand&i) > carepredicates, 

where ,u is a marking variable and c ( E Z) is 
a constant. 

l 7jpe 2: T,(i) - Tz(i), TI(~) < Tz(j) and 
T, (i) > T2 (j) are predicates, where TI , T2 are 

3”,,“; ,..., v,,v;JJ +I,..., w,+1,61...., a,, 

62 (“0 I-% “, 2% “{ 2.3 “2 - “; . . . 

2+,,2&;~,, 

and 

(I) (“: 2”l) 

(expressing Condition (i) of Theorem 7, i.e., l[Sl (I- = 

0) 



H.-S. Yenllnformation Processing Letters 56 (1995) 237-243 243 

(II) A (( A (Uj(f) - vi(j) Z 0)) 

Z<i<p WA,- 

^(A 
/Ed,- 

& (U;(f) - Uj(f) > 

I<j<i 

(expressing Condition (ii) of Theorem 7, i.e., 

l18ill- C Ul<j<i Ilsjll+)* 

(III) A ( V (u;(l) -uj(l) > O)> 

IGIIwII- l<j<p 

(expressing Condition (iii) of Theorem 7, i.e., 

I <j<n i-l 

(ensuring that w is legal in u) . 
Hence, testing iterable factors can be done in EXP- 

SPACE. The lower bound can easily be proved by 
reducing the boundedness problem for VASs (which 
is well-known to require EXPSPACE) to our problem. 
The details are left to the reader. 0 

Acknowledgment 

The author thanks the anonymous referee for sug- 
gestions that improved the correctness as well as the 
presentation of this paper. 

References 

[II 

[21 

[31 

141 

R. Karp and R. Miller, parallel program schemata, J. Compuf. 

System Sci. 3 (1969) 167-195. 
S. Schwer, Fine covers of a VAS language, Theoret. Comput. 

Sci. 95 (1992) 1.59-168. 
S. Schwer, The context-freeness of the languages associated 
with vector addition systems is decidable, Theoret. Comput. 

Sci. 98 ( 1992) 199-247. 
H. Yen, A unified approach for deciding the existence of 
certain Petri net paths, Inform. and Comput. 96 ( 1992) I l9- 
137. 


